APP下载

西藏雄村矿集区含矿斑岩成因及构造意义:来自年代学及地球化学的约束*

2019-08-01郎兴海郭文铂王旭辉邓煜霖杨宗耀谢富伟李壮张忠姜楷

岩石学报 2019年7期
关键词:侏罗世含矿斑岩

郎兴海 郭文铂 王旭辉 邓煜霖 杨宗耀 谢富伟,3 李壮 张忠 姜楷

1. 成都理工大学地球科学学院,自然资源部构造成矿成藏重点实验室,成都 6100592. 西南交通大学地球科学与环境工程学院,成都 6117563. 中国地质科学院矿产资源研究所,北京 1000374. 中国地质大学地球科学与资源学院,北京 1000835. 西藏天圆矿业资源开发有限公司,日喀则 857000

西藏冈底斯铜矿带位于我国青藏高原拉萨地体南缘,是一条特殊的铜矿带,因为其不仅分布有与中生代新特提斯洋壳俯冲相关的斑岩型矿床,还分布有与新生代印度-欧亚大陆碰撞造山环境相关的斑岩型矿床(Houetal., 2009, 2015b; Taftietal., 2009; Langetal., 2014)。目前在该成矿带发现产于碰撞造山环境的斑岩型矿床有甲玛、驱龙、邦铺、朱诺、冲江、厅宫、白容、沙让、吉如等(侯增谦等, 2003; 郑有业等, 2007; 张刚阳等, 2008; Houetal., 2009; 唐菊兴等, 2009; Zhengetal., 2015);产于俯冲构造环境的仅有雄村斑岩型铜金矿床(Taftietal., 2009; Langetal., 2014)。由于矿床数量众多,研究者更多的关注于冈底斯铜矿带内新生代时期产于碰撞造山环境的斑岩型矿床,对它们的空间分布特征、地球动力学背景、含矿斑岩的源区进行了系统的解剖(Houetal., 2009, 2013, 2015a, b)。但对于中生代与新特提斯洋壳俯冲相关的斑岩型矿床研究还相对薄弱、成矿理论不够完善、且找矿勘查也一直遭遇瓶颈。尽管前人对于雄村矿集区的成矿作用的研究也有所涉及(Taftietal., 2009; Langetal., 2014; Tangetal., 2015; Yinetal., 2017),但主要的研究工作侧重于单个矿床的研究。为了全面厘定矿集区的岩浆与成矿作用的关系,本文对雄村矿集区新发现的3号矿体的含矿斑岩开展了锆石U-Pb定年、岩石地球化学和Sr-Nd-Pb-Hf同位素地球化学研究,同时结合前期的研究成果,深化对矿集区含矿岩体成因、地球动力学背景及冈底斯成矿带岩浆作用与成矿关系的认识,为下一步矿区找矿工作部署和区域找矿突破提供重要的理论依据。

1 区域及矿床地质

冈底斯铜矿带位于拉萨地体南缘,长约400km,宽约50km。带内已发现数个形成于碰撞造山环境中的大型-超大型铜矿床,如甲玛、驱龙、白容、冲江、厅宫等,这些矿床与中新世埃达克质斑岩体关系密切(图1a)。另外在冈底斯铜矿带上还存在与新特提斯洋壳俯冲相关的斑岩型成矿作用——雄村铜金矿床。雄村矿集区位于西藏冈底斯铜矿带南缘,其南侧紧邻日喀则弧前盆地(图1a)。矿集区出露的地层为中-下侏罗统雄村组火山-沉积岩(图1b)(丁枫等, 2012; Langetal., 2019),其岩性组合主要为火山集块岩、火山角砾岩、凝灰岩,其间夹少量的砂岩、粉砂岩和灰岩。矿集区内主要的侵入岩形成时代为侏罗纪和始新世(图1b)。侏罗纪侵入体包括早侏罗世石英闪长斑岩(181~175Ma; Langetal., 2014)、早-中侏罗世石英闪长斑岩(~174Ma; 郎兴海等, 2014)、中侏罗世石英闪长斑岩(167~161Ma; Langetal., 2014)和辉绿岩脉(165Ma; Langetal., 2018);始新世侵入体主要包括矿区东侧的黑云母花岗闪长岩(47Ma; 唐菊兴等, 2010)、石英闪长岩和少量的煌斑岩脉(47Ma; Langetal., 2017)。矿集区构造较为发育,主要为东西向、北东-南西向、北西-南东向断层构造(图1b),以及位于矿区南部的褶皱构造。

图1 冈底斯斑岩铜矿带地质图(a,据Yang et al., 2009)及雄村矿集区地质图(b,据Tang et al., 2015)Fig.1 Geological map of Gangdese porphyry copper belt (a, after Yang et al., 2009) and Geological map of Xiongcun district (b, after Tang et al., 2015)

矿集区内1、2、3号矿体呈北西向近等距展布,平面上为近椭圆状(图1b)。1号矿体Cu、Au、Ag金属量分别为1.04×106t @ 0.48%、143.31t @ 0.66g/t、900.43t @ 4.19g/t,其蚀变类型为钾硅酸盐岩化、绢英岩化和青磐岩化,矿化呈浸染状或脉状产出,主要金属矿物为黄铜矿、黄铁矿、磁黄铁矿以及少量的毒砂、方铅矿、辉钼矿和闪锌矿等(图2g-k),缺乏磁铁矿、硬石膏等表征高氧逸度的矿物。2号矿体Cu、Au、Ag金属量分别为1.34×106t @ 0.35%、76.34t @ 0.22g/t、193.78t @ 1.3g/t,其蚀变类型包含钾硅酸盐岩化、钠化-钙化、绢英岩化和青磐岩化,主要金属矿物为黄铜矿、黄铁矿、磁铁矿以及少量的辉钼矿、方铅矿和闪锌矿等(图2l-o),非金属矿物中可见硬石膏。3号矿体的围岩蚀变、矿物组合特征与2号矿体一致,主成矿元素为铜,伴生金、银,平均品位分别为0.26%、0.11g/t和1.2g/t。

图2 雄村矿集区含矿斑岩和矿石的手标本及镜下照片(a)中侏罗世石英闪长斑岩(1号矿体含矿斑岩);(b)早侏罗世石英闪长斑岩(2号矿体含矿斑岩);(c)早侏罗世石英闪长斑岩(3号矿体含矿斑岩);(d)早-中侏罗世石英闪长斑岩(不含矿斑岩);(e)早侏罗世石英闪长斑岩(3号矿体含矿斑岩)显微照片;(f)早-中侏罗世石英闪长斑岩显微照片;(g-k) 1号矿体典型金属矿物;(l-o) 2、3号矿体典型金属矿物. Ccp-黄铜矿;Py-黄铁矿;Po-磁黄铁矿;Sp-闪锌矿;Gn-方铅矿;Mag-磁铁矿;Mol-辉钼矿;Cv-铜蓝;Q-石英;Pl-斜长石;Hbl-角闪石Fig.2 Hand specimen photos and microphotographs of ore-bearing porphyry and ore in the Xiongcun district(a) Middle Jurassic quartz diorite porphyry (ore-bearing porphyry of the No.1 deposit); (b) Early Jurassic quartz diorite porphyry (ore-bearing porphyry of the No.2 deposit); (c) Early Jurassic quartz diorite porphyry (ore-bearing porphyry of the No.3 deposit); (d) Early-Middle Jurassic quartz diorite porphyry (barren porphyry); (e) microphotograph of Early Jurassic quartz diorite porphyry (ore-bearing porphyry of the No.3 deposit); (f) microphotograph of Early-Middle Jurassic quartz diorite porphyry; (g-k) typical metallic mineral assemblages of No.1 deposit; (l-o) typical metallic mineral assemblages of No.2 and No.3 deposits. Ccp-chalcopyrite; Py-pyrite; Ccp-chalcopyrite; Po-pyrrhotite; Sp-sphalerite; Gn-galena; Mag-magnetite; Mol-molybdenite; Cv-covellite; Q-quartz; Pl-plagioclase; Hbl-hornblende

2 样品特征及描述

雄村矿集区共发育有三期侏罗纪石英闪长斑岩(图1b):早侏罗世石英闪长斑岩(图2b, c)、早-中侏罗世石英闪长斑岩(图2d)和中侏罗世石英闪长斑岩(图2a)。其中早侏罗世石英闪长斑岩为2号、3号矿体的含矿斑岩,中侏罗世石英闪长斑岩为1号矿体的含矿斑岩,前人对1、2号矿体中的这两类含矿斑岩进行了详细描述(Langetal., 2014; Tangetal., 2015; Yinetal., 2017),此处不再复述。早-中侏罗世石英闪长斑岩为矿集区非含矿斑岩(图1b),以含大量粗粒石英斑晶而区分于含矿斑岩(图2d, f, 郎兴海等, 2014),可见其侵入早侏罗世石英闪长斑岩(图1b)。3号矿体含矿早侏罗世石英闪长斑岩蚀变强烈,蚀变弱的岩石为灰白色,斑状结构,斑晶含量约10%~15%,主要由细粒斜长石、角闪石和眼球状(浑圆状)石英组成(图2c, e),石英斑晶粒径为1~3mm不等,角闪石和斜长石蚀变强烈;基质具有微粒-细粒结构,主要由石英、斜长石、黑云母和少量的角闪石构成,斜长石常发生绢云母蚀变;副矿物可见锆石、磷灰石和磁铁矿。本次研究的3号矿体含矿早侏罗世石英闪长斑岩样品均采自于钻孔岩芯,采集样品时尽量选择新鲜、蚀变较弱的岩芯,以保证样品化学分析的可靠性。

3 分析方法

3.1 锆石U-Pb定年

锆石的分选在廊坊市科大岩石矿物分选技术服务有限公司完成,首先对样品进行破碎、淘洗、电磁与重液分选,之后在双目镜下挑选出粒度大、晶型好、裂隙与包裹体较少的锆石备用。锆石的制靶及照相在北京锆年领航科技有限公司完成,首先将挑选的锆石置于环氧树脂内,对其进行抛光清洗,露出锆石表面,制成靶样。之后对锆石进行阴极发光及透反射光图像的采集。参照锆石阴极发光及透反射光图像,选择锆石颗粒表面无裂隙、内部环带清晰、无包裹体的位置作为U-Pb定年的测试点。锆石U-Pb同位素测试在中国地质大学(北京)成矿过程与矿产资源国家重点实验室进行。U-Pb同位素测试中所用激光剥蚀系统为Geolas 193,ICP-MS为Thermo Fisher X-SeriesⅡ型四级杆等离子质谱仪。激光束斑直径为32μm,剥蚀频率为8Hz,并利用He气作为剥蚀物质的载气,Ar气作为补偿气。测试中采用每隔5个测试点测定两个锆石91500(Wiedenbecketal., 1995)对样品进行校正,并用锆石Plesovice(Slámaetal., 2008),观察仪器状态和测试的重现性。详细实验操作步骤可见侯可军等(2009)。利用ICPMSDataCal(Ver7.2)软件处理信号,协和图解采用Isoplot 4.0处理。

3.2 Hf同位素分析

锆石Hf同位素测试是在北京科荟测试技术有限公司Neptune plus多接收等离子质谱及配套的ESI NWR193紫外激光剥蚀系统(LA-MC-ICP-MS)上进行的,实验过程中采用He作为剥蚀物质载气,剥蚀直径采用50μm,测定时使用锆石国际标样GJ-1作为参考物质,分析点与U-Pb定年分析点为同一位置。相关仪器运行条件及详细分析流程见侯可军等(2007)。分析过程中锆石标准GJ-1的176Hf/177Hf测试加权平均值为0.282007±0.000007,与文献报道值(Moreletal., 2008)在误差范围内完全一致。

3.3 主微量元素分析

主量、微量元素分析在西南冶金地质测试中心进行。主量元素测试采用X射线荧光光谱法(XRF),在荷兰帕纳科Axios X荧光仪完成,采用GBW07211和GBW07108为分析标样,分析结果显示误差优于3%。微量元素测定采用电感耦合等离子体质谱法(ICP-MS),在NexIon 300x ICP-MS仪器上完成,将样品研磨并用酸溶法制成溶液,然后在等离子质谱仪上进行测定,并用GBW07103和GBW07104为分析标样,分析结果显示含量大于10×10-6的元素分析误差小于5%,而含量小于10×10-6的元素分析误差小于10%。

3.4 Sr-Nd-Pb同位素分析

全岩Sr-Nd-Pb 同位素测定在南京大学内生金属矿床成矿机制研究国家重点实验室完成。利用HF-HNO3混合酸来完全溶解200mg的粉末样品,采用Bio-Rad50WX8阳离子交换树脂将Sr、Nd、Pb分离提纯。提纯后的Sr溶液采用Thermo Finnigan公司的Triton TI热电离质谱仪(TIMS)进行分析,提纯后的Nd和Pb溶液采用Thermo Neptune Plus多接受等离子体质谱仪(MC-ICP-MS)进行分析,详细的分离和测试流程见濮魏等(2005)。在实验过程中标样NBS987 Sr的87Sr/86Sr测定值为0.710239±0.000002(1σ)、JNdi-1 Nd的143Nd/144Nd测得值为0.512128±0.000004(1σ)、NIST-981 Pb的206Pb/204Pb、207Pb/204Pb、208Pb/204Pb的测定值分别为16.9318±0.0003(1σ)、15.4858±0.0003(1σ)、36.6819±0.0008(1σ),标样测定值与文献报道值在误差范围内一致(Weisetal., 2006)。

图3 雄村矿集区3号矿体含矿斑岩LA-ICP-MS锆石U-Pb年龄谐和图Fig.3 LA-ICP-MS zircon U-Pb concordia diagram of ore-bearing porphyry from the No.3 deposit in the Xiongcun district

4 分析结果

4.1 锆石U-Pb年龄

3号矿体含矿斑岩样品(ZK10346-65.2)锆石多为自形-半自形晶体,呈短柱状或长柱状,锆石粒径在80~150μm之间,长宽比1:1~2:1,锆石阴极发光图像显示具有明显震荡环带(图3)。锆石的Th与U含量分别为26.1×10-6~156×10-6和57.9×10-6~303×10-6,Th/U比值在0.36~0.84,表明它们均属于典型的岩浆锆石(Hoskin and Black, 2000)。本次实验共测定了12个有效数据点,206Pb/238U年龄分布较集中,在174.0~180.9Ma之间变化(表1),在锆石U-Pb谐和图中均落在谐和线上(图3),206Pb/238U年龄加权平均值为176.9±1.4Ma(MSWD=3.1),该年龄值代表了含矿斑岩的成岩年龄。

表1雄村矿集区3号矿体含矿斑岩LA-ICP-MS锆石U-Pb测试结果

Table 1 LA-ICP-MS zircon U-Pb analysis data of ore-bearing porphyry from the No.3 deposit in the Xiongcun district

测点号元素含量(×10-6)UThTh/U同位素比值年龄(Ma)207Pb/206Pb±1σ207Pb/235U±1σ206Pb/238U±1σ206Pb/238U±1σ110557.70.550.04980.00110.19280.00430.02810.0002178.81.3211595.90.840.05100.00210.19610.00770.02800.0003177.92.2313462.80.470.05110.00080.19560.00320.02790.0002177.31.342211560.710.05200.00070.20360.00390.02840.0004180.82.6513661.70.450.04980.00380.19210.01810.02790.0006177.63.6615157.50.380.05080.00110.19610.00430.02810.0002178.51.5757.935.60.610.05190.00170.20220.00680.02830.0003180.21.8861.426.10.420.04910.00330.18960.01490.02770.0003176.11.7916884.60.500.05000.00080.19000.00290.02770.0002176.01.01015477.50.500.05020.00090.18860.00330.02740.0001174.00.8113031100.360.05000.00110.19040.00410.02780.0001176.50.81282.341.50.500.05080.00180.19950.00830.02850.0002180.91.2

图4 雄村矿集区含矿斑岩Zr/TiO2-Nb/Y(a, 据Winchester and Floyd, 1977)和Y-Zr(b, 据Barrett and MacLean, 1994)图解Fig.4 Zr/TiO2 vs. Nb/Y (a, after Winchester and Floyd, 1977) and Y vs. Zr(b, after Barrett and MacLean, 1994)diagrams of ore-bearing porphyries in the Xiongcun district

4.2 Hf同位素特征

雄村矿集区1、2、3号矿体含矿斑岩的锆石Hf同位素结果列于表2。含矿斑岩的锆石176Lu/177Hf值较低(均值分别为0.0015、0.0013、0.0017),表明锆石在形成后具有极低的放射性成因Hf积累,因此所测定的176Hf/177Hf值可以代表锆石结晶时体系的Hf同位素组成(Amelinetal., 2000)。1号矿体含矿斑岩锆石εHf(t)值变化范围为10.4~15.3,平均值为13.5;Hf同位素单阶段模式年龄(tDM1)和二阶段模式年龄(tDM2)分别介于189~385Ma和205~515Ma之间(表2)。2号矿体含矿斑岩锆石εHf(t)值变化范围为11.8~15.2,平均值为13.7;Hf同位素单阶段模式年龄(tDM1)和二阶段模式年龄(tDM2)分别介于208~340Ma和223~437Ma之间(表2)。3号矿体含矿斑岩锆石εHf(t)值变化范围为9.9~14.5(表2),平均值为12.5;Hf同位素单阶段模式年龄(tDM1)和二阶段模式年龄(tDM2)分别介于254~436Ma和294~588Ma之间(表2)。

表2雄村矿集区含矿斑岩锆石Lu-Hf同位素测试结果

Table 2 Lu-Hf isotopic compositions of zircons of ore-bearing porphyries in the Xiongcun district

测点号176Yb/177Hf±2σ176Lu/177Hf±2σ176Hf/177Hf±2σAge(Ma)εHf(t)tDM1(Ma)tDM2(Ma)1号矿体(样品X-1,据Tangetal.,2015)1.10.03020310.00070860.00108740.00001730.28306540.0000281162.8613.42643252.10.03953320.00049240.00145150.00001930.28301700.0000278162.7011.73374383.10.03587320.00126170.00136870.00004380.28298320.0000248160.1510.43855154.10.04917590.00272890.00190690.00010200.28305640.0000282159.8213.02833525.10.03196230.00039770.00128080.00001710.28308350.0000222160.1514.02402866.10.03795010.00083700.00165240.00003410.28312030.0000219160.3115.31892057.10.02881360.00047480.00120150.00002230.28310390.0000197159.6014.72102408.10.02563990.00022360.00106070.00001030.28308420.0000194161.8914.12372829.10.03856540.00059360.00148750.00002340.28305130.0000221160.1912.828836110.10.03461540.00026120.00141620.00001100.28310670.0000205163.2514.920723311.10.03087770.00055870.00126800.00001880.28303440.0000237161.9912.331039712.10.03345750.00035800.00130640.00001580.28307730.0000224159.9813.82493011号矿体(样品ZK5056-4,据Tangetal.,2015)1.10.04160970.00076250.00184800.00003440.28310560.0000209167.8714.92112362.10.02932700.00054330.00135350.00002500.28306410.0000190166.8813.42683273.10.03457740.00025970.00153510.00000990.28308560.0000217169.3914.22382784.10.04669390.00026270.00190580.00001130.28305770.0000184166.5313.12823465.10.03584580.00057500.00142710.00002020.28301040.0000227165.7511.53464506.10.04566360.00046560.00167220.00001240.28309770.0000232168.3914.62222527.10.03419670.00058950.00124920.00002580.28305360.0000250167.3313.12823508.10.05277690.00080670.00195750.00001730.28309140.0000267168.2114.42332682号矿体(样品7226-233.7,据Yinetal.,2017)1.10.07004810.00035430.00187710.00000420.28307980.0000204181.014.22492872.10.03779020.00016080.00104710.00000400.28302640.0000186174.512.33204063.10.04738540.00053290.00128340.00000810.28304570.0000212184.013.22943594.10.03644310.00054210.00101000.00001020.28305230.0000206177.713.32823455.10.05273870.00056120.00143260.00000790.28303540.0000210187.612.93103817.10.05675580.00083580.00138640.00001030.28310610.0000229181.515.22082238.10.04036290.00088310.00103090.00001920.28306400.0000249180.513.826631710.10.04273600.00067370.00123140.00001240.28306880.0000217180.113.926030811.10.05700840.00017020.00163490.00000590.28306590.0000239184.613.826831512.10.06472030.00071730.00173010.00000870.28309080.0000223177.314.623226313.10.05272880.00011840.00140370.00000930.28304750.0000244178.813.129235814.10.04709100.00019320.00121100.00000420.28306160.0000256175.113.527132715.10.04313570.00030980.00107150.00000600.28301240.0000255183.912.034043316.10.06417580.00059410.00157570.00000820.28306270.0000290181.913.72723232号矿体(样品7224-159.9,据Yinetal.,2017)1.10.03723990.00040560.00095490.00001030.28306660.0000181176.913.82623132.10.03208480.00031090.00095520.00000780.28308930.0000201176.614.62292613.10.04648160.00021560.00122390.00000710.28306720.0000187177.413.82633134.10.04907810.00056720.00124970.00001830.28307270.0000229176.514.02553015.10.04020630.00026050.00112760.00000250.28309210.0000241174.614.62262576.10.04161180.00067760.00100960.00002160.28309530.0000256176.414.82212487.10.04483760.00033330.00107350.00000850.28307460.0000265175.714.02512969.10.03800540.00015570.00112410.00000320.28308930.0000225171.414.5230265

续表2

Continued Table 2

测点号176Yb/177Hf±2σ176Lu/177Hf±2σ176Hf/177Hf±2σAge(Ma)εHf(t)tDM1(Ma)tDM2(Ma)11.10.04438960.00046720.00140070.00001200.28307530.0000181176.914.025229612.10.03040480.00041130.00090520.00001320.28301240.0000187175.011.833843713.10.05274870.00047590.00142860.00000690.28307640.0000228174.814.02512952号矿体(样品7235-123.4,据Yinetal.,2017)1.10.08480730.00055470.00230640.00002760.28307710.0000240176.514.025629911.10.09235400.00164850.00259370.00001570.28306680.0000237178.713.62733243号矿体(样品ZK10346-65.2,本文测试)2.10.0838030.0027620.0018030.0000710.2830650.000316176.914.02703233.10.0687290.0020350.0015060.0000290.2830170.000330176.912.43374294.10.0653700.0043230.0014170.0000720.2830270.000294176.912.73224065.10.1167240.0078480.0025300.0003100.2830230.000280176.912.53384246.10.0646120.0008350.0013470.0000350.2830000.000320176.911.83614688.10.0508730.0035540.0010320.0000680.2829800.000315176.911.13865119.10.0685370.0132980.0014400.0002620.2830210.000360176.912.633041910.10.0681090.0046990.0015030.0000880.2830470.000352176.913.429436211.10.0613110.0095740.0012740.0001750.2829470.000258176.99.943658812.10.1247100.0090730.0027080.0001950.2830800.000336176.914.5254294

图5 雄村矿集区矿体含矿斑岩球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b)(标准化值据Sun and McDonough, 1989)1号矿体据Tang et al. (2015),2号矿体据Yin et al. (2017)Fig.5 Chondrite-normalized REE distribution patterns (a) and primitive mantle-normalized trace element spidergrams (b) of ore-bearing porphyries in the Xiongcun district (normalization values after Sun and McDonough, 1989)

4.3 主微量元素特征

雄村矿集区1、2、3号矿体含矿石英闪长斑岩的主微量元素含量列于表3中。1号矿体含矿石英闪长斑岩的SiO2含量介于63.07%~69.70%之间,Al2O3含量介于12.69%~17.71%之间,MgO含量介于0.58%~2.97%之间,Mg#值介于10~40之间(表3)。2号矿体含矿石英闪长斑岩的SiO2含量介于55.81%~67.32%之间,Al2O3含量介于14.71%~19.74%之间,MgO含量介于0.93%~3.11%之间,Mg#值介于21~55之间(表3)。3号矿体含矿石英闪长斑岩的SiO2含量介于50.87%~65.50%之间,Al2O3含量介于16.66%~21.76%之间,MgO含量介于1.32%~3.21%之间,Mg#值介于23~44之间(表3)。Nb/Y-Zr/TiO2图解可以有效判断遭受热液蚀变的岩石类型,在Nb/Y-Zr/TiO2图解上,雄村矿集区含矿斑岩样品主要落在安山岩区域附近(图4a),这与野外观察和镜下鉴定结果一致;在Zr-Y判别图解上,所有样品落在钙碱性区域及钙碱性向低钾(拉斑)系列过渡的区域(图4b),表明岩石属于钙碱性系列。

表3雄村矿集区含矿斑岩主量元素(wt%)和微量元素(×10-6)分析数据表

Table 3 Major (wt%) and trace (×10-6) elements analyses of ore-bearing porphyries in the Xiongcun district

样品号ZK5013-4ZK5021-3ZK5023-2ZK5023-1ZK5015-5ZK5015-4X5015-3ZK5015-2ZK5056-4X-17224-157.87224-419.67226-238.77229-264.2SiO268.3168.8968.2468.7463.0765.2368.0769.765.5667.0359.1762.7667.3266.50TiO20.370.400.310.330.400.390.350.360.380.410.680.480.380.41Al2O314.3517.7112.6913.4314.4414.7913.0813.7215.6416.2916.9417.1116.1414.71Fe2O31.122.116.121.029.367.416.824.872.591.453.781.021.713.07FeO5.251.021.076.230.920.840.721.444.074.582.873.931.351.81MnO0.30.050.060.590.050.050.080.060.220.060.080.130.070.07MgO2.350.790.612.970.580.620.740.61.360.783.111.661.060.94CaO0.680.270.790.590.40.430.260.490.890.534.224.793.822.99Na2O0.410.430.360.290.380.40.580.40.320.423.123.142.661.90K2O2.875.023.881.943.844.343.983.933.854.421.872.483.925.44P2O50.170.020.140.160.020.030.030.020.220.160.220.190.110.14LOI2.592.194.482.246.024.754.453.593.733.583.181.591.251.31Total98.7798.998.7598.5399.4899.2899.1699.1898.8399.7199.2499.2899.7999.29Mg#4033144310131616281947384027Sc5.13.234.134.425.375.955.617.285.464.2814.15.768.455.18V63.0756.549.6866.7449.2549.6952.945.6563.9755.3915177.475.6119Cr4.631.672.944.491.952.072.221.512.441.4533.71.749.733.1Co2.994.5110.781.578.0714.878.1312.34.9721.9922.914.64.7818.1Ni1.680.81.261.181.112.081.381.361.002.6610.52.264.182.37Ga17.0819.612.5818.2314.8413.341611.918.0316.1919.316.813.816.2Rb74.6512093.771.1790.62110.9120105.398.12105.839.239.277.876.3Sr79.6130.456.1849.2350.0653.141.649.0255.4859.99293426296279Y11.214.9411.69.9310.9912.69.2211.7713.1515.8214.213.210.28.65Zr93.2794.183.3290.7996.2998.2580.892.1799.37108.471.791.598.385.4Nb5.797.091.756.921.51.245.740.963.961.48.197.345.476.68Cs9.344.95.379.663.63.563.643.4413.115.194.833.013.113.19Ba204.3164194112.6209.1218.1167202.1279.2577.5170323800609La12.017.5811.9713.988.0211.666.077.4615.2117.5719.215106.98Ce19.7412.121.4325.6115.1930.4410.214.5530.329.5335.129.217.910.3Pr2.61.832.533.011.882.71.441.643.113.6943.42.121.58Nd12.227.9411.8614.048.9514.396.337.9715.6415.1516.413.88.916.73Sm2.291.532.42.611.942.651.51.752.933.13.433.021.981.54Eu0.680.470.850.860.680.80.460.620.980.961.10.90.740.6Gd2.291.32.332.391.912.551.81.922.912.993.623.092.271.82Tb0.340.160.360.320.290.350.260.30.410.510.520.440.320.24Dy1.830.921.641.651.881.641.822.182.552.92.561.91.43Ho0.360.20.40.320.330.370.350.380.440.530.570.520.380.3Er1.160.611.171.010.991.221.11.181.371.611.721.551.220.89Tm0.210.10.210.190.170.210.150.210.250.230.240.240.180.14Yb1.150.691.181.070.951.131.111.151.331.371.741.651.30.89Lu0.180.120.190.170.150.170.180.180.210.250.270.260.210.16Hf2.272.661.682.052.332.562.222.262.475.592.042.472.532.17Ta0.730.440.160.420.110.110.360.070.280.110.490.440.40.43Pb36.9211918879.9147.1135.8205109.4181.1116.511.8479.8113.4Th3.643.183.154.083.4533.212.84.363.824.824.574.736.32U0.30.550.230.510.240.20.540.210.390.351.791.344.323.53∑REE57.0635.5358.8867.2243.1070.5232.5941.1377.2780.0490.8175.6349.4333.60(La/Yb)N7.497.887.289.376.067.403.924.658.209.207.926.525.525.63δEu0.900.991.081.031.070.930.851.031.010.950.950.891.061.09数据来源1号矿体(据Tangetal.,2015)2号矿体(据Yinetal.,2017)

续表3

Continued Table 3

样品号7233-163.77232-4367239-247.67239-807247-75.67248-360.47251-378.710346-80.110348-89.110348-92.610348-158.910348-172.510349-46.710349-104.9SiO255.8162.0967.2366.2964.4563.9166.4853.4550.8755.2261.0760.5765.5055.47TiO20.490.40.430.480.420.400.401.131.291.060.690.600.490.53Al2O319.7416.5817.1216.8517.1416.1715.6420.5721.7618.9817.1618.1317.3816.66Fe2O34.351.691.682.031.931.531.274.633.756.012.812.363.0011.32FeO2.342.892.161.811.632.751.284.103.943.484.074.202.714.39MnO0.060.180.040.050.040.080.030.140.140.110.110.120.070.14MgO0.932.41.661.161.202.791.242.873.212.752.642.631.322.43CaO3.745.760.683.314.264.403.046.577.516.555.096.514.325.57Na2O4.562.973.102.523.542.964.444.183.653.371.311.950.720.83K2O3.452.523.633.092.252.123.362.213.552.194.872.764.332.59P2O50.100.110.120.190.120.120.180.140.330.280.170.170.140.09LOI2.931.831.871.662.411.881.723.883.614.103.652.873.257.07Total98.599.4299.7299.4499.3999.1199.0898.4498.2599.0098.0397.6898.4298.40Mg#2149453639554838443642433123Sc8.9712.110.76.710.813.94.2122.6620.3818.9711.6710.6311.0714.72V13815510910710811762.1225.2209.7211.6145.7125.0105.7114.0Cr5.314.2210.211.811.112.81.9112.7513.7910.9712.3211.919.4510.54Co28.2118.123.5312.27.524.5739.0926.6753.7234.7733.1316.8881.57Ni7.894.274.554.684.77.5157.310.985.307.059.147.834.624.06Ga19.516.315.420.616.715.414.622.6322.0818.6618.2218.1921.5420.87Rb54.84010453.384.878.358.671.98100.165.84116.474.97113.389.37Sr55034391.4205312321288417.2477.0471.1286.4366.8204.1257.7Y13.711.11111.917.113.111.325.021.327.814.015.212.718.4Zr10888.872.910585.678.290.112114211598.411410996.8Nb5.975.135.258.485.994.897.848.159.9910.005.997.633.774.23Cs3.151.3411.13.43.184.670.933.213.601.712.453.035.975.66Ba549331313497180220488213446270862477611289La11.89.35119.8910.215.814.923.78.6311.721.819.720.399.2Ce22.519.117.717.119.628.624.443.321.425.635.733.936.5164Pr2.882.182.392.292.63.163.075.293.283.513.693.794.2417.5Nd11.88.689.719.4911.512.412.622.215.115.513.314.416.861.2Sm2.871.851.992.123.032.592.614.943.823.712.442.843.399.24Eu0.950.840.590.481.030.740.721.801.111.761.150.881.082.80Gd3.062.262.262.493.82.862.824.573.623.772.452.702.897.43Tb0.440.330.320.370.580.390.380.850.700.750.450.470.480.98Dy2.632.12.062.233.522.372.194.614.044.482.432.602.444.29Ho0.60.450.440.50.750.50.440.960.890.970.510.540.490.75Er1.831.371.41.492.281.521.372.712.672.731.461.531.291.88Tm0.290.20.20.230.330.230.20.440.460.460.230.250.200.25Yb1.891.371.421.632.21.561.462.772.962.781.481.711.261.54Lu0.310.220.210.270.330.240.220.350.400.360.190.210.160.20Hf2.912.352.062.892.42.092.665.275.154.024.805.624.693.38Ta0.450.40.390.530.440.370.490.580.721.270.490.610.340.41Pb10.61787.0411.613.17.325.418.1211.7917.6516.9022.919.9011.82Th4.893.653.855.23.683.715.593.543.193.123.103.063.244.59U4.862.113.331.091.831.081.390.470.700.590.510.400.751.28∑REE63.8550.3051.6950.5861.7572.9667.38118.569.1478.1787.2485.4991.53371.1(La/Yb)N4.484.905.564.353.337.267.326.142.093.0210.568.2711.5946.14δEu0.971.250.850.640.930.830.811.140.901.421.420.961.031.00数据来源2号矿体(据Yinetal.,2017)3号矿体(本文测试)

注:3号矿体含矿斑岩主量元素含量为扣除烧失量后重新计算得出的含量

雄村矿集区1、2、3号矿体含矿石英闪长斑岩稀土元素总量较低,介于32.59×10-6~80.04×10-6、33.60×10-6~90.81×10-6、69.14×10-6~371.1×10-6之间(表3),(La/Yb)N分别介于3.98~9.37、3.33~7.92、2.09~46.14之间。球粒陨石标准化稀土元素配分模式图显示(图5a),轻重稀土分馏明显,呈右倾趋势。δEu分别介于0.85~1.08、0.64~1.25、0.90~1.42,3号矿体含矿斑岩Eu总体异常不明显,仅2个样品显示出Eu的正异常。

雄村矿集区含矿石英闪长斑岩微量元素分析结果见表3,原始地幔标准化蛛网图显示出其分配模式整体向右倾斜(图5b),相对富集大离子亲石元素(LILEs:如Rb、Ba和Hf)和相对亏损高场强元素(HFSEs:如Nb和Ta)。

4.4 Sr-Nd-Pb同位素特征

雄村矿集区1、2、3号矿体含矿石英闪长斑岩Sr-Nd-Pb同位素测试结果列于表4,所测得样品具有相对较低的(87Sr/86Sr)i比值和相对较高的εNd(t)值。2号矿体含矿斑岩样品(87Sr/86Sr)i比值变化范围为0.70400~0.70509,3号矿体含矿斑岩样品(87Sr/86Sr)i比值变化范围为0.70311~0.70430;1、2、3号矿体含矿斑岩εNd(t)值分别介于4.5~5.9、5.5~5.9、5.4~5.6。Pb同位素比值变化较小(表4),2号矿体含矿斑岩206Pb/204Pb、207Pb/204Pb、208Pb/204Pb比值分别在18.460~18.857、15.573~15.622、38.584~38.948之间变化;3号矿体含矿斑岩206Pb/204Pb、207Pb/204Pb、208Pb/204Pb比值分别在18.432~18.506、15.553~15.565、38.448~38.503之间变化。

图6 雄村矿集区含矿斑岩Ta-Yb(a, 据Pearce et al., 1984)、Y-Zr(b,据Pearce et al., 1984)、Th/Yb-Ta/Yb(c, 据Gorton and Schandl, 2000)和La/Yb-Sc/Ni(d, 据 Bailey, 1981)图解Fig.6 Ta vs. Yb (a, after Pearce et al., 1984), Y vs. Zr (b, after Pearce et al., 1984), Th/Yb vs. Ta/Yb (c, after Gorton and Schandl, 2000) and La/Yb vs. Sc/Ni (d, after Bailey, 1981) diagrams of the ore-bearing porphyries in the Xiongcun district

图7 雄村矿集区含矿斑岩207Pb/204Pb-206Pb/204Pb (a)和208Pb/204Pb-206Pb/204Pb (b)图解(据Zartman and Haines, 1988)A、B、C、D分别代表地幔、造山带、上地壳和下地壳的平均值Fig.7 207Pb/204Pb vs. 206Pb/204Pb (a) and 208Pb/204Pb vs. 206Pb/204Pb (b) diagrams of the ore-bearing porphyries in the Xiongcun district (after Zartman and Haines, 1988)Dashed lines enclose probable average values (A=mantle; B=orogene; C=upper crust; and D=lower crust)

5 讨论

5.1 含矿斑岩侵位及矿化时间

本文获得3号矿体含矿斑岩的年龄为176.9±1.4Ma,黄勇(2013)报道3号矿体的辉钼矿Re-Os年龄为172Ma以及侵入3号矿体含矿斑岩中的非含矿斑岩年龄为171Ma,Langetal. (2014)报道2号矿体含矿斑岩的结晶年龄为181~175Ma,辉钼矿Re-Os年龄为172Ma。考虑到2、3号矿体的含矿斑岩均为早侏罗世石英闪长斑岩且成矿时代和矿化特征一致,我们认为2、3号矿体是同期斑岩成矿作用的产物。而1号矿体含矿斑岩的侵位时间为167~161Ma,矿化作用发生的时间为161.5Ma(辉钼矿Re-Os年龄,Langetal., 2014),明显晚于2、3号矿体。综合矿集区三个矿体的含矿斑岩特征和锆石U-Pb年龄、矿化特征以及辉钼矿Re-Os年龄,表明雄村矿集区存在两期矿化事件,早期矿化事件发生在约172Ma,与早侏罗世(181~175Ma)石英闪长斑岩相关,该期成矿作用形成了矿集区2、3号矿体。晚期成矿作用发生在161.5Ma,成矿岩体为中侏罗世(167~161Ma)石英闪长斑岩,该期成矿作用形成了矿集区1号矿体。

图8 雄村矿集区含矿斑岩εNd(t)-(87Sr/86Sr)i(a)、εHf(t)-t(b)和εHf(t)-εNd(t) (c)图解

马里亚纳岛弧岩浆岩据Linetal. (1990);安第斯山弧岩浆岩据Pankhurstetal. (1999);桑日群火山岩据Kangetal. (2014);叶巴组火山岩据Weietal. (2017);泽当地体岩浆岩据 Zhangetal. (2014);冈底斯岩基据Jietal. (2009)和Wuetal. (2010);印度洋MORB据Chauvel and Blichert-Toft (2001)和Ingleetal. (2003)

Fig.8εNd(t) vs. (87Sr/86Sr)i(a),εHf(t) vs.t(b), andεHf(t) vs.εNd(t) (c) diagrams of the ore-bearing porphyries in the Xiongcun district

Magmatic rocks in Marianas are from Linetal. (1990); magmatic rocks in Andes arc are from Pankhurstetal. (1999); Sangri Group volcanic rocks are from Kangetal. (2014); Yeba Formation volcanic rocks are from Weietal. (2017); magmatic rocks in the Zedong terrane are from Zhangetal. (2014); Gangdese batholiths are from Jietal. (2009) and Wuetal. (2010); Indian Ocean MORB are from Chauvel and Blichert-Toft (2001) and Ingleetal. (2003)

5.2 构造背景探讨

图9 雄村矿集区含矿斑岩构造背景及成岩模式图(据Tang et al., 2015修改)Fig.9 Cartoon showing tectonic setting and petrogenesis of the ore-bearing porphyries in the Xiongcun district (after Tang et al., 2015)

5.3 含矿斑岩成因

图10 雄村矿集区含矿斑岩Th/Nb-εNd(t)(a, 据Wei et al., 2017)和Th/Yb-Ba/La(b, 据Woodhead et al., 2001)图解Fig.10 Th/Nb vs. εNd(t) (a, after Wei et al., 2017) and Th/Yb vs. Ba/La (b, after Woodhead et al., 2001) diagrams of the ore-bearing porphyries in the Xiongcun district

在大洋岛弧环境,由于缺乏大陆地壳,岩浆不可能起源于地壳或在上升的过程中被地壳物质混染。雄村矿集区含矿斑岩显示出均一的εNd(t)值(图10a),进一步证实了岩浆在上升过程中未受到地壳物质的混染。因此其源区主要由两个来源:地幔楔和俯冲的洋壳。俯冲洋壳对源区的贡献又包括俯冲洋壳释放的流体、俯冲沉积物、洋壳直接部分熔融加入岩浆源区。俯冲洋壳直接部分熔融的形成的岩浆通常形成高Sr(>400×10-6)低Y(<18×10-6)、Yb(<1.9×10-6)的埃达克岩(Defant and Drummond, 1990)。雄村矿集区含矿斑岩Sr含量在30×10-6~550×10-6之间变化(Tangetal., 2015; Yinetal., 2017)。表明他们不可能直接来源于洋壳的部分熔融。含矿斑岩的Sr-Nd-Hf同位素结果显示它们具有低的(87Sr/86Sr)i比值和相对较高的εNd(t)、εHf(t)值,在εNd(t)-(87Sr/86Sr)i图解中(图8a),含矿斑岩体主要位于地幔演化序列中,在εHf(t)-t图解中(图8b),它们主要落在亏损地幔附近,在εHf(t)-εNd(t)图解中(图8c),它们主要位于印度洋洋中脊玄武岩(MORB)附近。综合Sr-Nd-Hf同位素结果,表明岩浆源区主要起源于亏损地幔的部分熔融。在洋壳俯冲的构造环境,俯冲洋壳释放的流体或上覆沉积物熔体对地幔橄榄岩的交代是诱发其部分熔融的最为重要的机制。俯冲沉积物熔体交代源区会使得地幔中Nb、Th、Nd的含量显著增加;反之,俯冲洋壳释放的流体交代源区会使得地幔中Ba、Sr和Pb的含量显著增加(Kelemenetal., 2003; Castillo and Newhall, 2004)。雄村矿集区含矿斑岩体具有显著变化的Sr(30×10-6~550×10-6)、Ba(113×10-6~862×10-6)含量(表3, Tangetal., 2015; Yinetal., 2017),暗示是俯冲板片释放的流体对岩浆源区发生了交代作用。在Th/Yb-Ba/La图解中(图10b),变化较大的Ba/La比值进一步支持了地幔橄榄岩受到俯冲板片释放流体的交代的观点。此外,雄村矿集区含矿斑岩样品缺少Eu的负异常,甚至部分样品显示出Eu的正异常,暗示流体参与交代地幔源区,因为斜长石是Eu的主要携带矿物,在富水的条件下,斜长石的分异结晶作用将受到明显的抑制作用,其结晶晚于角闪石和石榴子石,造成残留熔体缺少Eu的负异常,甚至出现正异常(Münteneretal., 2001; Groveetal., 2002)。另外含矿斑岩具有较高的Th含量(2.8×10-6~6.3×10-6),接近全球俯冲沉积物的平均值(6.9×10-6, Plank and Langmuir, 1998),并显著高于原始地幔Th的含量(0.09×10-6, Sun and McDonough, 1989),表明俯冲沉积物对源区的也具有显著的贡献。同时在207Pb/204Pb-206Pb/204Pb和208Pb/204Pb-206Pb/204Pb图解中(图7),雄村矿集区含矿斑岩样品靠近远洋沉积物区域,进一步暗示了俯冲沉积物熔体交代地幔也是必不可少的。综上,笔者认为是新特提斯洋壳在早-中侏罗世甚至更早时期发生北向俯冲作用,俯冲洋壳释放的流体和俯冲沉积物熔体同时交代了地幔橄榄岩,进而发生部分熔融形成母岩浆(图9)。此外,含矿斑岩显示出变化较大的Mg#值(10~55)和Cr(1.5×10-6~34×10-6)、Ni(0.8×10-6~57×10-6)含量(表3),暗示母岩浆在上升侵位过程经历了铁镁质矿物的结晶分异作用,这一观点也被La/Sm-La图解所支持(图11)。因此笔者认为,母岩浆起源于地幔部分熔融后经历了结晶分异作用,最终上升侵位于近地表形成了雄村矿集区含矿石英闪长斑岩(图9)。

图11 雄村矿集区含矿斑岩La/Sm-La图解Fig.11 La/Sm vs. La diagram of the ore-bearing porphyries in the Xiongcun district

5.4 找矿意义

斑岩型矿床,无论形成于俯冲构造环境(陆缘弧或大洋岛弧)还是碰撞造山构造环境,一个最重要的特征就是常成群、成带分布(Cookeetal., 2005; Singeretal., 2005; Houetal., 2009; Sillitoe, 2010),即一个斑岩型矿床的发现,往往可能在区域上寻找到更多的斑岩型矿床。近年来在拉萨地体南缘相继报道了与新特提斯洋早期(晚三叠世-中侏罗世)俯冲作用相关的长英质弧岩浆岩,如汤白岩体(Guoetal., 2013; 王旭辉等, 2018)、雄村岩体(唐菊兴等, 2010; Langetal., 2014)、努玛岩体(Jietal., 2009)、南木林岩体(Zhuetal., 2011)、大竹卡岩体(Jietal., 2009)、若措岩体(郎兴海等, 2017; Wangetal., 2019)、卡如岩体、塔玛岩体、卧布岩体、宗噶岩体等(邹银桥等, 2017; Zouetal., 2017)。然而目前仅在雄村矿集区发现了与新特提斯洋早期俯冲作用相关的斑岩型矿床。那么目前未发现其他斑岩型矿床的原因是除雄村岩体外其他岩体都不具斑岩型矿化条件呢?还是目前的勘探程度不够呢?

雄村矿集区含矿斑岩体具有较高的εNd(t)(>4.5)、εHf(t)(>10)值(图8),其岩浆起源于亏损地幔的部分熔融。近年来,一些学者在拉萨地体的南缘发现了含孔雀石化和石英-硫化物的晚三叠世-中侏罗世中-酸性斑岩体,如若措岩体(郎兴海等, 2017; Wangetal., 2019)、汤白岩体(白云等, 2019)、卡如岩体、塔玛岩体、卧布岩体、宗噶岩体(邹银桥等, 2017; Zouetal., 2017),同时这些岩体也显示出高εHf(t)值(>10; 邹银桥等, 2017; Zouetal., 2017; Wangetal., 2019),类似于雄村矿集区的含矿斑岩。这一现象表明在拉萨地体南缘具有亏损Nd-Hf同位素组成(εHf(t)>10,εNd(t)>4.5)的晚三叠世-中侏罗世岩体有利于形成斑岩型铜矿床(Houetal., 2015a)。斑岩型矿床通常形成于近地表1~5km(Cookeetal., 2005; Sillitoe, 2010),地壳的抬升和剥蚀会部分或全部破坏形成时代较老的斑岩型铜矿,使之难于保存下来。在雄村矿集区除侏罗纪含矿斑岩体外,还存在一套同时期的火山-沉积岩(图1b),该矿集区含矿斑岩体侵入同时期的火山-沉积岩中,其中一个重要的原因可能是该套火山沉积岩起到了一个良好的盖层作用,有效保护了雄村斑岩铜金矿床被剥蚀。近年来在拉萨地体南缘发现的剥露的矿化斑岩体,其经济意义不大的可能原因就是它们已经遭受了强烈的剥蚀作用。但是在拉萨地体的南缘除有侏罗纪侵入体报道外,还报道了一套早-中侏罗世火山岩,即桑日群火山岩(Kangetal., 2014; 黄丰等, 2015)。该套火山岩显示出较高的εNd(t)(>4)值(图8a),表明其起源亏损地幔部分熔融(Kangetal., 2014),同时也被认为形成于大洋岛弧环境(Kangetal., 2014; 黄丰等, 2015),邹银桥等(2017)在桑日群比马组火山岩中已发现多处铜矿化和石英-绿帘石脉体。上述信息表明桑日群火山岩及其中同时代的侵入体也具有较大的斑岩型矿化潜力,同时该套火山岩的存在有效的保护了下伏岩体免受剥蚀,因此在拉萨地体南缘寻找与新特提斯洋俯冲相关的斑岩型矿床的重点区域应该是侏罗纪岩体被同期火山岩覆盖的区域。另外,值得注意的是笔者在雄村矿集区西北部的洞嘎普-则莫多拉一带识别出了保存较完整的侏罗纪火山机构(洞嘎普火山机构),围绕火山机构存在多处Cu-Au-Ag-Pb-Zn岩石-土壤地球化学异常(郎兴海等, 2012),显示出明显的火山机构控矿特征,目前雄村矿集区发现的1、2、3号矿体就位于洞嘎普火山机构旁侧,因此在区域找矿过程中也应重视侏罗纪古火山口的识别及其与成矿关系的研究。

6 结论

(1)雄村矿集区存在两期矿化作用,早期矿化事件发生在约172Ma,与早侏罗世(181~175Ma)石英闪长斑岩相关,形成了矿集区2、3号矿体;晚期成矿作用发生在161.5Ma,成矿岩体为中侏罗世(167~161Ma)石英闪长斑岩,形成了矿集区1号矿体。

(2)雄村矿集区形成于新特提斯洋壳北向俯冲的大洋岛弧环境而非陆缘弧环境。含矿斑岩起源于亏损地幔的部分熔融,且源区同时受到了俯冲洋壳释放的流体和俯冲沉积物熔体的交代。

(3)拉萨地体南缘具有亏损Nd-Hf同位素组成(εHf(t)>10,εNd(t)>4.5)的侏罗纪斑岩体有利于形成斑岩型矿化,寻找与新特提斯洋俯冲相关的斑岩型矿床的重点区域应该是侏罗纪岩体被同期火山岩覆盖的区域。

猜你喜欢

侏罗世含矿斑岩
内蒙古自治区四子王旗晚侏罗世侵入岩成因类型与构造环境分析
黑龙江省大兴安岭漠河地区区域地球化学特征及成矿规律探讨
辽宁调兵山西调斑岩型钼矿床特征及找矿标志
浅议大兴安岭北段霍洛台地区早侏罗世侵入岩与矿产的关系
柴北缘阿木尼克山地区斑岩系Cu、Mo-Pb、Zn、Ag-Au成矿模型初步研究
斑岩型矿床含矿斑岩与非含矿斑岩鉴定特征综述
岩型矿床含矿斑岩与非含矿斑岩鉴定特征综述
中国辽宁首次发现侏罗纪多瘤齿兽类哺乳动物
新疆卡特巴阿苏金矿床含矿岩石及围岩地球化学特征与构造环境简析
河北省非金属矿床成矿地质条件及含矿建造划分