APP下载

基于“数学核心素养”视角下的高三复习课课例研究

2019-09-10张勇

高考·上 2019年2期
关键词:余弦正弦考纲

张勇

近期市教研室在我校開展了一次高三教学专题视导活动,笔者作为一名高三教师,承担了文科数学《4.5两角和与差的正弦、余弦和正切公式》的一节公开课教学.虽然笔者具有多年的高三教学经验,但是专家的评课让我对高三数学一轮复习的课堂教学有了新的理解和领悟.如何确保高三课堂复习的高效和高质,让我们的一轮复习助力学生高考冲刺时成绩的大幅提升,似乎自己心中有了答案.下面整理一些心得体会与同仁共享,不当之处恳求大家批评指正.

一、紧扣考纲目标,设计教学构想

在《两角和与差的正弦、余弦和正切公式》课例中,考纲给出了如下三个目标:

1.会用向量的数量积推导出两角差的余弦公式.

2.能利用两角差的余弦公式导出两角差的正弦、正切公式.

3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.

美国教育心理学家和教育家布卢姆说:“有效的教学始于准确地知道希望达到的目标.”在教学设计中,我就围绕公式的生成和联系开展知识公式的复习,黑板上我以知识框图的形式展现公式的内在联系,并与学生一起复习之前的逻辑关系,形成公式链.在学生理清公式的基础上,再设置公式的多维应用,特别注意渗透公式生成中所使用的思维方法.最后要回到今年高考试题上,在此我特别选取了2016年全国卷Ⅰ文科第14题和2016年全国卷Ⅲ文科第6题,设计意图是让学生能通过本节课的复习,对这类题有个满意的解答.

二、以本为本,精心设计例题和练习题

在《两角和与差的正弦、余弦和正切公式》课例中,为了实现相应的教学设想,我认真的阅读必修4课本第三章内容,反复琢磨考纲的要求,最后把两角差的余弦公式证明、两角和的余弦公式、两角差的正弦公式及二倍角公式的证明设计成命题的形式,让同学们谈证题思路.随后,以书本题为蓝本,进行选取,部分作适当的改编,形成了一组基础巩固题.如:

三、师生共建和谐的课堂

美国教育家罗杰斯说过:“创造活动的一般条件是心理安全和心理自由,只有心理安全才能导致心理自由,也才能导致学习的创造性”.所以始终使课堂处于“民主、平等、宽松、和谐、愉快”的教学气氛,能够使学生产生自觉参与的欲望,学生此时的思维敏捷流畅,这样在课堂教学中才能真正使学生成为学习的主体.在本节课的教学中,笔者就本着学生为主体的原则,努力构建和谐的课堂氛围.

片段1、师:请哪位同学帮我们来分析下基础巩固题的解法与答案?

生A:我来,我来!对于第(1)题,so,easy!直接用公式,结束.对于第(2)题,同学们先看看式子的结构啊,非常像两角和的正弦公式,但有陷阱,你注意到了吗?注意到你就解决了,先用下诱导公式嘛!对于第(3)题,我想直接带tan15°的值,就行了.大家懂不……

师:A同学有成为一名老师的潜质,厉害!

师:同学们,你们在(1)问解答中,具体选择了什么公式做的?(3)的方法和A同学一样吗?

只有这样学生才会主动地、积极地参与学习过程,而不是被动地、消极地成为接受知识的容器.让他们在平等的基础上合作学习,促进彼此之间关系的和谐发展,从而提高课堂效率.

片段2、师:前面我们已经收获了解决一类问题的基本方法和解题经验了,对于给出的变式(5),你是如何想的?

教室非常安静......

师:和之前的问题有什么相似之处与不同之处呢?想想本节课我复习的一组公式链里,如何由导出其它公式的?下面就请你说一说了.

教室处于一片的议论着......

思维总是从疑问开始的.在教学中通过创设相应情境,不仅可以使学生对学习的对象产生注意,增强学习针对性,在心理上形成一种预期,而且可以激发学生求知的欲望,调动学生思维的积极性,对整个的学习活动起到积极的定向作用.只有在真实情景中学生才能使自己的知识体系和自己的潜能和谐发展.

话说当天有二十多位老师和专家们一起听课,在课堂中,学生们从问题的提出到问题的解决与解后的总结,都完成的非常出色.学生能听从老师的要求,阅读课本,寻找公式的证明思路;能时而专心演算,给出问题的完美解答;有时又沉浸在专注地思考中,搜寻问题的联系和解题的方法.从课堂学生们的眼神中,能深切地感受到一个为师者的辛福感.

四、坚持反思,才能提升自我

45分钟永远是短暂的,从本节课来看,能达到自己的预设目标.课后,专家也作了点评,肯定了一轮复习课的精心备课和课堂组织教学的高效,充分体现了以学生为中心的主体地位.特别在学生活动上,专家们也给我提出了高瞻远瞩的建议,让我恍然大悟.课之余,总感觉自己还有很多可以改进的地方.能不能在考纲目标落实上更细致些?能否在学生活动中更自由和多样些?能否在高考题的解答后让学生多些提炼解法的指导,特别是对接考纲和课本教材的衔接指导?

高三一轮复习课我们教师需要的就是研究课程标准,紧扣考纲,保持原汁.一切源自课本,又回归课本.如何才能保证课堂教学中的原味,又需要我们教师的智慧和经验.以上只是笔者的一点体会和做法.学然知己不足,思方能促成长.享受教学的快乐,助力学生的成长才是我们教师最快乐的事.

猜你喜欢

余弦正弦考纲
正弦、余弦定理的应用
用联想的方式复习考纲动词
椭圆余弦波的位移法分析
诵读100句,记考纲重难点词汇(二)
通读100句,记考纲重难点词汇(一)
利用正弦定理解决拓展问题
两个含余弦函数的三角母不等式及其推论
实施正、余弦函数代换破解一类代数问题
正弦定理与余弦定理在应用中的误区
正弦、余弦定理在三角形中的应用