超高有机硫煤中微量元素的地球化学规律
2019-09-10张卫国杨建业侯恩科
张卫国 杨建业 侯恩科
摘 要:為了研究高有机硫煤中微量元素分布与元素内部结构变化之间的规律,选取国内典型超高有机硫煤的12个样品,分析了48种元素含量和其灰分产率的相关系数平方与对应元素的第一电离能、离子半径的变化趋势,结果显示与元素第一电离能变化趋势一致的有23组,相反的有24组;与元素离子半径变化趋势一致的有25组,相反的有22组。对比与元素第一电离能和离子半径的变化趋势发现,具有相同变化趋势的有21组,从某种程度上第一电离能表征了原子团分裂与结合的难易程度,而离子半径决定了元素的亲和性能,二者在不同背景条件下的主导作用造成了上述差异性的出现。为了定量的表征2组数据同步变化的良好程度,定义了同向同步性水平、反向同步性水平、连续同步性水平、同向连续m同步性水平和反向连续m同步性水平,根据以上几种同步性水平的定义归纳出了同步性水平评价公式。
关键词:超高有机硫;微量元素;地球化学
中图分类号:P 595
文献标志码:ADOI:10.13800/j.cnki.xakjdxxb.2019.0109文章编号:1672-9315(2019)01-0056-07
Geochemical regularity of trace elements in
superhigh organic sulfur coal
ZHANG Wei guo,YANG Jian ye3,HOU En ke
(1.College of Geology and Environment,Xi’an University of Science and Technology,Xi’an 710054,China;
2.Geological Research Institute for Coal Green Mining,Xi’an University of Science and Technology,Xi’an 710054,China;
3.College of Materials Science and Engineering,Xi’an University of Science and Technology,Xi’an 710054,China)
Abstract:In order to study the regularity between the distribution of trace elements and the internal structure of elements in high organic sulfur coal,12 samples of typical ultrahigh organic sulfur coal were selected,and the correlation coefficients of 48 elements and their ash yield were analyzed.The first ionization energy of the element and the change trend of the ion radius were investigated.The results show that there are 23 groups consistent with the change trend of the first ionization energy of the element.On the contrary,there are 24 groups.There are 25 groups with the same trend of the ion radius of the element,and 22 groups are contrary.Comparisonof the trend of changeof the first ionization energy and ion radius of the elementsfound that 21 groups are of the same trend.From a certain extent,the first ionization can represent the degree of difficulty of the division andcombination of atomic,and the ion radius determines the affinity element.The two under different background conditions led to the emergence of the above differences.In order to represent the synchronization of the two groups of data quantificationally,we propose the concept of synchronized level, including synthetic synchronization,reverse synchronization,continuous synchronization,synthetic continuous m synchronization and reverse continuous m synchronization.Based on the definition of the synchronized level mentioned above,the evaluating formula of synchronized level is concluded.
Key words:superhigh organic sulfur;trace elements;geochemical
0 引 言
地壳中有质量分数可供统计的元素88种[1],现代测试技术下从煤(燃烧产物)及其解吸气体样品中检测到86种元素[2]。微量元素在大多数煤中的含量低于0.1%,在特殊成煤地质背景下可以达到工业品位[3-4]。其中25种微量元素对生态环境造成有害影响[5-6]。煤中微量元素丰度是微小的,却可以揭示聚煤盆地演化过程中的许多地质问题[7-10]。因此,研究煤中微量元素的地球化学特征对于煤炭资源的开发利用和人类健康发展意义重大。
近年来由于环境问题频发,应用地球化学理论从微量元素角度分析煤炭成为了研究热点且成果颇多[11-13]。而从微量元素含量分布特点与元素内部结构变化之间探索规律的研究鲜见报道。杨建业(2011)以渭北晚古生代太原组5号煤层9个样品为例,分析了51种微量元素与煤中灰分、有机碳的相关系数和对应元素第一电离能、离子半径的关系,取得了一些重要的认识,发现煤中微量元素的分布及赋存总体服从元素周期律,表现为受内部某种结构的演变支配而呈规律性变化,并对此规律作了较为完整的阐述[14],该规律在镧系元素中更为明显[15-17]。
目前学术界对于高有机硫煤没有统一的定义,有文章指出有机硫含量大于1%的煤界定为高有机硫煤,有机硫含量达到4%以上可称为超高有机硫(super high organic sulfur,SHOS)[18]。超高有机硫煤形成地质背景复杂且特殊,世界范围内分布较少,国内仅在广西合山[19-20]、扶绥[21],云南砚山[22],湖南辰溪[23,24],贵州贵定[25-26]等地有报道。前人针对我国超高有机硫煤的研究主要集中在含硫特点及成因、矿物组合特征、元素富集模式及物质来源等方面。超高有机硫煤具有独特的地质演化背景和元素地球化学特征,它的微量元素含量特征与元素内部结构变化会有怎样的关系?本次选取国内典型超高有机硫煤5个分布区的12组样品进行分析,试图揭示超高有机硫煤中微量元素与元素内部结构变化的关系。
1 样品特点
本次研究选取了已报道过的超高有机硫煤5个分布区的12组样品,下面对样品信息进行说明,HS3U(3U C),HS3L(3 L C),HS4U,HS4L(4L C)采自广西合山[20],FS1(C1),FS2(C2)采自广西扶绥[21],YS(M9)采自云南砚山[22],CX采自湖南辰溪[23-24],GC1(GC 1C),LHD(LHD 1C),GC3(GC 3C),HST(HST 3C)采自贵州贵定[25]。其中HS3U,HS3L,HS4L,FS1,FS2,GC1,LHD,GC3,HST和YS为全层刻槽取样测得的数据,HS4U为4U C1和4U C2厚度加权均值[20],YS为6个样品均值[22],CX为J8-2等11个分层样厚度加权均值[23-24]。
中国超高有机硫煤主要分布在南方晚二叠世含煤地层中,其中广西超高有机硫煤主要产出于晚二叠世合山组上部和下部,砚山、辰溪和贵定则赋存在于晚二叠世吴家坪组。12组超高有机硫煤灰分产率较高,属于中、中高灰分煤(16.90%~41.65%),全硫含量5.41%~10.65%属于高硫煤,有机硫含量2.50%~9.51%分别占到全硫含量的50%以上(表1)。
2 数据分析
元素周期律(periodic law of elements)指元素的性质随元素的原子序数(即核外电子数或核电荷数)的增加而呈现周期性变化的规律。例如第一电离能、离子半径随原子序数增加而呈周期性变化[30]。
统计12组超高有机硫煤样品中的48种元素含量与其灰分产率进行相关分析得到对应相关系数平方(表2),将上述相关系数平方分别与其对应元素的第一电离能和离子半径变化趋势进行对比分析,发现2组数据随着原子序数逐渐增大呈现出良好的同步变化的趋势(图1和图3)。所谓同步变化无非2种,“同增同减”和“此消彼长”,“同增同减”即变化趋势一致,“此消彼长”即变化趋势相反。
为了详细分析2组数据中哪些元素变化趋势一致?哪些元素变化趋势相反?将2组数据进行进一步处理得到图2和图4.数据处理过程为依次将每组数据中48个数据进行相邻两数做差(后数减前数)分别得到47个数据,再将2组数据中对应的47个数据相乘得到一组(47个)数据,根据所得数据的正负性进行绘图。X坐标线以上表示相邻2个元素在2组数据中变化趋势一致,记为“+”,X坐标线以下表示相邻2个元素在2组数据中变化趋势相反,记为“-”。
如图2和图4所示,可以明了的区分出2组数据的变化趋势一致与否。
超高有机硫煤中Li等48种微量元素和灰分的相关系数平方与元素第一电离能变化趋势对比图中显示,变化趋势一致的元素有23组,分别是Be和F,Sc和V,As和Se,Rb和Sr,Y和Zr,Mo和Cd,In和Sn,Sn和Sb,Ba和La,La和Ce,Ce和Pr,Nd和Sm,Eu和Gd,Gd和Tb,Dy和Ho,Tm和Yb,Yb和Lu,Lu和Hf,Hf和Ta,Hg和Tl,Tl和Pb,Pb和Bi,Th和U;其中连续变化趋势一致的元素有In,Sn和Sb;Ba,La,Ce和Pr;Eu,Gd和Tb;Tm,Yb,Lu,Hf和Ta;Hg,Tl,Pb和Bi.变化趋势相反的元素有24组,分别是Li和Be,F和Sc,V和Cr,Cr和Co,Co和Ni,Ni和Cu,Cu和Zn,Zn和Ga,Ga和As,Se和Rb,Sr和Y,Zr和Nb,Nb和Mo,Cd和In,Sb和Cs,Cs和Ba,Pr和Nd,Sm和Eu,Tb和Dy,Ho和Er,Er和Tm,Ta和W,W和Hg,Bi和Th;其中连续变化趋势相反的元素有V,Cr,Co,Ni,Cu,Zn,Ga和As;Zr,Nb和Mo;Sb,Cs和Ba;Ho,Er和Tm;Ta,W和Hg(圖2)。
超高有机硫煤中Li等48种微量元素和灰分的相关系数平方与元素离子半径变化趋势对比图中显示,变化趋势一致的元素有25组,分别是Li和Be,Be和F,V和Cr,As和Se,Sr和Y,Nb和Mo,Mo和Cd,Cd和In,In和Sn,Sb和Cs,Cs和Ba,Ce和Pr,Pr和Nd,Nd和Sm,Sm和Eu,Tb和Dy,Dy和Ho,Ho和Er,Er和Tm,Yb和Lu,Lu和Hf,Ta和W,Pb和Bi,Bi和Th,Th和U;其中连续变化趋势一致的元素有Li,Be和F;Nb,Mo,Cd,In和Sn;Sb,Cs和Ba;Ce,Pr,Nd,Sm,和Eu;Tb,Dy,Ho,Er和Tm;Yb,Lu和Hf;Pb,Bi,Th和U.变化趋势相反的元素有22组,分别是F和Sc,Sc和V,Cr和Co,Co和Ni,Ni和Cu,Cu和Zn,Zn和Ga,Ga和As,Se和Rb,Rb和Sr,Y和Zr,Zr和Nb,Sn和Sb,Ba和La,La和Ce,Eu和Gd,Gd和Tb,Tm和Yb,Hf和Ta,W和Hg,Hg和Tl,Tl和Pb;其中连续变化趋势相反的元素有F,Sc和V;Cr,Co,Ni,Cu,Zn,Ga和As;Se,Rb和Sr;Y,Zr和Nb;Ba,La和Ce;Eu,Gd和Tb;W,Hg,Tl和Pb(图4)。
对比图2和图4发现,2图中具有相同变化趋势的元素有21组,其中Be和F,As和Se,Mo和Cd,In和Sn,Ce和Pr,Nd和Sm,Dy和Ho,Yb和Lu,Lu和Hf,Pb和Bi,Th和U变化趋势一致;F和Sc,Cr和Co,Co和Ni,Ni和Cu,Cu和Zn,Zn和Ga,Ga和As,Se和Rb,Zr和Nb,W和Hg变化趋势相反。连续变化趋势一致的元素有Yb,Lu和Hf;连续变化趋势相反的元素有Cr,Co,Ni,Cu,Zn,Ga和As(图2和图4)。
综上,超高有机硫煤中Li等48种微量元素和灰分的相关系数平方与元素第一电离能、离子半径变化趋势存在明显的差异性,由于第一电离能是原子失去最外层的一个电子所需能量,从某种程度上表征了原子团分裂与结合的难易程度,而离子半径决定了元素的亲和性能,二者在不同背景条件下的主导作用造成了上述差异性的出现。
根据杨建业(2011)提出的“煤地球化学常数”的算法[14],将48种微量元素和灰分的相关系数平方乘以对应元素第一电离能(离子半径)得出一个乘积,再将这48个乘积求平均值,该均值即为“煤地球化学常数”。按上述方法计算出第一电离能常数为22.50,离子半径常数为0.32,以此煤地球化学常数反算出各元素相关系数平方的理想值(表2)。将理想的相关系数平方与第一电力能和离子半径作图,拟合效果明显规律性增强(图5和图6)。
为了定量的表征2组数据同步变化的良好程度,寻找煤中微量元素的某些特征值与元素内部结构之间的规律,本次研究引入2组数据变化趋势“同步性水平”概念来分析图2和图4.设定样本个数为n,逐步宽度为m,步长为1;则当m为1时,正数(+)的个数/n,称为同向同步性水平;负数(-)的个数/n,称为反向同步性水平。当出现连续几个符号相同时,则称为连续同步性水平,即m(2,3…n)个数连续符号相同的组数/总组数,总组数为t,t=n-m+1;m个数连续符号为正的组数/总组数,称为同向连续m同步性水平;m个数连续符号为负的组数/总组数,称为反向连续m同步性水平。根据以上几种同步性水平的定义归纳出同步性水平评价公式(表3)。应用2组数据变化趋势同步性水平概念和公式评价图2和图4,结果见表4和表5.
3 结 论
1)48种元素含量和其灰分产率的相关系数平方与对应元素的第一电离能、离子半径的变化趋势具有一定规律性。与元素第一电离能变化趋势对比显示,变化趋势一致的元素有23组,变化趋势相反的元素有24组。与元素离子半径变化趋势对比显示,变化趋势一致的元素有25组,变化趋势相反的元素有22组;
2)对比与元素第一电离能和离子半径的变化趋势发现,具有相同变化趋势的元素有21组,连续变化趋势一致的元素有Yb,Lu和Hf;连续变化趋势相反的元素有Cr,Co,Ni,Cu,Zn,Ga和As;
3)计算出第一电离能常数为22.50,离子半径常数为0.32,以此煤地球化学常数逆推出各元素相关系数平方的理想值。将理想的相关系数平方与第一电力能和离子半径作图,拟合效果明显规律性增强;
4)引入2组数据变化趋势“同步性水平”概念,并定义了同向同步性水平、反向同步性水平、连续同步性水平、同向连续m同步性水平和反向连续m同步性水平。根据以上几种同步性水平的定义归纳出了同步性水平评价公式。
参考文献References
[1] 黎 彤.地壳元素丰度的若干统计特征[J].地质与勘探,1992,28(10):1-7.
LI Tong.Several statistical characteristics of crustal abundance of the elements[J].Geological and Prospecting,1992,28(10):1-7.
[2] 唐修義,黄文辉.煤中微量元素及其研究意义[J].中国煤田地质,2002,14(13):1-4.
TANG Xiu yi,HUANG Wen hui.Trace elements of coal and its significances on research[J].Coal Geology of China,2002,14(13):1-4.
[3] 任德贻,赵峰华,代世峰,等.煤的微量元素地球化学[M].北京:科学出版社,2006.
REN De-yi,ZHAO Feng hua,DAI Shi feng,et al.Geochemistry of trace elements in coal[J].Beijing:Science Press,2006.
[4] Spears DA.The determination of trace element distributions in coals using sequential chemical leaching:a new approach to an old method[J].Fuel,2013,114(2):31-37.
[5] Dai S,Liu J,Ward C R,et al.Petrological,geochemical,and mineralogical compositions of the low Ge coals from the Shengli Coalfield,China:a comparative study with Ge rich coals and a formation model for coal hosted Ge ore deposit[J].Ore Geology Reviews,2015,71(1):318-349.
[6]
YANG Jian ye,ZHAO Lei,ZHANG Wei guo.The geochemical effect of lanthanides:its types and application for magmatic rocks:a new method to semi quantitatively determine strength of magmatic fluid complexation and fractional crystallization[J].Journal of Earth Science,2014,25(2):252-262.
[7] WANG Xi bo,Hamed Sanei,DAI Shi feng,et al.A novel method to estimate mineral compositions of mudrocks:A case study for the Canadian unconventional petroleum systems[J].Marine and Petroleum Geology,2016,73(2):322-332.
[8] Dai S,Hower J C,Ward C R,et al.Elements and phosphorus minerals in the middle Jurassic inertinite rich coals of the Muli Coalfield on the Tibetan Plateau[J].
Internation Journal of Coal Geology,2015:23-47.
[9] Hower J C,Eble C F,O’Keefe J M,et al.Petrology,palynology,and geochemistry of Gray Hawk Coal(Early Pennsylvanian,Langsettian)in Eastern Kentucky,USA[J].Minerals,2015,5(1):592-622.
[10]Scott C,Deonarine A,Kolker A,et al.Size distribution of rare earth elements in coal ash[J].Paper Presented at the World of Coal Ash Conference,Nashville,2015(5):5-7.
[11]Dai S,Chekryzhov I Y,Seredin V V,et al.Metalliferous coal deposits in East Asia(Primorye of Russia and South China):a review of geodynamic controls and styles of mineralization[J].Gondwana,2016,29(2):60-82.
[12]Li B,Zhuang X,Li J,et al.Geological controls on mineralogy and geochemistry of the late permian coals in the Liulong mine of the Liuzhi Coalfield,Guizhou province,Southwest China[J].Internation Journal of Coal Geology,2016:154-155,1-15.
[13]YANG Jian ye,WANG Guang heng,ZHANG Wei guo.The trace elements are bounded by organic functional groups in coal:A studying result based on FTIR analysis[J].Acta Geologica Sinica(English Edition),2016,90(1):154-165.
[14]楊建业.煤微量元素地球化学的一个重要规律——以渭北5#煤层为例[J].中国科学,2011,41(10):1444-1453.
YANG Jian ye.Coal is an important law of trace element geochemical:An example of 5# coal from Weibei[J].China science,2011,41(10):1444-1453.
[15]杨建业.镧系元素的煤地化效应——以渭北中熟煤为例[J].中国稀土学报,2008,26(4):486-490.
YANG Jian ye.The effect on coal geochemistry of rare earth elements:an example of middle rank coal from Weibei[J].Journal of Rare Earths,2008,26(4):486-490.
[16]杨建业.煤中镧系元素有机-无机亲合性及其演变规律研究——以渭北晚古生代5#煤层为例[J].中国矿业大学学报,2010,39(3):402-407.
YANG Jian ye.The organic or inorganic affinity of Lanthanide elements in coal and its evolution:a case study of the Late Paleozoic 5# coal from Weibei[J].Journal of China University of Mining and Technology,2010,39(3):402-407.
[17]楊建业.镧系元素地球化学效应的一个重要应用——以稀土元素的岩石学分类和煤燃烧中的迁移富集过程为例[J].湖南科技大学学报,2016(2):113-118.
YANG Jian ye.The effect on geochemistry of the rare earth element:an example of important application in the REE classification for petrology and study for migrating of the REE during the burning of lignite[J].Journal of Hunan University of Science and Technology,2016(2):113-118.
[18]Chou C L.Geological factors affecting the abundance,distribution,and speciation of sulfur in coals[C]//In:Yang,Q.(Ed.),Geology of Fossil Fuels Coal:Proceedings of the 30th International Geological Congress,
Part B,VSP,Utrecht,The Netherlands,
1997,18:47-57.
[19]SHAO Long yi,Jones Tim,Gayer Rod,et al.Geochemistry of trace elements in Chinese coals:a review of abundances,genetic types,impac petrology and geochemistry of the high sulphur coals from the Upper Permian carbonate coal measures in the Heshan Coalfield,southern China[J].International Journal of Coal Geology,2003,55(1):1-26.
[20]DAI Shi feng,ZHANG Wei guo,Seredin V V,et al.Factors controlling geochemical and mineralogical compositions of coals preserved within marine carbonate successions:a case study from the Heshan Coalfield,southern China[J].International Journal of Coal Geology,2013(109-110):77-100.
[21]
DAI Shi feng,ZHANG Wei guo,Ward Colin R,et al.Mineralogical and geochemical anomalies of late Permian coals from the Fusui Coalfield,Guangxi Province,southern China:Influences of terrigenous materials and hydrothermal fluids[J].International Journal of Coal Geology,2013,105(5):60-84.
[22]代世峰,任徳贻,周义平,等.煤中微量元素和矿物富集的同沉积火山灰与海底喷流复合成因[J].科学通报,2008,53(24):3120-3126.
DAI Shi feng,REN De yi,ZHOU Yi ping,et al.Trace elements in coal and mineral enriched with volcanic ash deposition and complex causes of submarine jets[J].Chinese Science Bulletin,2008,53(24):3120-3126.
[23]李薇薇,唐跃刚,邓秀杰,等.湖南辰溪高有机硫煤的微量元素特征[J].煤炭学报,2013,38(7):1227-1233.
LI Wei wei,TANG Yue gang,DENG Xiu jie,et al.Geochemistry of the trace elements in the high organic sulfur coals from Chenxi Coalfield[J].China Coal Soc,2013,38(7):1227-1223.
[24]LI Wei wei,
TANG Yue gang.Sulfur isotopic composition of superhigh organic sulfur coals from the Chenxi Coalfield,southern China[J].International Journal of Coal Geology,2014,127:3-13.
[25]
DAI Shi feng,Vladimir V Seredin,Colin R.Ward,et al.Enrichment of U Se Mo Re V in coals preserved within marine carbonate successions:geochemical and mineralogical data from the Late Permian Guiding Coalfield,Guizhou,China[J].Miner Deposita,2015,50:159-186.
[26]
LIU Jing jing,YANG Zong,
YAN Xiao yun,et al.Modes of occurrence of highly elevated trace elements in superhigh organic sulfur coals[J].Fuel,2015:190-197.
[27]
唐躍刚.四川晚二叠世煤中硫的赋存机制黄铁矿矿物学及其磁性研究[D].北京:中国矿业大学,1993.
TANG Yue gang.Sichuan occurrence mechanism of the sulfur in coal of late Permian pyrite mineralogy and its magnetic studies[D].Beijing:China University of Mining and Technology(Beijing),1993.
[28]刘英俊,曹励明.元素地球化学导论[M].北京:地质出版社,1987.
LIU Ying jun,CAO Li ming.Guidelines of elemental geochemistry[M].Beijing:Publishing House of Geology,1987.
[29]高胜利,陈三平,谢 钢.化学元素周期表使用指南[M].北京:科学出版社,2007.
GAO Sheng li,CHEN San ping,XIE Gang.Use guide chemical element periodic table[M].Beijing:Science Press,2007.
[30]郑化桂,倪小敏.高等无机化学[M].北京:中国科学技术大学出版社,2006.
ZHENG Hua gui,NI Xiao min.Higher inorganic chemistry[M].University of Science and Technology of China Press,2006.