根区孔下滴灌施肥对新疆红枣产量品质和氮磷钾利用影响
2019-08-19张计峰耿庆龙曹文超
张计峰,耿庆龙,梁 智,曹文超,陈 清
根区孔下滴灌施肥对新疆红枣产量品质和氮磷钾利用影响
张计峰1,2,耿庆龙2,梁 智2,曹文超1,陈 清1※
(1. 中国农业大学资源与环境学院,北京 100193;2. 新疆农业科学院土壤肥料与农业节水研究所,乌鲁木齐 830091)
选择合理的滴灌施肥方式是实现果园节水减肥的技术关键。该研究分析比较了地表滴灌和根区孔下滴灌施肥对新疆南疆地区红枣生长和氮磷钾吸收的影响,以期为提高果园水肥利用效率提供理论依据。试验设置常规地表滴灌和根区孔下滴灌施肥2种灌溉方式,比较其对红枣营养状况、根系生长、产量及品质的影响。结果表明,与常规地表滴灌施肥相比,在相同水肥供给条件下,根区孔下滴灌施肥处理红枣2 a平均产量比地表滴灌施肥处理显著提高(<0.05),增产幅度为6.9%,单果干质量达5.04 g。2 a红枣果实品质结果显示,根区孔下滴肥处理总糖、还原糖和粗脂肪含量显著高于地表滴灌处理(<0.05)。该根区孔下滴灌施肥方式显著增加红枣树体各器官对养分的吸收(<0.05),其中2011年根区孔下滴灌施肥处理红枣叶片中N、P和K含量分别比地表滴灌施肥处理增加6.7%、33.6%和7.3%,2012年红枣叶片中N和P含量差异显著(<0.05),比地表滴灌分别高3.4%和26.8%。根区孔下滴灌施肥处理红枣果实中P、K含量显著高于地表滴灌施肥处理(<0.05),2011年和2012年分别比地表滴灌高41.0%、13.6%和46.2%、12.9%;2012年根区孔下滴灌施肥处理叶片、新梢、细根和果实中P累积量显著高于地表滴灌相应器官P累积量(<0.05),相比于地表滴灌分别提高38.2%、70.7%、159.8%和55.3%,根区孔下滴肥处理的吸收根干物质质量比地表滴灌增加46.7%。根区孔下滴肥的水肥管理方式可以显著增加根系生物量、提高枣树器官养分含量、增加红枣产量和提高肥料的利用效率,研究结果可为今后果园的节水减肥田间管理提供参考。
滴头;灌溉;肥;根区;孔下滴灌施肥;红枣;产量;磷素
0 引 言
滴灌施肥目前已成为中国经济作物生产中提高水肥利用效率、减少养分浪费的主要灌溉施肥措施。受传统果园树体差异较大和根系、土壤非均匀分布的影响,水分养分供应的差异性空间分布对水肥的高效利用具有较大影响。目前,在果园水肥一体化技术应用中,多采用微喷灌、滴灌和涌泉灌等方法,而在干旱和半干旱地区,膜下滴灌技术是其水肥供应的主导方式。该技术的关键点是所供应的水分和养分在空间上是否能够满足根系的养分水分吸收,在时间上是否可以做到满足果树不同阶段生长的需要。
根系是果树吸收水分和养分的主要器官,由于根区土壤物理、化学和生物过程受水分和养分供应空间差异的影响很大[1],因此对于果树的养分吸收、果实产量及品质也会造成很大的影响。与氮素相比,磷钾养分在土壤中较难移动,因此采用根区水肥调控、实现近根施用可有效提高土壤养分生物有效性和养分利用效率。一些研究表明,合理的滴灌施肥方法可在时间和空间上调整土壤水、肥条件[2-5]。根区或近根施肥可持续有效的向作物根系供应养分,有利于植物根系对养分的吸收和运输,进而提高水肥利用效率[6-11]。
传统滴灌施肥设计中进行双排毛管设计,在每棵树只能有1~2个滴头供应水肥,特别是在一些砂性土壤,这种方式无法实现全根区进行水肥的供应等问题。孔下滴灌施肥技术针对果树根系分布的空间性特点,可以在果树根区周边布局多点滴孔,克服上述布局不足的问题。在砂性土壤中,可以通过多点快速浸润根层使作物主根区土壤经常保持良好的水分环境,同时很快将盐分带入湿润区边缘淡化主根区的盐分,为作物生长创造了一个良好的水盐环境[12];而且可能有效解决磷钾等养分在土壤中扩散速率很慢等问题。
最近十多年,新疆阿克苏地区的红枣种植得到规模化快速发展[13]。目前已经发展到48.6万hm2,占新疆特色林果种植面积的49.5%[14]。该地区光能资源丰富和特殊的地理区域优势[15-16],为红枣生长提供了优良的自然条件,已成为重要的红枣生产基地和当地支柱性产业。然而,由于南疆地区邻近沙漠,土壤沙化问题非常突出,此外南疆地区降雨量稀少[17],年均降雨量仅为43.9 mm,水源是影响南疆红枣产业发展的重要限制因素[18]。因此在砂性土壤上发展“少量多次”的滴灌施肥方式,不仅可以减少大水漫灌造成的养分损失,而且可进一步提高肥料利用效率、增加红枣产量和品质。在该地区发展背景下,如何发展新式的滴灌施肥布局已成为人们关注的焦点[19-23]。
本文以南疆阿克苏地区红枣作为研究对象,以常规地面滴灌施肥为对照,探究根区孔下滴灌施肥对枣树养分状况、红枣产量及商品性等方面的影响,以期为新疆红枣产业最佳的水肥管理模式及其健康持续发展提供理论依据。
1 材料与方法
1.1 试验地点与土壤特点
试验在新疆阿克苏地区试验林场(80°20′~80°25′E,41°10′~41°15′N)进行。试验区为典型的暖温带大陆性干旱气候,降水量年际变化大,年均降水量为53.2~120.6 mm,日照时间长、年日照时数2 670~3 022 h,太阳的总辐射量为5 340~6 220 MJ/m2,光热资源较丰富,全年无霜期为168~225 d,气温年际差及昼夜温差大,年平均气温在7.9~13.7 ℃。供试土壤质地为砂壤土,试验前0~40 cm耕层土壤基本理化性质:容重1.56 g/cm3、pH值8.35、有机质1.85 g/kg、全氮0.27 g/kg、碱解氮46.1 mg/kg、速效磷19.8 mg/kg、速效钾108.5 mg/kg、有效锌0.52 mg/kg、有效锰5.51 mg/kg、有效铁13.4 mg/kg、有效硼0.72 mg/kg。
1.2 供试果树
供试果树品种为灰枣(),1999年种植,2001—2002年嫁接,栽培模式为株行距2 m×4 m,树高3.5~4 m,冠辐3~3.5 m,每公顷约1 250株,选择长势基本一致无病虫害果树,设置保护行。每年3月底喷施石硫合剂杀灭虫卵,开春4月中旬施入有机肥棉籽壳12 t/hm2,硫酸铜7.5 kg/hm2,硫酸锌7.5 kg/hm2,并根据作物生长期和生育期需水肥规律进行滴灌施肥及修剪老弱枝条,定期清除杂草和中耕处理,10月中上旬收获。
1.3 试验设计
选择土壤质地、树龄、田间管理均一致的3个地块,每个地块均设2个处理,每个处理设置3个重复,每个重复10株枣树,设置保护行。
1)处理1为地表滴灌施肥:地表滴灌毛管(16 mm)在枣树两侧各铺设1条,毛管树干距离为50 cm,毛管上滴头距离为50 cm,流量为3.75 L/h。
2)处理2为根区孔下滴灌施肥:在果园中地表布置无滴头输水毛管,每行果树布置1根输水毛管,输水毛管的直径为8 cm。春季在每株枣树附近的输水毛管上打6个孔,分别将6个导流小管的进水口插入输水毛管上的孔中与输水毛管连接,将每个导流小管的出水口上安装1个压力补偿式滴头,滴头流量为3.75 L/h,导流小管的长度为120 cm、直径为0.5 cm。在每株果树树冠下地表打6个竖直的孔洞,将带滴头的导流小管插入孔洞中,然后用油渣将孔洞填塞以固定导流小管滴头和防止泥沙堵塞,油渣成分为棉籽饼,干基N、P、K质量分数分别为4.11%、0.54%和0.76%,有机质质量分数为74.8%。每株果树用量为300~500 g。竖直孔洞的深度为35 cm、直径为10 cm,滴头插入孔洞的深度为30 cm。
1.输水毛管 2.转换接头 3.导流小管 4.压力补偿滴头 5.棉籽饼
红枣萌芽期至盛花期,每7 d灌水1次,灌水量为300 m3/hm2,共计灌水8次;果实生长期每3~4 d灌水1 次,每次灌水量为225 m3/hm2,共计灌水15次;果实白熟期每8 d灌水1次,每次灌水300 m3/hm2,共计灌水3次。全生育期滴灌水量6 675 m3/hm2。供试肥料采用枣树专用水溶性肥料。开花前采用高氮复合肥滴灌肥(N、P2O5和K2O质量分数为33%、12%和5%),开花至坐果期采用高磷复合滴灌肥(N、P2O5和K2O质量分数为17%、18%和15%),萌芽至盛花期使用高氮滴灌肥(N+P2O5+K2O≥50%)1 050 kg/hm2,分4次滴施;坐果至成熟期滴施高磷滴灌肥(N+P2O5+K2O≥50%)1 050 kg/hm2,分4次滴施。每个处理灌溉和追肥数量、时期及肥料种类完全相同。
1.4 样品采集与分析
试验开始前采集基础土样,2010年10月红枣采收后,沿果树滴水线用土钻在耕层0~40 cm取5个点采集土壤样品并测定土壤基本理化性质[24]:土壤有机质用重铬酸钾-浓硫酸加热法,全氮用凯氏定氮法;全磷和全钾测定用NaOH熔融-钼锑抗比色法和火焰光度计法;速效氮用1 mol/L KCL浸提-流动分析仪法;速效磷用0.5 mol/L NaHCO3浸提-钼锑抗比色法;速效钾用1 mol/L NH4OAC浸提-火焰光度计法。
2011年和2012年9月取叶片、新梢、果实、直径小于2 mm细根样品,测定生物量和N、P、K含量。2012年秋季枣果成熟期,每个处理选择3株枣树,以树干为圆心,以1 m为半径,以0.5 m为深度,挖1/4的扇形土体,将根系洗净烘干称质量。
每年10月中旬红枣采收后,测定每株果树实际产量,每个处理的重复随机选择5 kg红枣测定数量计算单果质量,测定红枣品质[25]:果实的总糖、还原糖测定用蒽酮比色法;总酸测定用酸碱滴定法;VC含量用碘滴定法;粗脂肪含量测定用仲裁法,蛋白质含量测定用凯氏定氮法。
1.5 数据处理与分析
试验数据采用Excel 2016、SPSS22.0和Sigma Plot14.0分别进行数据整理、方差分析以及作图。其中显著性水平为=0.05。
2 结果与分析
2.1 红枣产量与品质
枣树产量、商品性(单果质量来表示)是衡量红枣生长和水肥供应的重要指标。由表1可知,连续2a根区孔下滴肥处理的红枣产量和单果质量均显著高于地表滴灌处理(<0.05)。根区孔下滴肥处理连续2 a的年平均产量为10.8 t/hm2,比地表滴灌施肥处理增产6.9%;根区孔下滴灌施肥处理连续2 a单果质量平均为5.04 g,比地表滴灌增加8.4%。由此可见,在水肥供应量一致量条件下,通过根区孔下滴肥的给肥方式可显著提高枣树产量和单果质量。
2 a试验结果表明,不同的滴灌施肥方式对红枣品质也会产生影响(表1)。2011年结果显示,根区孔下滴肥处理总糖和还原糖含量比地表滴灌处理分别高5.6%和40.9%(<0.05),粗脂肪(0.09g/kg)和糖酸比(141.8)含量与地表滴灌施肥处理(0.06 g/kg,143.6)相比差异显著(<0.05),2处理总酸、Vc和蛋白质含量均没有表现出显著差异(>0.05);除糖酸比外,2012年2处理总糖、还原糖和粗脂肪含量差异显著,与2011年结果相同。可见,根区孔下滴肥处理红枣含糖量等品质指标明显优于地表滴灌处理。
表1 2种滴灌施肥方法对红枣果实品质和产量的影响
注:数据后不同字母表示同一年份处理间差异达0.05%显著水平。下同。
Note: Different letters indicate significant differences (<0.05) in the same year. The same as below.
2.2 红枣树体氮磷钾含量
如表2所示,2种滴灌施肥处理枣树营养状况有显著的差异。2 a结果显示,2011年根区孔下滴肥处理枣树叶片中N、P和K含量分别比地表滴灌高6.7%、33.6%、7.3%(0.05),2012年2处理N和P含量差异显著,比地表滴灌分别高3.4%和26.8%(0.05)。2011年2处理新梢中N和P含量差异显著,根区孔下滴肥处理N和P含量比地表滴灌处理高5.6%和58.5%(0.05),2012年2处理新梢P含量差异显著(0.05)。2011年根区孔下滴肥处理细根中P含量比地表滴灌处理高72.5%,2012年高81.1%(0.05)。2011年和2012年根区孔下滴肥处理果实中P、K含量分别比地表滴灌高41.0%、13.6%和46.2%、12.9%,2处理果实P和K含量差异均达到显著水平(0.05)。由此可见,根区孔下滴肥处理可以显著增加枣树各器官中养分含量,尤其是增加各器官中P含量。由于南疆枣园土壤普遍呈碱性[3],限制了土壤磷素的移动性,而根区孔下滴肥直接将营养元素供给到根区土壤区域进而促进了磷素的吸收,这可能是导致枣树器官中两处理养分含量差异的原因。
表2 2种滴灌施肥方法对枣树氮磷钾养分质量分数的影响
2.3 树体生物量和氮磷钾累积量
不同的滴灌施肥方式也会对枣树生物量累积产生影响[18,26-28],由表3可知,2012年收获期,红枣根区孔下滴肥处理的细根和果实干物质累积量比地表滴灌处理高46.7%和8.0%(<0.05)。表4表明,2012年根区孔下滴肥处理的枣树各新生器官P和K(叶片除外)元素累积量均高于常规地表滴灌,尤其是P累积量显著高于地表滴灌相应器官P累积量(<0.05),叶片、新梢、细根、果实中P累积量分别比地表滴灌增加38.2%、70.7%、159.8%和55.3%。根区孔下滴肥处理的叶片、新梢、细根、果实中P吸收累积总量为33.72 g/株,而地表滴灌的叶片、新梢、细根、果实中P吸收累积总量为21.23 g/株,根区孔下滴肥处理P吸收累积总量比地表滴灌增加58.8%。由此可见,根区孔下滴肥方式可促进吸收根和果实的生长,提高P和K元素在枣树体内的吸收和累积量。
表3 2012年2种滴灌施肥方法对枣树树体干物质累积的影响
表4 2012年2种滴灌施肥方法对枣树树体氮磷钾吸收累积的影响
2.4 2种滴灌施肥方式效益分析
2种滴灌施肥方式在材料、用工、产值增加方面有所差异(表5),2种方式在主灌溉系统方面均相同,差异主要表现在滴灌毛管和用工方面,其中地表滴灌在材料和用工方面支出为1 650元//hm2(不计主系统和其他人工成本),红枣产值50 250元/hm2;而孔下滴灌所用毛管为16PE管,在材料和用工支出方面为3 600元/hm2(不计主系统和其他人工成本),红枣产值为54 000元/hm2。可见,孔下滴肥增加成本为1 950元//hm2,而产值增加3 750元/hm2,果园采用孔下滴肥方式较常规滴管方式达到了提质增效的目的。
表5 不同灌溉方式下枣园经济分析
注:由于棉籽饼用量少,故未参与产值计算。
Note: The cost of cottonseed cake was not taken into account in the calculation, because its rate of application was low.
3 讨 论
3.1 不同滴灌给肥方式对红枣产量和品质的影响
新疆红枣种植面积大,集约化程度高,便于滴灌水肥一体化技术的应用[13-14,16]。相关研究表明应用滴灌技术可以保持土壤中有效养分适宜的强度和容量,有利于提高红枣产量改善品质[6-10]。而不同的滴灌方式对于作物生长作用效果不同[26-27],大量元素N、P和K对红枣产量品质影响较大,碱性土壤上常规地表滴灌磷肥移动性差,多积聚在土壤表层,不能满足树体对磷素的需求;钾肥是果树的品质元素,钾肥供应不足直接影响红枣果实的品质构成,本研究试图通过将营养元素直接供给到果树根系附近,提高有效元素的利用效率,进而改善果实品质。研究结果表明通过根区孔下滴肥将养分输送到根系集中区的给肥方式对于提高养分利用效率和产量在文中得以体现。通过分析2a的试验结果,枣树产量平均提高6.9%,单果质量提高8.4%;果实中总糖、还原糖和粗脂肪含量均显著提高(<0.05)。此外,本研究中油渣用量很少,且为一次性使用,其作用主要是固定导流管滴头,防止滴头堵塞,作用时间为3~5 a,与投入的化学养分相比,油渣养分含量仅占化学养分投入总量的0.15%~0.3%,从营养角度分析对果树养分吸收影响可能较小,但本试验中油渣的使用对红枣产量和品质是否会产生影响、影响程度如何需要在以后继续深入研究。
3.2 不同滴灌给肥方式对枣树养分含量和累积的影响
由于不同养分在土壤中的移动能力并不一致[28-29],因此将养分有效输送至红枣根区对其养分的吸收和利用较为重要。有研究表明,不同滴灌方式对作物养分吸收影响较大[26],尤其是在不同土壤上滴灌方式对作物体内营养元素含量和累积差别较大。李青军等研究表明常规滴灌条件下棉花单铃质量、单株棉铃数、产量均提高[30]。梁智等在红枣上研究结果显示,与肥料开沟施肥方式相比,滴灌有利于增加红枣叶片中氮磷含量[31]。本研究比较了2种滴灌施肥方式下红枣叶片、新稍、细根和果实中养分含量和累积量,通过将肥料直接供给到红枣根区的给肥方式显著增加了各器官中养分含量和累积量。2 a的产量结果也表明根区孔下滴肥方式对于提高红枣产量效果明显。
3.3 不同滴灌施肥方式对红枣根系生长的磷素移动的影响
碱性土壤中磷的移动性较低,而常规滴灌条件下,磷肥在滴施过程中很容易被固定在表层。根据笔者试验的结果,在砂性枣园中磷的移动距离仅为5~7 cm,完全依靠常规滴灌可能不能满足红枣对磷的需求,而通过根区孔下滴肥方式将磷元素直接供给到根区,使作物根系能够及时吸收进而提高磷素利用效率在本文中的效果得到证明。本研究中2012年根区孔下滴肥处理与常规滴灌相比枣树细根数量显著增加,同时树体新生器官叶片、新梢、细根和果实中P吸收累积总量比地表滴灌增加58.8%。这种给肥方式提高了枣树各器官中养分累积和树体干物质累积量,结果显示2012年通过根区孔下滴肥方式红枣吸收根生物量提高了46.7%,这对于养分的吸收、产量的形成均有非常积极的作用。
由此可见,对于南疆普遍呈碱性的沙性土壤来说,通过根区孔下滴肥方式不仅能够提高枣树对营养元素的吸收,而且对于增加果树干物质累计、根系调控、提高产量和品质方面均有显著作用。
4 结论
1)根区孔下滴肥能显著提高果树产量和品质,与地表滴灌滴肥相比,2 a产量平均增加6.9%,单果质量平均增加8.4%。红枣果实总糖、还原糖和粗脂肪含量显著提高。
2)根区孔下滴肥新方法能显著促进吸收根的生长,提高K(叶片除外)、P素的吸收利用。与地表滴灌滴肥相比,在试验第2年即2012年吸收根生物量增加46.7%,树体新生器官总P素吸收累积量提高58.8%。
3)根区孔下滴肥新方法可以显著提高果树营养水平,2011年根区孔下滴灌施肥处理红枣叶片中N、P和K含量分别比地表滴灌施肥处理增加6.7%、33.6%和7.3%,2012年红枣叶片中N和P比地表滴灌分别高3.4%和26.8%。果实中P和K含量2011年和2012年分别比地表滴灌高41.0%、13.6%和46.2%、12.9%
4)根区孔下滴肥新方法与地表滴灌滴肥相比增加用工和材料成本1 950元/hm2,产值增加3 750元/hm2,综合效益增加1 800元/hm2,起到提质增效的作用。
[1] Hinsinger P, Bengough A G, Vetterlein, D, et al. Rhizosphere: biophysics, biogeochemistry and ecological relevance[J]. Plant and soil, 2009, 321(1): 117-152.
[2] 孙三民,安巧霞,蔡焕杰,等. 枣树间接地下滴灌根区土壤盐分运移规律研究[J]. 农业机械学报,2015,45(1):160-169. Sun Sanmin, An Qiaoxia, Cai Huanjie, et al. Research on salt movement law in jujube root zone under indirect subsurface drip Irrigation[J]., 2015, 45(1): 160-169. (in Chinese with English abstract)
[3] 张计峰,朱敏,梁智,等. 滴灌对枣园土壤水分运移和红枣叶片的影响[J]. 新疆农业科学,2010,47(11):2283-2287. Zhang Jifeng, Zhu Min, Liang Zhi, et al. The effect of drip irrigation on soil water movement and ziziphus jujube leaves [J]. Xinjiang Agricultural Sciences, 2010, 47(11): 2283-2287. (in Chinese with English abstract)
[4] Solaimalai A, Baskar M, Sadasakthi A, et al. Fertigation in high value cropsa review[J]. Agricultural Reviews, 2005, 26(1): 1-13
[5] 洪明,朱航威,穆哈西,等. 不同滴头流量及灌水定额下红枣树耗水规律[J] 干旱地区农业研究,2014,32(1):72-77. Hong Ming, Zhu Hangwei, Mu Haxi, et al. The water consumption rule of jujube trees under different emitter flow rate and irrigation quota[J]. Agricultural Research in the Arid Areas, 2014, 32(1): 72-77. (in Chinese with English abstract)
[6] 王振华,扁青永,李文昊,等. 南疆沙区成龄红枣水肥一体化滴灌的水肥适宜用量[J]. 农业工程学报,2018,34(11):96-104. Wang Zhenhua, Bian Qingyong, Li Wenhao, et al. Suitable water and fertilizer amount for mature jujube with drip-irrigation under fertigation in southern Xinjiang sandy area[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(11): 96-104. (in Chinese with English abstract)
[7] Eranki P L, Shikha D, Hunsaker D J, et al. A comparative life cycle assessment of flood and drip irrigation forguayule rubber production using experimental field data[J]. Industrial Crops & Products, 2017, 99(12): 97-108.
[8] Li Yanmei, Sun Yanxin, Liao Shangqiang, et al. Effects of two slow-release nitrogen fertilizers and irrigation on yield, quality, and water-fertilizer productivity of greenhouse tomato[J]. Agricultural Water Management, 2017, 186(5): 139-146.
[9] Thompson T L, Doerge T A, Godin R E. Nitrogen and water interactions in subsurface drip-irrigated cauliflower: II. Agronomic, economic, and environmental outcomes[J]. Soil Science Society of America Journal, 2000, 64(1): 412-418.
[10] 吴海兰. 水肥一体化对红枣叶片营养动态及品质和产量的影响[D]. 杨凌,西北农林科技大学,2014. Wu Hailang. Effects of Water and Fertilizer Combinged for Nutrients Dynamic of Jujube Leaves Quality and Producyion[D]. Yangling: Northwest A&F University, 2014. (in Chinese with English abstract)
[11] 李慧杰,徐福利,林云,等. 施用氮磷钾对黄土丘陵区山地红枣林土壤酶与土壤肥力的影响[J]. 干旱地区农业研究,2012,30(4):53-59. Li Huijie, Xu Fuli, Lin Yun, et al. Effects of N, P and K fertilization on soil enzyme activities and soil fertility in mintane Jujube forest of hilly loess region[J], Agricultural Research in the Arid Areas, 2012, 30(4): 53-59. (in Chinese with English abstract)
[12] 吕殿青,王全九,王文焰. 滴灌条件下土壤水盐运移特性的研究现状[J]. 水科学进展,2001,12(1):107-112. Lü Dianqing, Wang Quanjiu, Wang Wenyan. Study on characteristics of soil water and salt transport under drip irrigation[J], Advances in Water Science, 2001, 12(1): 107-112. (in Chinese with English abstract)
[13] 李金叶,袁强,蒋慧. 基于区域适应性的特色林果业发展探讨[J]. 新疆农业科学,2010,47(4):741-749.Li Jinye, Yuan Qiang, Jiang Hui. A discussion on development of featured forestry and fruit growing based on the regional adaptability[J]. Xinjiang Agricultural Sciences, 2010, 47(4): 741-749. (in Chinese with English abstract)
[14] 玉苏甫·买买提,阿娜尔古丽·拜克热,阿丝叶·阿布都力米提. 新疆红枣产业发展现状及问题对策[J]. 安徽农学通报,2015,21(14):11-13. Yusup Mamat, Anaerguli Baikere, Asiye Abudulimiti. Indusry status, problems and countermeasures of jujube in Xinjiang[J]. Anhui Agri Sci Bull, 2015, 21(14): 11-13. (in Chinese with English abstract)
[15] 张豫,王立洪,孙三民,等.阿克苏河灌区棉花耐盐指标的确定[J]. 中国农业科学,2011,44(10):2051-2059. Zhang Yu, Wang Lihong, Sun Sanmin, et al. Indexes of salt tolerance of cotton in Akesu river irrigation district[J]. Scientia Agricultura Sinica, 2011, 44(10): 2051-2059. (in Chinese with English abstract)
[16] 初乐,吴茂玉,朱风涛,等. 新疆地区红枣产业现状及发展建议[J]. 农产品加工,2012(4):110-113. Chu Le, Wu Maoyu, Zhu Fengtao, et al. Industry status and development proposal of jujube in Xinjiang [J]. Academic Periodical of Farm Products Processing. 2012(4), 110-113. (in Chinese with English abstract)
[17] 徐羹慧. 南疆塔里木河流域生态环境近期变化的成因解释[J]. 新疆气象,2005,28(2):28-31. Xu Genghui. Causes of recent changing of ecological environment in Tarim river basin of the south Xinjiang[J] Desert and Oasis Meteorology, 2005, 28(2): 28-31. (in Chinese with English abstract)
[18] 乔英,孙建,孙三民,等. 滴灌条件下塔里木灌区骏枣根系分布的调查[J]. 节水灌溉,2012(3):21-24. Qiao Ying, Sun Jian, Sun Sanmin, et al. Study on root distribution of jujube under drip irrigation in Tarim irrigation area[J]. Water Saving Irrigation, 2012(3): 21-24. (in Chinese with English abstract)
[19] 袁晶晶,同延安,卢绍辉, 等. 生物炭与氮肥配施改善土壤团聚体结构提高红枣产量[J]. 农业工程学报,2018,34(3):159-165. Yuan Jingjing, Tong Yan'an, Lu Shaohui, et al. Biochar and nitrogen amendments improving soil aggregate structure and jujube yields[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(3): 159-165. (in Chinese with English abstract)
[20] 胡安焱,董新光,魏光辉,等. 滴灌条件下水肥耦合对干旱区红枣产量的影响[J]. 灌溉排水学报,2010,12(6):60-63. Hu Anyan, Dong Xinguang, Wei Guanghui, et al. Coupling effects of water and fertilizer on yield of Chinese jujube under drip irrigation in the arid area[J]. Journal of Irrigation and Drainage, 2010, 12(6): 60-63. (in Chinese with English abstract)
[21] 胡家帅,王振华,郑旭荣. 灌水对滴灌红枣产量、品质及水分利用的影响[J]. 排灌机械工程学报,2016,34(12):1086-1092 Hu Jiashuai, Wang Zhenhua, Zheng Xurong. Effects of different irrigation treatments on drip irrigation red jujube's yield, quality and water use efficiency[J]. Journal of Drainage and Irrigation Machinery Engineering, 2016, 34(12): 1086-1092. (in Chinese with English abstract)
[22] 扁青永,王振华,胡家帅, 等. 水肥耦合对南疆沙区滴灌红枣光合特性及产量的影响[J]. 西北农业学报,2018,27(5):707-715. Bian Qingyong, Wang Zhenhua, Hu Jiashuai, et al. Effects of water and fertilizer coupling on phtosynthetic characteristics, growth and yield of red Jujube under drip irrigation condition[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2018, 27(5): 707-715. (in Chinese with English abstract)
[23] 张世卿. 微咸水滴灌对枣园土壤、枣树生长和红枣果实品质的影响[D]. 阿拉尔:塔里木大学,2016. Zhang Shiqing. The Effects of Soil Properties, Growth and Fruit Quality of Jujube Which Caused by Drip Irrigation With Slight Saline Water[D]. Alar: Tarim University, 2016. (in Chinese with English abstract)
[24] 鲍士旦. 土壤农业化学分析[M]. 北京:中国农业出版社,2005.
[25] 韩雅珊. 食品化学实验指导[M]. 北京:中国农业大学出版社,1986.
[26] 赵波,王振华,李文昊. 滴灌方式及定额对北疆冬灌棉田土壤水盐分布及次年棉花生长的影响[J]. 农业工程学报,2016,32(6):139-148. Zhao Bo, Wang Zhenhua, LiWenhao. Effects of winter drip irrigation mode and quota on water and salt distribution in cotton field soil and cotton growth next year in northern Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(6): 139-148. (in Chinese with English abstract)
[27] 于坤,郁松林,刘怀锋,等. 滴灌方式对‘赤霞珠’葡萄幼苗根冠功能的调控效应[J]. 应用生态学报,2015,26(5):1335-1342. Yu Kun, Yu Songlin, Liu Huaifeng et al. Effects of drip irrigation methods on the regulation between root and crown function of ‘Cabernet Sauvignon’seedlings[J]. Chinese Journal of Applied Ecology, 2015, 26(5): 1335-1342. (in Chinese with English abstract)
[28] 张树兰,同延安,梁东丽,等. 氮肥用量及施用时间对土体中硝态氮移动的影响[J]. 土壤学报,2004,41(2):270-277. Zhang Shulan, Tong Yan'an, Liang Dongli, et al. Nitrite-N movement in the soil profile as influenced by rate and timing of nitrogen application[J]. Acta Peddologica Sinica, 2004, 41(2): 270-277. (in Chinese with English abstract)
[29] 严正娟. 施用粪肥对设施菜田土壤磷素形态与移动性的影响[D]. 北京:中国农业大学,2015. Yan Zhengjuan. Effects of Manure Application on the Form and Mobility of Soil Phosphorus in Vegetable Greenhouse[D]. Beijing: China Agricultural University, 2015. (in Chinese with English abstract)
[30] 李青军,张炎,哈丽哈什·依巴提,等. 膜下滴灌棉花对3种水溶性磷肥的利用效率和产量响应[J]. 棉花学报,2018,30(2):172-179. Li Qingjun, Zhang Yan, Harlhax Yibat, et al. Phosphorus utilization efficiency and yield responses of drip irrigated cotton under plastic film mulching to three types of water soluble phosphorus fertilizers[J]. Cotton Science, 2018, 30(2): 172-179. (in Chinese with English abstract)
[31] 梁智,张计峰,井然. 滴灌施肥方式与施肥水平对枣树产量、品质及养分利用的影响[J]. 新疆农业科学,2016,53(8):1444-1452. Liang Zhi, Zhang Jifeng, Jing Ran. Influence of fertilization modes and fertilization levels under drip irrigation on fruit yield, quality and nutrient use of Chinese jujube[J]. Xinjiang Agricultural Sciences, 2016, 53(8): 1444-1452. (in Chinese with English abstract)
Effects of drip fertigation around root zone on yield and quality of red jujube and utilization of nitrogen, phosphorus and potassium in Xinjiang
Zhang Jifeng1,2, Geng Qinglong2, Liang Zhi2, Cao Wenchao1, Chen Qing1※
(1.,,100193,; 2.,,830091,)
Reasonable selection of drip fertigation technique is the key to achieve the effects of water-saving and fertilizer reduction in the intensive orchards. In this study, the influences of surface drip fertigation method (SD) and in-hole around rootzone drip fertigation method (RD) on the growth, fruit quality and the uptake of nitrogen (N), phosphorus (P) and potassium (K) in Xinjiang red jujube were investigated in the Akasu, southern Xinjiang area. Thewas planted since 1999. 3 plots were prepared. In each plot, the 2 treatments were used. In the treatment of SD, the drip line was placed both sides of jujube tree. In the treatment of RD, 1 lateral pipe without emitters in diameter of 8 cm was placed on the soil surface for a line of jujube tree. Around each tree, 6 holes in diameter of 10 cm and depth of 35 cm were drilled for placement of catheter with emitters. The holes were filled with cottonseed cake to hold the catheter. The emitter had flow rate of 3.75 L/h. For each replicate of treatment, 10 jujube trees were included. The irrigation amount and fertilizer application rate were same for the 2 treatments. In 2011 and 2012, the yield and quality of jujube were determined. In 2012, the cumulative N, P and K content in the jujube trees were also determined. The results showed that the 2-year average yield of jujube fruit in the RD treatment significantly increased by 6.9% compared to the SD treatment. Meanwhile, the 2-year average weight of single dry fruit was 5.04 g in the RD treatment, which was 8.4% higher than that in the SD treatment. The influence of irrigation method on quality of jujube was similar except for the ratio of sugar to acid content. In 2011, the total sugar and reducing sugar content of the RD treatment were 5.6% and 40.9% higher than those of the SD treatment; The crude fat and the ratio of sugar content to acid content in the RD treatment was significantly higher than that in the SD; The other quality index was similar in the both treatments. In 2012, the ratio of sugar content to acid content was not significantly different between the both treatments and the influence of treatments on the other jujube quality index followed the same way with that in 2011. In general, the RD could increase jujube yield and quality. Compared to the SD treatment, the RD treatment increased the contents of N, P, and K in the leaf of jujube tree in 2011 by 6.7%, 33.6% and 7.3%, respectively, while it only increased the contents of N and P in the leaf in 2012. In 2011 and 2012, the significant higher content of P in shoots and roots of the treatment of RD was observed than that in the treatment of SD. In the jujube fruits, the P and K content of the treatment of RD was significantly higher than those in the SD treatment by 41.0% and 13.6% in 2011 and 46.2% and 12.9% in 2012 (0.05). In the harvest stage of 2012, the biomass of root and fruit were significantly higher by 46.7% and 8.0% in the RD treatment than in the SD treatment (0.05). In the meantime, the cumulative of P in the jujube tree was significantly higher in the RD treatment than in the SD treatment. The total P accumulated content was 33.72 g/plant in the RD treatment and 21.23 g/plant in the SD treatment. Economic benefit analysis on jujube orchard under different irrigation methods showed that, although the cost increased by 1 950 RMB/hm2with the RD treatment compared to the SD treatment, the jujube output increased by 3 750 RMB/hm2. Therefore, the management practices of RD treatment significantly increase the biomass in root system, fruit yield, the nutrient content of jujube tree, and the utilization efficiency of fertilizer. This study provide an effective irrigation method for orchard so as to improve yield and save water.
emitters; irrigation; fertilizers; root zone; drip fertigation; red jujube; yield; phosphorus
2018-11-28
2019-05-10
国家自然科学基金(31560580);新疆维吾尔自治区重点研发计划项目(2016B01002-1)
张计峰,博士生,副研究员,研究方向:植物营养与土壤肥料方面研究。Email:280862589@qq.com;
陈 清,博士,教授,博士生导师,研究方向:设施土壤修复与面源污染防控,废弃物资源肥料化利用。Email:qchen@cau.edu.cn
10.11975/j.issn.1002-6819.2019.12.008
S365
A
1002-6819(2019)-12-0065-07
张计峰,耿庆龙,梁 智,曹文超,陈 清. 根区孔下滴灌施肥对新疆红枣产量品质和氮磷钾利用影响[J]. 农业工程学报,2019,35(12):65-71. doi:10.11975/j.issn.1002-6819.2019.12.008 http://www.tcsae.org
Zhang Jifeng, Geng Qinglong, Liang Zhi, Cao Wenchao, Chen Qing. Effects of drip fertigation around root zone on yield and quality of red jujube and utilization of nitrogen, phosphorus and potassium in Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(12): 65-71. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.12.008 http://www.tcsae.org