基于裂纹附加模态的梁裂纹损伤识别方法
2019-08-10杨骁王天宇
杨骁 王天宇
摘要: 将梁中横向开裂纹等效为内部扭转弹簧,利用广义Delta函数和Heaviside函数,给出了具有任意条裂纹Euler-Bernoulli梁振动模态的统一显式解析表达式。在此基础上,引入裂纹附加模态的概念,并根据裂纹附加模态函数的构造特征,利用最小二乘拟合,建立了一种新的裂纹损伤参数识别方法。该方法计算简单,且仅需较少的测量点及测量点处某一模态的测量数据即可实现裂纹位置及深度的识别。最后,通过两个数值算例验证了裂纹损伤参数识别方法的适用性和可靠性,并考察了测量噪声对损伤识别的影响,结果表明裂纹位置识别精度高于裂纹等效弹簧刚度识别精度;前面裂纹识别结果影响后续裂纹的识别结果;随着测量噪声的增加,裂纹位置及裂纹等效弹簧刚度的识别误差增加,但仍在可接受的范围内,故该裂纹损伤识别方法在工程实际中具有一定的适用性。
关键词: 裂纹梁; 裂纹损伤识别; 等效扭转弹簧模型; 裂纹附加模态; 最小二乘拟合
中图分类号: TU311.3; O346.5 文献标志码: A 文章编号: 1004-4523(2019)03-0480-10
DOI:10.16385/j.cnki.issn.1004-4523.2019.03.013
引 言
由于载荷的作用以及环境的影响,作为土木工程和机械工程等中的重要梁构件在服役期间会经常出现裂纹,裂纹的存在及其扩展导致梁刚度和承载力降低以及使用寿命缩短,甚至导致结构和机械的突然破坏,造成巨大的损失,因此裂纹梁的力学性能和损伤识别理论及方法研究对保证梁构件的正常服役具有重要的理论意义和广泛应用背景[1-5]。
梁裂纹的宏观模型一般包括开裂纹模型[2,6-8]、开闭裂纹模型[9-11]和呼吸裂纹模型[12-14]。当梁的变形较小时,可假定裂纹始终处于张开状态,从而可采用开裂纹模型分析裂纹梁的动静力性能。这里,除将裂纹效应等效为刚度减小梁的早期等效降截面法外[1],将裂纹等效为无质量扭转弹簧[15-16],裂纹梁视为由若干扭转弹簧连接梁段构成的裂纹梁模型被广泛应用于裂纹梁的力学性能分析及裂纹损伤识别中,并取得了丰富的研究成果。
梁裂纹的损伤识别可分为基于振动的动力识别方法和基于静态变形的静力识别方法。目前,动力识别方法主要包括:基于固有频率、基于振型及振型曲率、基于残余力向量、基于柔度矩阵、基于频响函数以及基于模态应变能等的损伤识别方法[5,8,17-22]。由于振型易于测量,且含有梁局部变形的信息,因此基于振型的裂纹识别方法及应用得到了广泛的研究。Rizos等[23]首先运用了振型函数的导数在裂纹处发生突变这一特性对悬臂梁的裂纹识别进行了研究。Pandey等[24]建立了裂纹梁的有限元模型,利用振型曲率作为识别指标,对简支梁的裂纹损伤参数进行了识别。Douka等[25]利用小波变换识别振型曲线的突变点以确定裂纹位置,再根据频率识别裂纹损伤的其他参数;而Chasalevris等[26]将此方法推广至多裂纹情形的裂纹损伤参数识别。由于梁结构为无限自由度体系,测得的振型数据往往是不连续和非完整的[27],已有的损伤识别方法存在识别非唯一性问题,且往往需要布置较多的测量点才能得到较精确的损伤识别结果,因此这些方法的应用推广受到一定的限制。
本文基于Euler-Bernoulli裂纹梁振动模态中裂纹引起附加模态的构造特征,建立Euler-Bernoulli裂纹梁中横向开裂纹的参数识别方法。为此,基于开裂纹梁的等效抗弯刚度,利用广义Delta函数和Heaviside函数,得到具有任意条裂纹Euler-Bernoulli梁振动模态的统一显示解析表达式。在此基础上,将静力识别方法中的裂纹附加挠度[28-29]推广至动力识别中,引入裂纹附加模态的概念。根据裂纹附加模态函数的构造特征,建立裂纹损伤参数的识别方法,并通过简支单裂纹梁和悬臂双裂纹梁的裂纹识别数值验证了该方法的适用性和可靠性,且采用文献[28]中提供的裂纹梁自由振动振型实测数据对识别方法进行了进一步的验证。需要指出的是本文得到的Euler-Bernoulli裂纹梁振动模态的显式解析表达式避免了裂紋梁经典分析方法的复杂性,同时,相较于传统的基于有限元或多质点振动模型的梁裂纹损伤识别方法,本文所提出的梁裂纹识别方法可利用较少的振型模态测量数据实现裂纹位置及深度的唯一和较精确识别,避免了需要布置较多传感器或移动传感器,为实现梁式结构的长期实时监测提供了可行的思路。
基于区间[0.6,1.0]上的裂纹附加模态值,利用最小二乘法,可得到附加模态近似函数D(ξ),其结果如图5所示。由D(ξ)=0,可得裂纹ξ1的近似位置ξ*1,并由式(27)得到裂纹的近似等效抗弯刚度k*1,其结果如表2所示。由表可见,对于单裂纹梁,随着测量噪声的增加,裂纹位置及裂纹等效弹簧刚度的识别误差增加;当测量噪声较小时,其识别结果具有较高的精度;当测量噪声较大时,会产生一定误差,裂纹位置的识别精度高于裂纹等效弹簧刚度的识别精度。由表2的结果可以得到,本文方法用于裂纹位置识别时的误差是可以接受的,但当信噪比较大时,裂纹等效弹簧刚度的识别误差较大,难以满足要求,此时,可通过增加测点数目、考虑高阶振型数据或多次测量等手段提高识别结果的精度。
为了研究测点数对裂纹等效弹簧刚度识别精度的影响,将梁上测点数增加10个,即梁上均匀分布21个测点。利用测量点ξ*i = 0.05i(i = 1,2,…,8)处的测量数据*1(ξ)可得到基础模态近似函数0(ξ)。利用测点ξ*i = 0.05i + 0.6 (i = 1,2,…,7)处的测量数据得到裂纹附加模态值,拟合得到裂纹附加模态。其结果如图6所示。并由式(27)得到裂纹的近似等效抗弯刚度k*1。比较表2与3可得,增加测点数目对于裂纹定位及裂纹等效弹簧刚度的识别精度都有显著影响,特别地,对于裂纹等效弹簧刚度的识别精度提升更为显著。
4.2 悬臂双裂纹梁的裂纹参数识别
考虑长细比Lh=20,在ξ1=0.38和ξ2=0.62处存在深度d=d1=d2=0.5h的悬臂双裂纹梁。假定初步判断裂纹位于区间[0.3,0.4]和[0.6,0.7]。为此,在梁上均匀布置21个测点,各测点间间距为0.05。图7给出了不同信噪比σ下,对应于基振频率各测点的归一化模态测量值。
利用测量点ξ*=0,0.05,0.1,0.15,0.2,0.25,0.3的基振模态测量数据*1(ξ)可得到基础模态近似函数0(ξ)。在此基础上,利用式(21)得到测量点ξ*=0.35,0.4,0.45,0.5,0.55,0.6处的裂纹附加模态测量值,其结果示于图8中,可见,第一条裂纹位于区间[0.35,0.4]中。基于区间[0.4,0.6]上的裂纹附加模态值,可得到附加模态近似函数D1(ξ),其结果示于图9中。由D1(ξ)=0可求得裂纹ξ1的近似位置ξ*1,并由式(27)得到裂纹的近似等效抗弯刚度k*1,其结果示于表4中,可见,随着测量噪声的增加,裂纹位置及裂纹等效弹簧刚度的识别误差增加。需要指出的是:由式(29)可知,对于多裂纹梁,第一条裂纹的参数识别结果精度会影响后续裂纹的参数识别精度,因此,应注意测量和计算误差引起识别结果精度降低的问题。
在得到第一条裂纹相关参数的基础上,进行悬臂梁第二条裂纹的位置及等效弹簧刚度识别。图10给出了第二条裂纹在测量点ξ*=0.65,0.7,0.75,0.8,0.85, 0.9,0.95,1.0处的裂纹附加模态测量值,可见第二条裂纹因存在于区间[0.6,0.65]内,由此得到图11所示的第二条裂纹的附加模态近似函数2D(ξ)。由2D(ξ)=0确定的第二条裂纹的近似位置ξ=ξ*2及其近似等效抗弯刚度k*2,如表5所示。比较表4和5可见,第二条裂纹的损伤识别精度较第一条裂纹差,其原因是第一条裂纹的识别误差会逐渐积累,因此对于多裂纹梁的损伤识别必须控制好模态数据的测量精度。
5 裂纹识别方法的试验验证
文献[28]利用加速度传感器对单裂纹悬臂梁的振型进行了測定。试验梁的几何和材料为:梁长L=300 mm,横截面尺寸b×h为20×20 mm2,弹性模量为E=206 GPa,材料密度为7800 kg/m3。裂纹位于距固支端140 mm处,裂纹深度为10 mm。图12给出了裂纹梁第1阶的归一化模态测量值。
取测点数目为11,均匀分布在梁上,利用测量点处的基振模态测量数据可得到基础模态近似函数。在此基础上,利用式(21)得到测点ξ*=0.6,0.7,0.8, 0.9,1.0处的裂纹附加模态值,其结果如图13所示。由图可见,裂纹存在于区间[0.4,0.5]中。基于区间[0.6,1.0]上的裂纹附加模态值,利用最小二乘法,可得到附加模态近似函数D(ξ),其结果如图14所示。表6给出了裂纹位置和深度的识别结果,可见在实际检测中,本文所提的方法仍然可以获得较精确的识别结果,具有一定的实用性。
6 结 论
本文利用广义函数研究了Euler-Bernoulli裂纹梁的自由振动,给出了裂纹梁自由振动模态的统一显式解,避免了裂纹梁经典分析方法的复杂性。在此基础上,将振动模态分解为基础模态和裂纹附加模态,提出了基于裂纹梁附加模态的梁裂纹损伤识别方法,并利用简支单裂纹梁和悬臂双裂纹梁数值模拟以及悬臂单裂纹梁的试验结果验证了此裂纹识别方法的适用性和可靠性,得到以下结论:
1.本文利用Heaviside函数,给出的Euler-Bernoulli裂纹梁自由振动模态显式闭合通解形式紧凑,待定常数少,且可由边界条件完全确定,避免了裂纹处的连续性条件;
2.基于裂纹梁自由振动裂纹附加模态的概念,建立了裂纹损伤参数识别方法,在初步确定裂纹大致位置的情况下,相较于传统的基于多质点模型或有限元模型的方法来说,该方法所需测点数目较少,且避免了已有裂纹识别方法中算法复杂和解的非唯一性的不足;
3.随着测量噪声的增加,裂纹位置及裂纹等效弹簧刚度的识别误差增加,且裂纹位置的识别精度高于裂纹等效弹簧刚度的识别精度;
4.当测量噪声较小时,裂纹位置及裂纹等效弹簧刚度的识别结果具有较高的精度,但当测量噪声较大时,裂纹等效弹簧刚度的识别则产生较大误差,此时可以通过增加测点数等方法提升等效弹簧刚度识别精度;
5.对于多裂纹梁的识别,前面裂纹损伤参数识别的误差会导致后续裂纹参数识别精度的下降,此时,可通过增加测点数目,或多次测量来提高识别结果的精度。
6.由于模态信息对微小裂纹不敏感,本文的方法对于微小损伤情况适用性较差,对于微小损伤,可尝试利用裂纹应变附加模态或附加模态应变能作为识别指标。
参考文献:
[1] Palmeri A, Cicirello A. Physically-based Dirac's delta functions in the static analysis of multi-cracked Euler-Bernoulli and Timoshenko beams[J]. International Journal of Solids and Structures, 2011,48(14-15):2184-2195.
[2] Caddemis S, Calió I. The influence of the axial force on the vibration of the Euler-Bernoulli beam with an arbitrary number of cracks[J]. Archive of Applied Mechanics, 2012,82(6):1-13.
[3] Yan Y, Ren Q W, Xia N, et al. A close-form solution applied to the free vibration of the Euler-Bernoulli beam with edge cracks[J]. Archive of Applied Mechanics, 2016,86(9):1633-1646.
[4] Dimarogonas A D. Vibration of cracked structures: A state of the art review[J]. Engineering Fracture Mechanics, 1996,55(5):831-857.
[5] Jassim Z A, Ali N N, Mustapha F, et al. A review on the vibration analysis for a damage occurrence of a cantilever beam[J]. Engineering Failure Analysis, 2013,31(7):442-461.
[6] Gentile A, Messina A. On the continuous wavelet transforms applied to discrete vibrational data for detecting open cracks in damaged beams[J]. International Journal of Solids and Structures, 2003,40(2):295-315.
[7] Kisa M. Vibration and stability of multi-cracked beams under compressive axial loading[J]. International Journal of the Physical Sciences, 2011,6(11):2681-2696.
[8] Fekrazadeh S, Khaji N. An analytical method for crack detection of Timoshenko beams with multiple open cracks using a test mass[J]. European Journal of Environmental and Civil Engineering, 2017,21(1):24-41.
[9] Challamel N, Xiang Y. On the influence of the unilateral damage behaviour in the stability of cracked beam columns[J]. Engineering Fracture Mechanics, 2010,77(9):1467-1478.
[10] Cicirello A, Palmeri A. Static analysis of Euler-Bernoulli beams with multiple unilateral cracks under combined axial and transverse loads[J]. International Journal of Solids and Structures, 2014,51(5):1020-1029.
[11] FU C Y. The effect of switching cracks on the vibration of a continuous beam bridge subjected to moving vehicles[J]. Journal of Sound and Vibration, 2015,339(3):157-175.
[12] Rezaee M, Hassannejad R. Free vibration analysis of simply supported beam with breathing crack using perturbation method[J]. Acta Mechanica Solida Sinica, 2010,23(5):459-470.
[13] Jun O S, Eun H J, Earmme Y Y, et al. Modelling and vibration analysis of a simple rotor with breathing crack[J], Journal of Sound and Vibration, 1992,155(2):273-290.
[14] 胡家順,冯 新,周 晶.呼吸裂纹梁非线性动力特性研究[J]. 振动与冲击, 2009,28(1):76-80.
Hu Jiashun, Feng Xin, Zhou Jing. Study on nonlinear dynamic response of a beam with a breathing crack[J]. Journal of Vibration and Shock, 2009,28(1):76-80.
[15] Bilello C. Theoretical and experimental investigation on damaged beams under moving systems[D]. Italy: Università degli Studi di Palermo, 2001.
[16] Atluri S N. Computational Methods in the Mechanics of Fracture[M]. New York: North-Holland, 1986.
[17] Salawu O S. Detection of structural damage through changes in frequency: A review[J]. Engineering Structures, 1997,19(9):718-723.
[18] Yang X F, Swamidas A S J, Seshadri R. Crack identification in vibrating beams using the energy method[J]. Journal of Sound and Vibration, 2001,244(2):339-357.
[19] Kim J T, Ryu Y S, Cho H M, et al. Damage identification in beam-type structures: Frequency-based method vs.mode-shape-based method[J]. Engineering Structures, 2003,25(1):57-67.
[20] Law S S, Lu Z R. Crack identification in beam from dynamic responses[J]. Journal of Sound and Vibration, 2005,285(4):967-987.
[21] 王丹生, 高 智, 楊海萍, 等. 基于特征正交分解的梁结构损伤识别[J]. 振动与冲击, 2009,28(1):122-125.
Wang Dansheng, Gao Zhi, Yang Haiping, et al. Damage identification for beam structures based on proper orthogonal decompostion[J]. Journal of Vibration and Shock, 2009,28(1):122-125.
[22] Labib A, Kennedy D, Featherston C. Free vibration analysis of beams and frames with multiple cracks for damage detection[J]. Journal of Sound and Vibration, 2014,333(20):4991-5003.
[23] Rizos P F, Aspragathos N, Dimarogonas A D. Identification of crack location and magnitude in a cantilever beam from the vibration modes[J]. Journal of Sound and Vibration, 1990,138(3):381-388.
[24] Pandey A K, Biswas M, Samman M M. Damage detection from changes in curvature mode shapes[J]. Journal of Sound and Vibration, 1991,145(2):321-332.
[25] Douka E, Loutridis S, Trochidis A. Crack identification in beams using wavelet analysis[J]. International Journal of Solids and Structures, 2003,40(13):3557-3569.
[26] Chasalevris A C, Papadopoulos C A. Identification of multiple cracks in beams under bending[J]. Mechanical Systems and Signal Processing, 2006,20(7):1631-1673.
[27] 胡家顺, 冯 新, 李 昕,等. 裂纹梁振动分析和裂纹识别方法研究进展[J]. 振动与冲击, 2007,26(11):146-152+189.
Hu Jiashun, Feng Xin, Li Xin, et al. State-of-art of vibration analysis and crack indentification of cracked beams[J]. Journal of Vibration and Shock, 2007,26(11):146-152+189.
[28] Koo K Y, Lee J J, Yun C B, et al. Damage detection in beam-like structures using deflections obtained by modal flexibility matrices[J]. Journal of Smart Structures and System, 2008,4(5):605-628.
[29] 汪德江, 杨 骁. 基于裂纹诱导弦挠度的Timoshenko梁裂纹无损检测[J]. 工程力学, 2016, 33(12):186-195.
Wang De-jiang, Yang Xiao. Crack non-destructive test in Timoshenko beams based on crack-indwced chord-wise deflection[J]. Engineering Mechanics, 2016,33(12):186-195.
[30] Caddemi S, Caliò I. Exact closed-form solution for the vibration modes of the Euler-Bernoulli beam with multiple open cracks[J]. Journal of Sound and Vibration, 2009,327(3-5):473-489.
[31] Yang X, Huang J, Ouyang Y. Bending of Timoshenko beam with effect of crack gap based on equivalent spring model[J]. Applied Mathematics and Mechanics, 2016,37(4):513-528.
Abstract: Regarding the transverse open crack in a beam as an equivalent internal rotational spring, a unified explicit expression of the vibration mode of an Euler-Bernoulli beam with arbitrary number of cracks is obtained with the generalized Delta and Heaviside functions. On this basis, the concept of crack-induced additional vibration mode is proposed, and a novel method to identify the crack damage parameters is established with the constructive feature of the crack-induced additional vibration mode by using the least square fitting. The proposed method has the advantage of simple calculation and can identify the locations and equivalent rotational spring rigidities of the cracks using less mode measurement data. Finally, the validity and reliability of the proposed method for crack-damage identification are validated by two numerical examples, and the influence of the measurement noise on the identification results is examined. It is revealed that the identification precisions of the crack locations are higher than those of equivalent rotational spring rigidities of the cracks, and the identification result of present cracks has influence on the identification result of later ones. The identification errors of the crack location and the rigidity of the crack equivalent rotational spring increase with the increase of the measurement errors, but these errors are acceptable. Therefore, the proposed crack damage identification method can be applied in practical engineering.
Key words: cracked beam; crack damage identification; equivalent rotational spring model; crack-induced additional mode; least square fitting
作者簡介: 杨 骁(1965-),男,博士,教授,博士生导师。电话: (021)66133698; E-mail: xyang@shu.edu.cn