通过核因子E2相关因子2信号通路保护急性肾损伤的中药有效成分的研究进展
2019-09-10王圳伊罗佳承阮豪南王露露张晶
王圳伊 罗佳承 阮豪南 王露露 张晶
中图分类号 R692.5 文献标志码 A 文章编号 1001-0408(2019)23-3302-06
DOI 10.6039/j.issn.1001-0408.2019.23.24
摘 要 目的:归纳基于核因子E2相关因子2(Nrf2)信号通路保护急性肾损伤(AKI)的中药有效成分,为治疗急性肾损伤的新药开发提供参考。方法:以“急性肾损伤”“中药”“有效成分”“核因子E2相关因子2”“信号通路”“Acute kidney injury”“Traditional Chinese medicine”“Active ingredient”“Nuclear factor E2 related factor 2”“Signaling pathway”等为关键词,组合查询2003年1月-2019年5月在中国知网、维普网、万方数据、PubMed、Elsevier、Springer Link等数据库中的相关文献,综述Nrf2与AKI的关系,并归纳基于Nrf2信号通路保护AKI的中药有效成分。结果与结论:共检索到相关文献320篇,其中有效文献63篇。Nrf2信号通路与肾缺血再灌注所致的AKI、重金属诱发的AKI、药物性AKI以及脓毒症引发的AKI有重要关系,药物可通过激活Nrf2信号通路有效改善上述AKI的发生。基于Nrf2信号通路保护AKI的中药有效成分有黄酮类化合物(黄腐酚、橘皮素、橙皮苷、木犀草素等)、生物碱类化合物(青藤碱、氧化槐定碱、长春碱、小檗碱等)、萜类化合物(齐墩果酸、桦木酸、茯苓酸等)、苯丙素類化合物(五味子乙素、芝麻素)、多酚类化合物(厚朴酚、丹皮酚、姜黄素等)、多糖类化合物(如香菇多糖、枸杞多糖、黄芪多糖等)等。基于Nrf2信号通路研究防治AKI的中药有效成分,对深入研究Nrf2调控的相关信号通路与肾疾病的关系和治疗AKI的新药开发具有重要意义,也可为临床治疗AKI提供新思路和治疗策略。
关键词 核因子E2相关因子2;信号通路;急性肾损伤;中药;有效成分
肾是人体最重要的排泄器官,具有重要的生理功能[1]。随着人们不健康生活方式的增加及药物的大量使用,肾疾病的发病率逐年升高[2]。急性肾损伤(Acute kidney injury,AKI)是一组以肾小球滤过率(Glomerular filtration rate,GRF)迅速下降为特点的临床综合征,是临床常见的一种肾疾病[3]。据统计,在全球范围内,其发病率和病死率较高,因此,寻找有效治疗AKI的方法已成为目前研究的热点[4-5]。近年来,国内外的许多学者通过动物实验及临床研究对AKI的发病机制、病理生理、治疗方法等做了大量研究并取得了相关进展[6]。核因子E2相关因子2(Nuclear factor E2 related factor 2,Nrf2)在维持细胞、组织和器官的稳态过程中起到至关重要的作用[7]。Nrf2是编码解毒酶、抗氧化蛋白、外源性转运体和其他应激反应介质的多种基因的基础和诱导表达的主转录调节因子[8]。在正常情况下,Nrf2与Kelch样环氧氯丙烷(ECH)相关蛋白1(Keap1)结合,并定位于细胞质[9]。然而,当外源性物质刺激和氧化应激时,Nrf2从Keap1分离并转移至细胞核中与抗氧化反应元件(ARE)结合,诱导解毒酶和抗氧化酶的表达[10-11]。相关研究也表明,Nrf2通路是改善肾损伤的重要通路[12]。中药有效成分具有疗效显著,且副作用少的优点,在治疗肾损伤方面也应用广泛[13]。为了明确Nrf2与AKI的关系,并归纳基于Nrf2信号通路保护AKI的中药有效成分,笔者以“急性肾损伤”“中药”“有效成分”“核因子E2相关因子2”“信号通路”“Acute kidney injury”“Traditional Chinese medicine”“Active ingredient”“Nuclear factor E2 related factor 2”“Signaling pathway”等为关键词,组合查询2003年1月-2019年5月在中国知网、维普网、万方数据、PubMed、Elsevier、Springer Link等数据库中的相关文献。结果,共检索到相关文献320篇,其中有效文献63篇。现对Nrf2信号通路与AKI的关系进行综述,并归纳基于Nrf2信号通路保护AKI的中药有效成分,以期为治疗AKI的新药研发提供参考。
1 Nrf2信号通路与AKI
Nrf2属于亮氨酸拉链转录激活因子家族,由NFE2L2基因编码,其通过与ARE结合而诱导产生一系列抗氧化保护蛋白的转录、上调抗氧化相关基因的表达、促进细胞内氧化还原的调节,因此,Nrf2成为细胞抗氧化应激的关键转录因子[14]。Nrf2作为活力很强的转录因子,共有6个高度保守的ECH相关蛋白同源结构域(Nrf2-ECH homology,Neh),其主要表达于肝、肾以及皮肤、肺、消化道等组织[15]。Keap1为Kelch家族多区域阻遏蛋白,主要功能是对Nrf2信号通路起负性调节作用[16]。生理状态下,Keap1将Nrf2锁定在细胞质内并介导其泛素化降解,使细胞质中的Nrf2维持在基础水平,而当细胞暴露于氧化应激环境时,Keap1与Nrf2解耦连,Nrf2转移至细胞核,与特异性巨噬细胞武装因子(SMAF)形成异源二聚体并结合至ARE,调节下游靶基因的转录;另外,Keap1还能够降解Nrf2的E3泛素连接酶,维持Nrf2的表达量[17]。ARE是细胞核内特异的DNA启动子结合序列,在生物体内广泛分布,是体内重要的保护性顺式应答元件[18]。Nrf2/ARE通路是细胞对抗氧化应激的主要防御通路,调控包括抗氧化酶、Ⅱ相解毒酶和Ⅲ相药物转运体基因,如过氧化氢酶(CAT)、超氧化物歧化酶(SOD)、葡萄糖醛酸转移酶、NAD(P)H:醌氧化还原酶(NQO1)、血红素氧合酶1(HO-1)、谷氨酸-半胱氨酸连接酶(GCL)、谷胱甘肽S转移酶(GST)、谷酰胺半胱氨酸连接酶催化亚单位(GCLC)、谷胱甘肽过氧化物酶(GSH-Px)、硫氧还蛋白和多药耐药相关蛋白(MRPs)等,对加速自由基的清除、抑制核转录因子κB(NF-κB)的表达和抑制肾疾病的发展具有重要作用[19-20]。
目前AKI主要有肾缺血再灌注(IR)引起的AKI、重金属诱发的AKI、药物所致的AKI以及脓毒血症引发的AKI,现笔者分别阐述其与Nrf2的关系。
1.1 肾缺血再灌注所致AKI与Nrf2
肾缺血再灌注引起的AKI是由肾循环停止和随后的重建引起的,其通过氧化应激和炎症诱导肾小管萎缩、微血管系统内皮单层破坏和凋亡[21]。相关研究发现,野生型小鼠肾缺血再灌注损伤发生后,其肾中Nrf2调节的细胞防御基因,如HO-1和NQO1升高,而Nrf2基因敲除小鼠中细胞防御基因未发生改变[22]。此外,用小分子Nrf2诱导剂预处理野生型动物,或用抗氧化剂谷胱甘肽、N-乙酰半胱氨酸预处理Nrf2敲除小鼠,可改善小鼠的肾缺血再灌注损伤[23-24]。因此,Nrf2在改善肾缺血再灌注损伤方面具有重要作用。
1.2 重金属诱发的AKI与Nrf2
重金属的积累会导致环境污染以及人体多器官毒性,相关研究已经证明,Nrf2通路与重金属(如汞、铬和镉)诱发的AKI有关[25],如上调Nrf2通路中HO-1与NQO1基因的表达能抑制氯化汞引发的AKI[26];姜黄素可诱导Nrf2的表达降低铬对大鼠的肾损伤[27]。
1.3 药物性AKI与Nrf2
免疫抑制剂环孢菌素A主要用于降低器官移植中排斥反应的风险,但其不良反应是会通过上调转化生长因子β(TGF-β)诱导肾毒性,引发AKI[28]。通过上調细胞防御基因及抗氧化酶(如HO-1、SOD和CAT)激活Nrf2信号通路,可以抑制环孢菌素A引起的AKI[29]。赭曲霉素A可下调大鼠肾脏中的Nrf2途径从而诱导DNA氧化损伤表现出肾细胞毒性[30]。使用Nrf2诱导剂(如香豆素)可改善大鼠肾小管细胞中赭曲霉素A诱导的脂质过氧化、DNA损伤和细胞毒性,进一步表明Nrf2对赭曲霉素A引起的AKI具有保护作用[31]。顺铂可以用来治疗多种肿瘤,但其可通过氧化应激和DNA损伤作用引发肾毒性[32]。在Nrf2基因敲除的小鼠中,顺铂引起的肾损伤加重,而给予Nrf2诱导剂处理的小鼠肾损伤明显减弱[33]。
1.4 脓毒症诱发的AKI与Nrf2
脓毒症主要由细菌感染引起,病情发展快、并发症多、病死率高,对患者健康威胁较大[34]。AKI是脓毒症最主要的并发症,脓毒症诱发的AKI病死率高达70%[35]。相关研究发现,通过抑制人肾损伤分子1(KIM-1)与中性粒细胞明胶酶相关脂质运载蛋白(NGAL)蛋白表达,激活Nrf2及其下游基因NQO1与HO-1的表达可缓解脂多糖诱导脓毒症大鼠的AKI[36]。相关研究也证实可通过升高Nrf2 mRNA和蛋白的表达,改善脓毒症诱发的AKI[37]。
2 基于Nrf2信号通路保护AKI的中药有效成分
中药有效成分在治疗肾损伤方面也应用广泛,在AKI期间可通过介导Nrf2信号通路缓解肾病变,减轻肾组织损伤,降低肾损伤程度,抑制或改善其副作用[38]。现对基于Nrf2信号通路保护AKI的中药有效成分进行归纳总结。
2.1 黄酮类化合物
有研究表明,从桑科植物啤酒花中提取出的异戊烯类黄酮化合物黄腐酚[39]和柑橘中提取的橘皮素[40]均可通过激活Nrf2并抑制NF-κB信号通路,拮抗顺铂诱导AKI,从而改善肾病变。Chen YJ等[41]研究发现,二氢黄酮苷类化合物橙皮苷具有抗炎和抗氧化应激的作用,可参与Nrf2/ARE信号通路的激活,对AKI模型小鼠起到显著的保护作用。天然黄酮类化合物木犀草素可通过激活Nrf2通路和调节Nrf2靶基因,增加抗氧化能力,对氯化汞诱导的大鼠AKI起到改善作用[42]。葡萄籽的乙醇提取物中含有多种黄酮类化合物,可通过促进Keap1/Nrf2信号通路的激活,改善AKI[43]。Xiong D等[44]研究发现,甘草中的异甘草素能激活Nrf2信号通路并抑制NF-κB凋亡途径,从而阻止血管紧张素Ⅱ诱发的肾小管上皮细胞凋亡及AKI的发生。
2.2 生物碱类化合物
相关研究发现青藤中的青藤碱可以通过激活Nrf2通路改善氧化应激,调节氧化还原平衡,抑制炎症反应,达到改善肾损伤的作用[45]。苦豆子中的氧化槐定碱可通过抗氧化应激、抗炎和抗凋亡起到保护肾的作用,其作用的通路有蛋白激酶B(Akt)/Nrf2/HO-1和Akt/GSK3β信号通路[46]。长春花中的长春碱可通过调节Nrf2/HO-1以及NF-κB信号通路达到抗氧化和抗炎的作用,从而减轻甲氨蝶呤所致的AKI[47]。相关研究表明,黄连中的小檗碱可通过调节Keap1/Nrf2、NF-κB/p38/丝裂原活化蛋白激酶(MAPK)和B淋巴细胞瘤2基因(Bcl2)相关X蛋白/Bcl2/胱天蛋白酶-3(Bax/Bcl2/Caspase-3)信号通路,改善甲氨蝶呤引发的AKI[48]。
2.3 萜类化合物
Long C等[49]研究表明,三萜类化合物齐墩果酸能够通过激活Nrf2通路,发挥抗氧化和抗炎作用,从而改善肾缺血再灌注引发的AKI。人参皂苷Rb1可显著降低血尿素氮(BUN)、血清肌酐(Cr)、NGAL含量及肾组织中的丙二醛(MDA)含量,从而激活Nrf2信号通路,继而诱导下游抗氧化应激蛋白基因表达,如增加HO-1的表达和增强SOD的活性,从而改善庆大霉素诱导的AKI[50]。据报道,黄芪中的黄芪甲苷Ⅳ可通过介导Nrf2通路,抑制游离脂肪酸诱导的肾小管上皮细胞凋亡,改善AKI[51]。小茴香叶中提取出的桦木酸具有减缓肾损伤的作用,其改善肾损伤的机制与激活Nrf2信号通路和抑制NF-κB通路有关[52]。Cai ZY等[53]研究发现,从茯苓中提取的茯苓酸具有抗炎、抗氧化、抗癌等作用,其能通过激活Nrf2/HO-1信号通路缓解脓毒症诱导的AKI。
2.4 苯丙素类化合物
相關研究发现,五味子乙素能抑制环孢菌素A诱导的肾小管上皮细胞活性氧(ROS)水平,诱导Nrf2核转位,增加其下游靶基因NQO1、GCLC、HO-1 mRNA的表达,从而减轻环孢菌素A所致肾细胞的氧化应激损伤,阻止AKI的发生[54]。据报道,来自于芝麻籽中的木脂素类成分芝麻素能有效缓解脂多糖诱导的小鼠AKI,其通过参与调节Nrf2相关信号通路而达到抑制氧化应激、炎症反应与细胞凋亡[55]。
2.5 多酚类化合物
中药厚朴中的多酚类化合物和厚朴酚可通过激活Nrf2/HO-1信号通路,抑制氧化应激和炎症细胞因子在肾组织中的表达,从而保护改善大鼠的急性肾损伤[56]。另外,牡丹皮中的丹皮酚可通过抑制Caspase-9和Caspase-3的激活、Bax/Bcl2的失衡和细胞色素C的释放调节Nrf2信号通路和NF-κB信号通路,从而改善表阿霉素诱导的小鼠AKI[57]。另有研究发现,姜黄素能激活Nrf2/HO-1和腺苷酸激活蛋白激酶(AMPK)信号通路抑制氧化应激,从而改善大鼠肾细胞凋亡以及AKI[58]。存在于多种植物中的天然多酚白藜芦醇也能通过激活Nrf2信号通路,改善脓毒症诱导的大鼠AKI[59]。
2.6 多糖类化合物
相关文献报道,香菇多糖能够减轻顺铂诱导的小鼠AKI,其机制与激活Nrf2/ARE信号通路、降低细胞内活性氧的水平相关[60]。另外,枸杞多糖通过调节促炎细胞因子水平和Keap1/Nrf2/ARE信号通路,减少炎症反应,激活抗氧化反应,从而改善大鼠AKI[61]。黄芪多糖具有较强的抗氧化和抗炎活性,可通过激活Nrf2/HO-1信号通路,减少活性氧的产生,改善替米考星诱导的大鼠AKI[62]。另有研究发现,海藻糖能够保护原代大鼠近端肾小管细胞免受镉诱导的氧化应激,其机制与激活Nrf2/keap1信号通路有关[63]。
3 结语
作为一种在全球范围内具有高发病率和高病死率的常见肾疾病,AKI的预防和治疗对人类健康和生活质量的提高具有重要意义。Nrf2通路是内源性抗氧化应激通路中的信号通路,能显著诱导机体的内源性抗氧化应答,其中Nrf2是细胞抗氧化反应的核心转录因子,有助于保护肾免受内源性和外源性损伤。Nrf2在肾中的保护作用主要表现在:(1)在应激条件下,Nrf2发生核移位可调节下游多种抗氧化酶,如HO-1、NQO1、GSH等的表达,从而缓解氧化应激所致的AKI;(2)当AKI发生时,Nrf2可调节炎症因子如TNF-α与TGF-β的表达来缓解炎症反应;(3)Nrf2能够调节Bcl2家族中的凋亡蛋白和抗凋亡蛋白的表达,从而调节Caspase家族的表达来缓解细胞凋亡的发生,从而减缓AKI的发生。由于Nrf2信号通路对防治AKI具有重要作用,因此,基于Nrf2/ARE信号通路开发防治AKI的潜在新药具有重要意义。中药有效成分在防治AKI方面应用广泛,笔者通过本文对基于Nrf2信号通路保护AKI的中药有效成分进行归纳总结,可为开发治疗AKI新药的研发提供依据;另外,以Nrf2通路为治疗肾损伤的靶点,也可为临床治疗AKI提供新思路和治疗策略。
参考文献
[ 1 ] WANG SY,LIN KJ,CHEN SW,et al. Long-term renal outcomes in patients with traumatic renal injury after nephrectomy:a nationwide cohort study[J]. Int J Surg,2019.DOI:10.1016/j.ijsu.2019.04.001.
[ 2 ] BANG JY,LEE J,OH J,et al. The influence of propofol and sevoflurane on acute kidney injury after colorectal surgery:a retrospective cohort study[J]. Anesth Analg,2016,123(2):363-370.
[ 3 ] 白荷荷,张迪,解立怡,等.头孢曲松致梗阻性、肾性急性肾损伤的病例报道及其临床路径的建立[J].中国药房,2018,29(21):2966-2969.
[ 4 ] QUIROS Y,VICENTE VL,MORALES AI,et al. An integrative overview on the mechanisms underlying the renal tubular cytotoxicity of gentamicin[J]. Toxicol Sci,2011,119(2):245-256.
[ 5 ] HEUNG M,YESSAYAN L. Renal replacement therapy in acute kidney injury:controversies and consensus[J]. Crit Care Clin,2017,33(2):365-378.
[ 6 ] POZZOLI S,SIMONINI M,MANUNTA P. Predicting acute kidney injury:current status and future challenges[J]. J Nephrol,2018,31(2):209-223.
[ 7 ] SMITH RE,TRAN K,SMITH CC,et al. The role of the Nrf2/ARE antioxidant system in preventing cardiovascular diseases[J]. Diseases,2016,4(4):34-56.
[ 8 ] SHELTON LM,PARK BK,COPPLE IM. Role of Nrf2 in protection against acute kidney injury[J]. Kidney Int,2013,84(6):1090-1095.
[ 9 ] ZHANG DD,LO SC,CROSS JV,et al. Keap1 is a redox- regulated substrate adaptor protein for a cul3-dependent ubiquitin ligase complex[J]. Mol Cell Biol,2004,24(24):10941-10953.
[10] TONG KI,KOBAYASHI A,KATSUOKA F,et al. Two- site substrate recognition model for the Keap1-Nrf2 system:a hinge and latch mechanism[J]. Biol Chem,2006,387(10):1311-1320.
[11] COPPLE IM. The Keap1-Nrf2 cell defense pathway:a promising therapeutic target?[J]. Adv Pharmacol,2012.DOI:10.1016/B978-0-12-398339-8.00002-1.
[12] CHEN XL. Activation of Nrf2/ARE pathway protects endothelial cells from oxidant injury and inhibits inflammatory gene expression [J]. Am J Physiol Heart Circ Physiol,2006,290(5):1862-1870.
[13] 尹连红,齐蒙,彭金咏,等.急性肾损伤的分子机制及中药干预研究进展[J].中国药理学通报,2016,32(11):1494-1500.
[14] SZKLARZ G. Role of Nrf2 in oxidative stress and toxicity[J]. Annu Rev Pharmacol Toxicol,2013,53(1):401-426.
[15] NGUYEN T,NIOI P,PICKETT CB. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress[J]. J Biol Chem,2009,284(20):13291-13295.
[16] COPPLE IM,GOLDRING CE,KITTERINGHAM NR, et al. The Nrf2-Keap1 defence pathway:role in protection against drug-induced toxicity[J]. Toxicology,2008,246(1):24-33.
[17] LOBODA A,DAMULEWICZ M,PYZA E,et al. Role of Nrf2/HO-1 system in development,oxidative stress response and diseases:an evolutionarily conserved mechanism[J]. Cell Mol Life Sci,2016,73(17):3221-3247.
[18] LEE JM,CALKINS MJ,CHAN K,et al. Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis[J]. J Biol Chem,2003,278(14):12029-12038.
[19] RADA P,ROJO AI,EVRARD TN,et al. Structural and functional characterization of Nrf2 degradation by the glycogen synthase kinase 3/beta-Trcp axis[J]. Mol Cell Biol,2012,32(17):3486-3499.
[20] 張灵敏,张明鑫,景桂霞. Nrf2在多器官保护中的作用研究进展[J].成都医学院学报,2010,5(1):75-78.
[21] LEGRAND M,MIK EG,JOHANNES T,et al. Renal hypoxia and dysoxia after reperfusion of the ischemic kidney[J]. Mol Med,2008.DOI:10.2119/2008-00006.Legrand.
[22] LEONARD MO,KIERAN NE,HOWELL K,et al. Reoxygenation-specific activation of the antioxidant transcription factor Nrf2 mediates cytoprotective gene expression in ischemia-reperfusion injury[J]. FASEB J,2006,20(14):2624-2626.
[23] HAN P,QIN ZQ,TANG J,et al. RTA-408 protects kidney from ischemia-reperfusion injury in mice via activating Nrf2 and downstream GSH biosynthesis gene[J]. Oxid Med Cell Longev,2017.DOI:10.1155/2017/7612182.
[24] LIU MC,GRIGORYEV DN,CROW MT,et al. Transcription factor Nrf2 is protective during ischemic and nephrotoxic acute kidney injury in mice[J]. Kidney Int,2009,76(3):277-285.
[25] CALDERON J,ORTIZ-PEREZ D,YANEZ L,et al. Human exposure to metals. Pathways of exposure,biomarkers of effect,and host factors[J]. Ecotoxicol Environ Saf,2003,56(1):93-103.
[26] LI SW,JIANG X,LUO YH,et al. Sodium/calcium overload and Sirt1/Nrf2/HO-1 pathway are critical events in mercuric chloride-induced nephrotoxicity[J]. Chemosphere,2019. DOI:10.1016/j.chemosphere.2019.06.095.
[27] MOLINA-JIJON E,TAPIA E,ZAZUETA C,et al. Curcumin prevents Cr(Ⅵ)-induced renal oxidant damage by a mitochondrial pathway[J]. Free Radic Biol Med,2011,51(8):1543-1557.
[28] GOLDFARB DA. Expression of TGF-beta and fibrogenic genes in transplant recipients with tacrolimus and cyclosporine nephrotoxicit[J]. J Urol,2003,169(6):2436- 2443.
[29] SHIN DH,PARK HM,JUNG KA,et al. The Nrf2-heme oxygenase-1 system modulates cyclosporin a-induced epithelial-mesenchymal transition and renal fibrosis[J]. Free Radic Biol Med,2010,48(8):1051-1063.
[30] CAVIN C,DELATOUR T,MARIN-KUAN M,et al. Reduction in antioxidant defenses may contribute to ochratoxin a toxicity and carcinogenicity[J]. Toxicol Sci,2006,96(1):30-39.
[31] CAVIN C,DELATOUR T,MARIN-KUAN M,et al. Ochratoxin a-mediated DNA and protein damage:roles of nitrosative and oxidative stresses[J]. Toxicol Sci,2009,110(1):84-94.
[32] CHIRINO YI,PEDRAZA-C J. Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity[J]. Exp Toxicol Pathol,2009,61(3):223-242.
[33] ALEKSUNES LM,GOEDKEN MJ,ROCKWELL CE, et al. Transcriptional regulation of renal cytoprotective genes by Nrf2 and its potential use as a therapeutic target to mitigate cisplatin-induced nephrotoxicity[J]. J Pharmacol Exp Ther,2010,335(1):2-12.
[34] INVESTIGATORS TSS. Albumin replacement in patients with severe sepsis or septic shock[J]. J Emerg Med,2014,47(2):257-258.
[35] GOMEZ H,INCE C,DE BD,et al. A unified theory of sepsis-induced acute kidney injury:inflammation,microcirculatory dysfunction,bioenergetics,and the tubular cell adaptation to injury[J]. Shock,2014,41(1):3-11.
[36] 李冀,高博文,崔言坤,等.尖葉假龙胆对脂多糖诱导脓毒症模型大鼠急性肾损伤的保护作用研究[J].中国中医急症,2019,28(4):579-580.
[37] CAI ZY,SHENG ZX,YAO H. Pachymic acid ameliorates sepsis-induced acute kidney injury by suppressing inflammation and activating the Nrf2/HO-1 pathway in rats[J]. Eur Rev Med Pharmacol Sci,2017,21(8):1924-1931.
[38] SCHMIDLIN CJ,DODSON MB,ZHANG DD. Filtering through the role of Nrf2 in kidney disease[J]. Arch Pharm Res,2019.DOI:10.1007/s12272-019-01177-2.
[39] FAN L,YUN YY,HUI H,et al. Xanthohumol attenuates cisplatin-induced nephrotoxicity through inhibiting NF-κB and activating Nrf2 signaling pathways[J]. Int Immunopharmacol,2018.DOI:10.1016/j.intimp.2018.05.017.
[40] NAZARI SA,RASHTCHIZADEH N,ARGANI H,et al. Tangeretin protects renal tubular epithelial cells against experimental cisplatin toxicity[J]. Iran J Basic Med Sci,2019,22(2):179-186.
[41] CHEN YJ,KONG L,TANG ZZ,et al. Hesperetin ameliorates diabetic nephropathy in rats by activating Nrf2/ARE/glyoxalase 1 pathway[J]. Biomed Pharmacother,2019.DOI:10.1016/j.biopha.2019.01.030.
[42] TAN X,LIU BY,LU JJ,et al. Dietary luteolin protects against HgCl-induced renal injury via activation of Nrf2-mediated signaling in rat[J]. J Inorg Biochem,2018,179(2):24-31.
[43] ABDELSALAM HM,SAMAK MA,ALSEMEH AE. Synergistic therapeutic effects of vitis vinifera extract and silymarin on experimentally induced cardiorenal injury:the pertinent role of Nrf2[J]. Biomed Pharmacother,2019.DOI:10.1016/j.biopha.2018.11.053.
[44] XIONG D,HU W,YE ST,et al. Isoliquiritigenin alleviated the Ang Ⅱ-induced hypertensive renal injury through suppressing inflammation cytokines and oxidative stress- induced apoptosis via Nrf2 and NF-κB pathways[J]. Biochem Biophys Res Commun,2018,506(1):161-168.
[45] QIN T,DU RH,HUANG FG,et al. Sinomenine activation of Nrf2 signaling prevents hyperactive inflammation and kidney injury in a mouse model of obstructive nephropathy[J]. Free Radic Biol Med,2016.DOI:10.1016/j.freeradbiomed.2016.01.011.
[46] 王文文,張敏.氧化槐定碱通过Akt/Nrf2/HO-1和Akt/GSK3β信号通路对急性肾损伤的保护作用[J].山西医科大学学报,2017,48(10):22-28.
[47] SHALABY YM,MENZE ET,AZAB SS,et al. Involvement of Nrf2/HO-1 antioxidant signaling and NF-κB inflammatory response in the potential protective effects of vincamine against methotrexate-induced nephrotoxicity in rats:cross talk between nephrotoxicity and neurotoxicity[J]. Arch Toxicol,2019,93(5):1417-1431.
[48] HASSANEIN EHM,SHALKAMI AGS,KHALAF MM,et al. The impact of Keap1/Nrf2,pMAPK/NF-κB and Bax/Bcl2/caspase-3 signaling pathways in the protective effects of berberine against methotrexate-induced nephrotoxicity[J]. Biomed Pharmacother,2019.DOI:10.1016/j.biopha.2018.10.088.
[49] LONG C,YANG J,YANG H,et al. Attenuation of renal ischemia/reperfusion injury by oleanolic acid preconditioning via its antioxidant,anti inflammatory,and anti apoptotic activities[J]. Mol Med Rep,2016,13(6):4697- 4704.
[50] 李文澜,夏中元,孙倩,等.人参皂苷Rb1对肠缺血再灌注致肾损伤的影响及其机制[J].中华实验外科杂志,2015,32(11):2715-2717.
[51] CHEN QQ,SU Y,JU YH,et al. Astragalosides Ⅳ protected the renal tubular epithelial cells from free fatty acids-induced injury by reducing oxidative stress and apoptosis[J]. Biomed Pharmacother,2018.DOI:10.1016/j.biopha.2018.09.049.
[52] SUTARIYA B,TANEJA N,SARAF M. Betulinic acid,isolated from the leaves of syzygium cumini (L.) Skeels,ameliorates the proteinuria in experimental membranous nephropathy through regulating Nrf2/NF-κB pathways[J]. Chem Biol Interact,2017.DOI:2017.10.1016/j.cbi.2017. 07.011.
[53] CAI ZY,SHENG ZX,YAO H. Pachymic acid ameliorates sepsis-induced acute kidney injury by suppressing inflammation and activating the Nrf2/HO-1 pathway in rats[J]. Eur Rev Med Pharmacol Sci,2017,21(8):1924-1931.
[54] LAI Q,LUO ZZ,WU CY,et al. Attenuation of cyclosporine a induced nephrotoxicity by schisandrin B through suppression of oxidative stress,apoptosis and autophagy[J]. Int Immunopharmacol,2017.DOI:10.1016/j.intimp. 2017.08.019.
[55] ROUSTA AM,MIRAHMADI SMS,SHAHMOHAMMADI A,et al. Protective effect of sesamin in lipopolysaccharide-induced mouse model of acute kidney injury via attenuation of oxidative stress,inflammation,and apoptosis[J]. Immunopharmacol Immunotoxicol,2018,40(5):423- 429.
[56] XIA SL,LIN HL,LIU H,et al. Honokiol attenuates sepsis-associated acute kidney injury via the inhibition of oxidative stress and inflammation[J]. Inflammation,2019,42(3):826-834.
[57] WU J,XU L,SUN C,et al. Paeonol alleviates epirubicin-induced renal injury in mice by regulating Nrf2 and NF-κB pathways[J]. Eur J Pharmacol,2017,795(15):84-93.
[58] WU J,PAN X,FU H,et al. Effect of curcumin on glycerol-induced acute kidney injury in rats[J]. Sci Rep,2017,7(1):10114-10125.
[59] WANG N,MAO L,YANG L,et al. Resveratrol protects against early polymicrobial sepsis-induced acute kidney injury through inhibiting endoplasmic reticulum stress-activated NF-κB pathway[J]. Oncotarget,2017,8(22):36449-36461.
[60] CHEN Q,PENG H,DONG L,et al. Activation of the Nrf2-ARE signalling pathway by the lentinula edodes polysaccharose LNT alleviates ROS-mediated cisplatin nephrotoxicity[J]. Int Immunopharmacol,2016.DOI:10. 1016/j.intimp.2016.04.007.
[61] HUANG YY,ZHOU F,SHEN C,et al. LBP reduces the inflammatory injury of kidney in septic rat and regulates the Keap1-Nrf2-ARE signaling pathway[J]. Acta Cir Bras,2019.DOI:10.1590/s0102-865020190010000003.
[62] FARAG MR,ELHADY WM,AHMED SYA,et al. Astragalus polysaccharides alleviate tilmicosin-induced toxicity in rats by inhibiting oxidative damage and modulating the expressions of HSP70,NF-κB and Nrf2/HO-1 pathway[J]. Res Vet Sci,2019.DOI:10.1016/j.rvsc.2019.03.010.
[63] WANG XY,WANG ZY,ZHU YS,et al. Alleviation of cadmium-induced oxidative stress by trehalose via inhibiting the Nrf2-keap1 signaling pathway in primary rat proximal tubular cells[J]. J Biochem Mol Toxicol,2018.DOI:10.1002/jbt.22011.
(收稿日期:2019-06-28 修回日期:2019-07-22)
(編辑:唐晓莲)