锡-银多金属成矿系统的基本特征、研究进展与展望*
2019-08-01李真真秦克章赵俊兴李光明苏仕强
李真真 秦克章 赵俊兴 李光明 苏仕强
1. 中国科学院矿产资源研究重点实验室,中国科学院地质与地球物理研究所,北京 1000292. 中国科学院地球科学研究院,北京 1000293. 中国科学院大学地球与行星科学学院,北京 100049
全球的原生锡矿主要分布于中国、俄罗斯远东地区、东南亚各国、中西欧的英国和德国、澳大利亚和玻利维亚等地(Manning, 1986; Lehmann, 1990; Schwartzetal., 1995; Linnen, 1998; Noklebergetal., 2005; 毛景文等,2009; 胡瑞忠等,2010)。锡矿是中国的优势矿种之一,近年来,锡被列为一种关键金属,锡矿的研究和勘查又逐渐受到重视(毛景文等,2018)。原生锡矿在空间和成因上多与高分异花岗岩有关,成矿类型包括石英脉型、锡石-硫化物热液脉型、斑岩型、矽卡岩型、云英岩型和伟晶岩型(Sillitoe, 1975, 1998; 陈毓川等,2007;陈郑辉等,2015; Kamillietal., 2017),其中斑岩型与流纹-英安质火山-次火山岩相关,矿石类型为锡石-硫化物型。锡成矿以单一矿种出现的实例较少,多数共生或伴生钨、银、铅、锌、钼、铜、锑、铌、钽、铟、铋、锗等。如石英脉型锡矿中除锡石外,黑钨矿也是重要的金属矿物;锡石-硫化物脉型和斑岩型锡矿中含有大量的Cu、Pb、Zn、Ag;云英岩型锡矿中还产出一定量的W、Mo、Bi等;伟晶岩型锡矿则常伴生Nb和Ta。若按金属组合分类,锡矿大致可分为Sn-W-(Mo-Bi)组合和Sn-Cu-Pb-Zn-Ag组合两大类。前者如我国华南的锡钨矿床:柿竹园以W-Sn-Mo-Bi为主、香花岭以Sn-W-Pb-Zn-Be-Ag为主、芙蓉以Sn-W为主,次有Mo、Bi、Cu、Pb、Zn(双燕等,2009; Lietal., 2018; Wuetal., 2018);后者依据金属组合的重要性,还可进一步分为以Sn-Zn为主、Sn-Cu为主或Sn-Ag为主的不同亚类,如我国右江盆地边缘的多个大型-超大型锡矿:个旧以Sn-Cu为主、白牛厂以Ag-Sn为主、都龙以Sn-Zn为主、大厂以Sn-Zn-Pb为主(Chengetal., 2013; Guoetal., 2018)。这两类成矿组合在岩浆岩、成矿类型、矿体特征、热液蚀变和流体特征等方面均存在一定的差异性(毛景文等,2008, 2009; 华仁民等,2010; Pavlovaetal., 2015)。然而,两者也有明显的共性,如锡矿化形成于成矿早期、靠近岩体的部位,而成矿晚期、远离岩体常发育脉状Pb-Zn-Ag矿体,两者在空间上可以有一定的叠置,也可相距数千米远。时间和空间上的密切联系显示锡矿化和铅锌银矿化可能形成于同一岩浆-热液系统,两者构成有成因联系的成矿系统(赵正等,2014; Wuetal., 2018; Zhaoetal., 2018)。但相较之下,与Sn-W成矿相关的Pb-Zn-Ag矿化在规模上却远小于Sn-Cu-Pb-Zn-Ag多金属矿床,尤其是后者含有大量的银资源量,前者虽然也含有银矿物,但仍以铅和锌为主,银含量相对较低(Dingetal., 2016)。全球重要的银矿带中即有数个产于锡矿带内,如最负盛名的玻利维亚南部Sn-Ag成矿带,仅Cerro Rico一个矿床的银储量就超过8万吨。
图1 全球主要的Sn-Ag多金属矿床分布Fig.1 Distribution of Sn-Ag-base metal deposits in the world
近年来,随着勘查找矿工作的不断突破,大兴安岭南段已成为我国重要的锡成矿带,带内锡金属量已超过77万吨(赵一鸣等,1997;王京彬等,2005;毛景文等,2013);同时,本带也是我国最重要的银矿省,产出数个大型银铅锌矿床,如拜仁达坝、双尖子山、白音诺尔等,银金属量超过4万吨(Ouyangetal., 2015; 夏庆霖等,2018);带内的白音查干矿床更是同时富集锡与银,规模均远超大型(刘新等,2017a);在边家大院Ag-Pb-Zn矿床的深部还发现了斑岩型Sn(-Cu-Mo)矿化(Zhaietal., 2017, 2018a, b)。一致的成矿年龄和密切的空间关系暗示本区的Sn矿化与Ag-Pb-Zn矿化之间可能存在密切的成因联系,可互为找矿指示(刘翼飞等,2014;Liuetal., 2016;曾庆栋等,2016)。
鉴于金属元素组合的差异,本文将与重要银矿化相关的锡矿床从其它不同金属组合的锡矿床中划分出来,称为锡-银多金属成矿系统,强调其成矿的独特性,在认识其成矿地质特征的基础上,查明相关的成矿过程具有重要理论和找矿勘查意义。事实上,在这些Sn-Ag成矿带内,只有部分矿床发育完整的Sn-Ag矿化,多数矿床以Sn或Ag矿化为主,如果将它们作为统一的成矿系统进行考虑,必然会引出一个问题:为何会出现这种共生成矿或分离成矿的特点?目前学者们对这些成矿带的研究还多集中于单独的锡矿化或银多金属矿化,因而难以回答上述问题。由于根据有成因联系的不同矿化特征组成的成矿系统进行找矿是十分有效的找矿手段,如岔路口斑岩钼矿是根据浅部发育的热液脉状Pb-Zn-Ag矿床而发现的(孟昭君等,2011)、云南白牛厂Ag矿最初是以找Sn矿为目的的(张洪培等,2006),所以,重视这些锡矿化与银矿化之间的成因联系,探讨它们的生成演化关系,将十分有益于锡或银矿床的找矿勘查工作。本文收集了全球已报道的多个Sn-Ag成矿带或矿床的资料,总结了Sn-Ag多金属成矿系统的时空分布、构造背景、岩浆-热液-矿化特征、成矿物质来源和成矿流体演化等方面的研究进展,并在此基础上,分析了相关研究所存在的问题并对其发展趋势作了展望。
1 Sn-Ag多金属成矿系统的基本地质特征
1.1 时空分布、成矿类型和大地构造背景
以Sn-Ag-Pb-Zn(-Cu)为主要金属组合的成矿带主要分布在玻利维亚南部(Lehmannetal., 1990)、俄罗斯远东地区(Noklebergetal., 2005)、中国大兴安岭南段、欧洲Freiberg(Seifertetal., 2006)等地区,在中国华南也有少量此类矿床(图1)。矿区常分布大量的中酸性火山-次火山岩,也发育深成侵入体,矿床类型主要为热液脉型和斑岩型。这类矿床可以产于与俯冲相关的主动大陆边缘,如玻利维亚第三纪锡银成矿带(Lehmann, 1990)和俄罗斯远东地区白垩纪Sikhote-Alin成矿带(Gonevchuketal., 2010);也可以产于板内伸展环境,如中国南岭西部右江盆地晚白垩世锡多金属成矿带和大兴安岭南段早白垩世锡银成矿带(毛景文等,2008, 2009, 2013);还可产于碰撞带,如欧洲石炭纪Freiberg地区的锡多金属成矿带(Seifertetal., 2006)。
玻利维亚锡矿带(Bolivian Tin Belt, BTB, Turneaure, 1971),从秘鲁南部经玻利维亚一直延伸到阿根廷西北部,长达800km,总资源量锡可达500万吨,银超过10万吨(Laznicka, 2006),其南带在晚古生代厚层碎屑沉积岩基底上发育大规模中新世至今的中酸性火山岩,产出数个晚渐新世-中新世的大型-超大型矿床,成矿类型主要为斑岩型和热液脉型。重要矿床包括Cerro Rico(全球最大银矿,~100万吨Sn,~8.4万吨Ag,Grantetal., 1980; Bartos, 2000)、Llallagua、Oruro、Colquechaca、Tasna等(图1)(Sillitoeetal., 1998)。这些矿床形成于Nazca板片向南美板块之下俯冲形成的主动大陆边缘内带(Lehmann, 1990)。
俄罗斯远东地区的锡银多金属矿集中分布于Sikhote-Alin和Okhotsk-Chukotka两条成矿带,前者发育Komsomolsky、Kavalerovsky和Badzhal三个主要矿集区(Gonevchuketal., 2010),后者产出Deputatskoe、Churpunnya、Solkuchan、Mangazeika等诸多Sn-Ag多金属或Ag多金属矿床(图1)(Noklebergetal., 2005; Pavlovaetal., 2015)。矿床围岩主要为二叠-三叠纪砂岩、页岩,侏罗纪砂岩、粉砂岩及白垩纪的增生杂岩,相关岩浆活动为白垩纪闪长-花岗闪长质杂岩体、中酸性火山-次火山岩和基性-碱性岩脉(Pavlova and Borisenko, 2009)。成矿时代可以从晚侏罗世持续到古新世,但最主要的成矿时代集中于105~85Ma,古太平洋板块俯冲形式的改变可能是触发大规模岩浆作用和成矿作用的主因(Gonevchuketal., 2010; Jahnetal., 2015)。
欧洲中部的锡银成矿带以Erzgebirge-Krušné hory地区为典型,发育晚华力西期(320~290Ma)云英岩型和矽卡岩型Sn-F(Li)多金属矿化和热液脉状Sn-Ag-Pb-Zn-Sb矿化,后者典型矿床包括Freiberg, Marienberg等(图1)(Seifert, 2014)。矿床围岩以古生代片岩、片麻岩和黑色页岩为主,矿床产于冈瓦纳和劳亚大陆碰撞形成的华力西期造山带(Kroner and Romer, 2013),造山晚期-造山期后,形成大量成矿相关的晚石炭世-早二叠世花岗质或流纹质浅成侵入体及煌斑岩脉等(Breiteretal., 1999)。
大兴安岭南段重要矿床包括大井Sn-Cu-Ag-Pb-Zn矿、维拉斯托Sn-Zn-Cu矿、白音查干Sn-Ag-Pb-Zn矿、黄岗Fe-Sn矿,以及拜仁大坝、双尖子山、白音诺尔和边家大院Ag-Pb-Zn矿床(图1)。矿床类型包括热液脉型、斑岩型及矽卡岩型。它们的成矿时代主要集中于133~149Ma(Ouyangetal., 2015)。矿床围岩为二叠系砂质板岩、碳质板岩、粉砂岩等以沉积岩为主的组合,也有少量安山岩,仅有维拉斯托为元古代黑云斜长片麻岩。相关岩浆岩以浅成的花岗斑岩和石英斑岩为主,大井矿床未找到明确的成矿岩体,但发育大量中基性岩脉(王莉娟等,2000;江思宏等,2012;祝新友等,2016;刘新等,2017b)。大兴安岭南段自进入中生代以来,先后受到了蒙古-鄂霍次克洋和古太平洋俯冲-闭合-碰撞的影响,到白垩世早期,区域已处于造山后伸展的环境,众多矿床正产于此种伸展构造背景。
中国华南的右江盆地产出有个旧、都龙、大厂等多个世界级锡多金属矿田,成矿与晚白垩世复式花岗质岩基有关,主要成矿组合为Sn-Cu和Sn-Zn,在围岩中发育Pb-Zn矿化(毛景文等,2009; Chengetal., 2013)。此带热液脉状大型Ag-Pb-Zn多金属矿床只有白牛厂,银资源量超过6000t,本矿床可能与深部隐伏花岗岩体有关,深部发现的独立锡矿体暗示浅部银多金属矿化可能与深部的锡矿化存在成因联系(罗君烈,1995;张洪培等,2006, 2015)。广东潮州的厚婆坳地区是较典型的Sn-Ag多金属成矿带,除厚婆坳大型Ag-Sn-Pb-Zn矿床外,区内发育多处锡矿床和矿点。成矿围岩为下侏罗统石英砂岩、粉砂岩和斑岩,成矿岩浆为白垩纪黑云母二长花岗岩体(陈穗,2007;黄玲玲等,2015)。
1.2 成矿岩浆岩地球化学特征与起源
与Sn-Ag多金属成矿相关的岩浆岩多为浅成中酸性侵入体或次火山岩体,包括流纹-流纹英安质火山/次火山岩、石英斑岩、花岗斑岩等(Lehmannetal., 1990; Gonevchuketal., 2010; 祝新友等,2016),有些以银矿化为主的矿床仅在深部发现隐伏的花岗质岩体(张洪培等,2006; Zhaietal., 2018b)。它们通常以高硅、富碱为特征,同时富集不相容元素B、F、Rb、Cs、Li、Th、U、Sn、As等,亏损Ca、Mg、Fe、Ti、Ba、Sr、Eu、Zr等元素,较高的Rb/Sr、低Nb/Ta、Zr/Hf和Th/U,以及强烈Eu负异常的稀土配分模式,显示岩浆经历了强烈的结晶分异过程(Grantetal., 1980; Lehmann, 1990; Chengetal., 2010),较低的Fe2O3/FeO值则指示它们都属于较低氧逸度的钛铁矿系列花岗质岩石(Ishihara, 1977; Ishiharaetal., 1979; Lehmann, 1990)。通过浅成岩体中熔融包裹体的研究,Dietrichetal. (1999, 2000)认为,在浅成岩体的深部还存在隐伏的高分异大岩体或岩浆房,它们才是成矿流体和金属的直接来源,而浅部中等分异的小岩体只是流体聚集和释放的构造通道。
地球化学和Sr-Nd-Hf同位素的研究显示,形成Sn-Ag多金属矿床的岩浆可属于S型、A型或I型,岩浆源区不仅有地壳物质的参与,还普遍存在不同比例地幔物质成分的加入。玻利维亚南部锡矿带成矿岩石属于S型花岗岩,ISr分布于0.708~0.717,εNd(t)分布于-5~-10,tDM集中于781~1148Ma,显示岩浆主要起源于中上地壳,有一定地幔起源物质的加入(Avila-Salinas, 1990; Lehmannetal., 1990; Dietrichetal., 2000)。Mlynarczyk and Williams-Jones(2005)进一步指出在持续的安第斯山造山过程中,南美板块与Nazca板片及板片下地幔之间存在周期性的挤压作用,导致地壳发生强烈的水平缩短和垂向增厚,伴随基性岩浆底侵、地壳逆冲推覆的剪切加热和地壳加厚的辐射加热,厚层的古生代变质沉积岩和片麻岩基底发生强烈的深熔作用,形成大规模成锡的岩浆。俄罗斯远东成矿带内成矿岩浆岩主要为花岗闪长(斑)岩、花岗(斑)岩和煌斑岩,常伴有同期火山岩,花岗岩类主要属于I型或S型,其ISr分布于0.7065~0.7085,εNd(t)分布于-1.8~-2.6,Pb同位素落于上地壳和地幔演化线之间,表明岩浆源区物质既有大陆地壳的贡献,也有较高比例的地幔物质,且地幔参与比例在晚白垩世以锡石-硫化物矿化为主的矿床中比早白垩世以锡石矿化为主的矿床中更高(Gonevchuketal., 2010; Pavlovaetal., 2010; Chernyshevetal., 2018)。大兴安岭南段带内成矿岩浆岩主要为花岗斑岩、石英斑岩,它们属于A型或I型花岗岩,是在陆内伸展环境下,软流圈上涌导致新生下地壳发生部分熔融形成,不同矿床中古老陆壳基底的参与程度不同。如白音查干Sn-Ag多金属矿床成矿的花岗斑岩具有亏损的Nd-Hf同位素特征(εNd(t)=3.6~3.8,εHf(t)=8.2~11.6)和年轻的模式年龄(tDM=450~670Ma),显示成矿岩浆起源于新生下地壳的部分熔融(刘新等,2017b;姚磊等,2017);双尖子山Ag-Pb-Zn矿床与成矿相关的流纹质火山岩同样起源于新生下地壳的部分熔融(Liuetal., 2016);而边家大院Ag-Pb-Zn-Sn矿床深部的正长花岗岩和维拉斯托Sn-W-Cu-Zn矿床成矿石英斑岩略富集的Nd同位素(εNd(t)=0.28~-6.6)和较老的模式年龄,表明岩浆源区为新生下地壳和古老陆壳共同参与(Wangetal., 2017;顾玉超等,2017)。
与Sn-W为主要金属组合的矿床相比,其成矿岩浆岩主要为出露面积不大的岩株状黑云母花岗岩,或复式岩体晚期的高演化、富挥发分的小岩株,缺乏同期火山岩,暗示略深的侵位深度。它们属于准铝质-弱过铝质花岗岩,TiO2、LREE/HREE、CaO/(K2O+Na2O)、Ba+Sr和Rb相对较高,富集Nb、Zr、Ce和Y等高场强元素,Rb/Sr比值相对较低,有一定程度的分异演化(Huaetal., 2003;陈骏等,2008, 2014;Chenetal., 2013;Lietal., 2018)。花岗岩中常发育角闪石、榍石、黑云母和磁铁矿等矿物,结合其Fe2O3/FeO比值和黑云母的成分,显示它们属于中等氧化型花岗岩(陈骏等,2014; Wangetal., 2017;王汝成等,2017)。锆饱和温度及获得含锡花岗岩浆的结晶温度超过850℃(陈骏等,2014)。最初认为这些花岗岩属于陆壳重熔型花岗岩(S型)(徐克勤等,1982;Huaetal., 2003),近年来更多的证据显示,他们可能属于A型花岗岩,岩浆起源于中元古代基底地壳岩石的部分熔融,并有一定程度的壳幔相互作用。花岗岩中常见暗色包体,同位素研究显示其成分中有不同程度新生地幔物质的参与,壳幔相互作用对成矿有重要的贡献(蒋少涌等,2008;Guoetal., 2015;Lietal., 2018)。由此可见,与Sn-Ag成矿岩体相比,两者在矿物组成、岩浆起源、岩浆分异程度、岩浆氧逸度、侵位深度等方面均存在较明显的差异,这些差异可能也导致了不同成矿金属组合的形成。但值得注意的是,两者成矿岩浆中均有不同程度地幔物质的参与。
多数Sn-Ag矿床或矿区内可见数量不等的碱性基性岩浆活动(煌斑岩),如俄罗斯远东地区各矿床和欧洲Erzgebirge地区的矿床,它们的侵入时间与矿化的时间一致,两者在空间上也有明确的成因联系(Seifert and Sandmann, 2006; Pavlova and Borisenko, 2009; Pavlovaetal., 2014),而且煌斑岩的Pb同位素与含方铅矿的Sn-Ag多金属矿石Pb同位素非常相似(Seifert and Sandmann, 2006),成矿流体及硫化物的3He/4He比值也具有壳幔两端元混合的特征(李兆丽等,2006;Gaoetal., 2019),说明地幔起源的基性岩浆与成矿有密切的成因联系。Walsheetal. (2011)提出了幔源岩浆参与到岩浆起源过程的两种模式:1)地幔起源的熔体上升到中上地壳尺度,与地壳熔融产生的酸性熔体发生混合作用,混合岩浆再继续结晶分异并成矿;2)地幔起源的流体上升到中上地壳,交代在此存在的壳源酸性熔体,使最终的成矿岩浆,尤其是成矿流体显示地幔成分的加入。然而,哪种模式在Sn-Ag成矿过程中更合理?还需一些直接的证据来证实,研究成矿相关岩浆岩中矿物的成分环带和斑晶中的熔融包裹体可能能够获取一些深部岩浆过程的信息(Audétat, 2015; Caoetal., 2018)。而无论何种情况,地幔起源熔体都可能是热源的重要提供者,持续的高温可使残余熔体能发生极度的结晶分异而有利于成矿。
1.3 热液蚀变-矿化类型及分带特征
在Sn-Ag多金属成矿带中,多数矿床属于热液脉型和斑岩型,也有少部分为矽卡岩型,它们具有不同的Sn/Ag比值。对于热液脉型和斑岩型Sn-Ag矿,虽然各矿床间重要的金属组合略有差异,但热液蚀变和矿化却有相似的特征,总结各个矿床不同成矿阶段和热液脉系的生成顺序如下(Sillitoeetal., 1975, 1998; Grantetal., 1980; Cunninghametal., 1996; Mülleretal., 2001; 陈穗,2007; Bartos, 2010; Gonevchuketal., 2010; Simanenkoetal., 2015; 刘新等, 2017a; Zhaietal., 2019):(1)成矿前热液蚀变,当热液系统富硼时,发育无矿石英-电气石为主的脉系,伴随围岩强电气石化;当热液系统富氟时,出现大量的含黄玉和萤石的脉系,伴随围岩发生云英岩化,岩体顶部常发育厚层石英-黄玉云英岩,并含锡石和黑钨矿,如俄罗斯的Deputatskoe矿床(Seltmannetal., 2010)。(2)锡石主成矿阶段,发育以石英-锡石-毒砂为主的热液脉系,脉中也常出现电气石和绿泥石,锡石主要为细粒状,除细脉状、脉状和网脉状产出外,锡石还呈角砾岩胶结物形式产于热液角砾岩体内,以及呈浸染状产于云英岩化和电气石化蚀变带内。(3)硫化物主成矿阶段,形成以磁黄铁矿-闪锌矿-黄铁矿-方铅矿-黄铜矿-黝铜矿-银黝铜矿等为主的脉系,脉中还含有少量锡石和黝锡矿,是Zn-Pb-Cu的主要成矿阶段,也含有一定量的Ag,此阶段脉石矿物开始变少,可见少量萤石和石英,相关围岩蚀变以伊利石化、绢云母化等为主。(4)银主矿化阶段,发育含银硫盐和铅锑硫盐为主的热液脉,其中含银硫盐常由Ag-Pb-Sb-Sn-Cu-As中的几种金属与硫组合形成,包括深红银矿、辉锑银矿、硫银锑铅矿和辉锑铜银矿等,铅锑硫盐常见脆硫锑铅矿、硫锑铅矿、车轮矿等(图2),相关围岩蚀变以低温硅化及中级-高级泥化蚀变矿物(高岭石、地开石、明矾石等)为特征,Cerro Rico在地表还发育多孔石英带,其中含巨量的Ag。(5)晚期无矿的石英-碳酸盐脉。总体上,金属矿化组合从早到晚依次为Sn(-W)→Zn-Fe-Cu-Pb→Ag-Pb-Zn-Sb→Pb-Sb。而且,银矿物由早到晚也有明显的变化规律,早期出现的是银黝铜矿-硫锑铜银矿,随后出现辉锑银矿-深红银矿-脆银矿组合,晚期可以出现硫银锑铅矿-辉锑铜银矿组合(罗君烈,1995)。
图2 Sn-Ag成矿系统常见的矿石类型(a、b,据Zhai et al., 2018a)与相关硫化物及硫盐矿物显微照片(c-f,c和e据Burisch et al., 2019; d据Bauer et al., 2019)(a)大兴安岭南段边家大院高品位银矿石;(b)边家大院块状Ag-Pb-Zn矿石; (c-e)德国Freiberg银矿区银多金属阶段矿石显微照片; (f)大兴安岭南段白音查干Sn-Ag矿床富银矿石显微照片. Py-黄铁矿;Gn-方铅矿;Sp-闪锌矿;Po-磁黄铁矿;Ccp-黄铜矿;Qz-石英;Freib-银黝铜矿;Ttr-黝铜矿;Apy-毒砂;Boul-硫锑铅矿;Acan-螺状硫银矿;Mia-辉锑银矿;Pyg-深红银矿Fig.2 Representative hand samples of ore types (a, b, after Zhai et al., 2018a) and sulfide and sulfosalt minerals (c-f, c and e after Burisch et al., 2019; d after Bauer et al., 2019)
图3 玻利维亚成矿带内锡-银成矿系统的金属元素分带和蚀变分带特征(据Sillitoe et al., 1998修改)Fig.3 Schematic cross-sectional model of volcanic dome-hosted tin-silver system in Bolivia, showing the zonation of metal assemblages and wallrock alteration (modified after Sillitoe et al., 1998)
除生成顺序外,金属类型与热液蚀变在空间上均发育较为鲜明的分带现象。垂向上由下向上,平面上围绕成矿岩体由内向外,依次为Sn(-W)→Zn-Cu-Pb-Sn→Ag-Sb-Pb,深部为独立的Sn(-W)矿体,中部为锡铅锌银铜复合矿体,到浅部为银铅锌矿体,在外围有时可见银锑矿体(图3)(Sillitoeetal., 1998; Pavlova and Borisenko, 2009; Seltmannetal., 2010; 刘翼飞等, 2012; Zhaietal., 2019)。相应的,蚀变从深部向浅部依次为石英-电气石化带/云英岩带、绢云母化带和高级泥化带,高级泥化带内从浅到深又可依次发育多孔石英带、石英-明矾石带、石英-地开石或石英-叶腊石带(图3)(Sillitoeetal., 1975, 1998; Cunninghametal., 1996)。较为典型的实例有Cerro Rico(Sillitoeetal., 1998)、Deputatsky (Borisenloetal., 1997)等。Sillitoeetal. (1975, 1998)对玻利维亚Sn-Ag成矿带内数个典型矿床的剖析,认为深部的锡矿化具有斑岩型成矿的特征,而浅部的银矿化具有浅成低温成矿的特征,它们构成完整的斑岩Sn-浅成低温Ag-Sn-Sb成矿体系,并可类比于斑岩Cu-浅成低温Au-Cu-As成矿系统,两个系统不同的成矿组合反映了它们相关的岩浆性质(还原vs.氧化)和出溶流体金属含量的重大差异。除上述“上银铅锌中锌铜下锡”的矿化分带模式外,在一些锡石硫化物脉型矿床中,Sn也可有较大的空间分布范围,如富集于铜矿体和银铅锌矿体之间,典型矿床如内蒙古大井、安乐、白音查干等(祝新友等,2017)。不同形式的矿化分带特征可能与成矿流体的盐度直接相关,当盐度较高时,Sn、Cu、Pb、Zn、Ag的迁移能力均较强,Sn可以迁移至成矿系统外侧与银铅锌等硫化物共生(祝新友等,2017)。
上述成矿阶段及金属元素和蚀变矿物的分带特征是建立在完整的Sn-Ag多金属矿化体系之上的,实际上由于矿化组合的差异、流体演化路径和矿床剥蚀程度的不同,实际矿床中并非每个成矿阶段或分带都发育,如以Sn为主的矿床中可能缺乏3~4成矿阶段,而以Ag多金属为主的矿床可能缺乏1~2成矿阶段。由于围岩岩性的差异,或热液成分的差异(如分别以F和B为主的体系)都会造成矿化与蚀变的不同。
矽卡岩型的Sn多金属矿床可包括接触交代成因的矽卡岩和外围的似层状和脉状矿体,是我国华南重要的锡矿化类型。如云南个旧矿田,在黑云母花岗岩内部一般发育W-Be-Bi-Mo-Sn矿化,在花岗岩与碳酸盐围岩接触带形成矽卡岩型Sn-Cu矿体、在外围围岩中形成似层状Sn、Sn-Cu或Sn-Zn矿体,最外围则发育脉状或似层状Pb-Zn-Ag矿化(Chengetal., 2013)。南岭香花岭和芙蓉19号矿体同样属于典型的矽卡岩型锡矿,成矿岩体为碱长花岗岩或黑云母二长花岗岩,产于岩体与碳酸盐岩接触部位,在矽卡岩中常见穿插有较晚期的锡石硫化物脉(余雪戈,2017; Lietal., 2018)。锡石主要产于矽卡岩阶段之后的氧化物阶段和硫化物阶段,闪锌矿、方铅矿、磁黄铁矿、黝锡矿等硫化物均产于硫化物阶段,广泛的围岩蚀变包括钾长石化、钠长石化、云英岩化、绢云母-白云母化、绿泥石化、硅化、大理岩化等(程彦博,2012;余雪戈,2017)。还有一类矽卡岩型锡矿,虽然含锡量很大,但大部分锡主要呈胶态锡形式分布于钙铁榴石和磁铁矿晶格中,很难回收利用,外围的铅锌矿床或矿体中锡含量也很低,如湖南黄沙坪、柿竹园及内蒙古东部的黄岗梁、红岭等(祝新友等,2017)。虽然上述两类矽卡岩型的锡多金属矿外围也常发育Pb-Zn-Ag矿体,但与锡石硫化物脉型矿床相比,其Ag的规模往往较小(文献中仅提及锡和铅锌的储量而未提及银的储量),将其归入锡-银成矿系统是否合适还有待商榷。
1.4 矿体特征
Sn-Ag成矿系统延伸的深度一般从数百米至1000m不等,矿化主要呈多条脉状产出,矿脉常由主脉和分支脉组成,通常连续性较好,产状较陡,但宽度并不大,一般10~100cm(Sillitoeetal., 1975)。例如在在Cerro Rico矿床内,浅部发育35条主要的矿脉,向深部逐渐汇聚成了6条脉,脉体倾角70°~90°,脉的宽度多集中于10~60cm(Sillitoeetal., 1975; Wilson and Petro, 1999;Bartos, 2010)。深部以锡矿化为主,除脉状矿化外,岩体中还发育浸染状矿化和细脉及网脉状矿化,它们晚于大规模电气石和绢云母化蚀变的发生;浅部以银矿化为主,脉体向上变多变宽,发育席状矿脉。锡矿化时间早于银矿化,而且在深部弥散性的蚀变-矿化阶段与浅部脉状成矿阶段之间可能不是连续过渡的。
热液角砾岩也是非常重要的矿化类型,它们可产于岩体边部或上部,呈不规则状、筒状、透镜状、脉状等(Sillitoeetal., 1975; 刘新等,2017a)。热液角砾岩的发育可能是多期次的,如在热液角砾岩中还发现有热液角砾岩组成的角砾,热液角砾岩与脉系的穿插关系显示,热液角砾岩从成矿早期一直到成矿晚期均有发育,例如,在同一矿床可见黄铁矿呈角砾出现,表明矿化后有一期热液角砾岩发育,还可见到黄铁矿脉和锡-银矿脉切过了热液角砾岩,表明成矿前也发育一期热液角砾岩。这种多期次热液角砾岩的现象在斑岩Cu-Mo矿床中也十分常见(李真真等,2014)。
2 成矿物质来源、流体演化与金属沉淀机制
2.1 锡和银的来源及成矿岩浆产生的条件
与锡成矿相关的岩浆岩常有较高的锡含量,因此一般认为锡是岩浆来源。而成矿岩浆为何能富集锡?争议主要集中于岩浆源区富锡和岩浆过程富锡两种观点。最初学者们认为BTB巨量的锡继承自富锡的岩浆源区岩石,包括围岩、前寒武纪基底或者上地幔(Ahlfeld, 1967)。但对锡矿体主要赋矿围岩——古生代变质沉积岩的研究表明,其中锡含量并不高(Lehmann, 1987),否定了锡的“继承说”,并通过分析花岗岩和流纹岩中锡含量与岩浆结晶分异程度之间的关系,认为在低氧逸度条件下,没有锡富集的源区通过岩浆的结晶分异也能形成锡矿化岩浆(Lehmann, 1982; Lehmannetal., 1990),但这一理论不能解释为什么不是所有的高分异花岗岩都有很高的锡含量。Romeretal. (2014a, b)发现,强烈风化的沉积岩富集Li、Rb、Cs、Sn、W,亏损Ca、Sr、Pb的特征与成锡花岗岩很相似,这类岩石若发生部分熔融,很容易形成高Rb/Sr和高Sn含量的岩浆。结合现今全球主要锡成矿带主要处于冈瓦纳大陆(或其它稳定大陆)边缘的古构造环境,Romer and Kroner (2016)提出了富锡源区成矿的新理论,认为锡矿的形成一般经历了三个过程:1)冈瓦纳大陆(或其它稳定大陆)上的沉积原岩在前寒武纪晚期-寒武纪经历了强烈的化学风化;2)在寒武-奥陶纪冈瓦纳大陆裂解时,沉积原岩堆积于大陆边缘;3)显生宙构造活动使加厚地壳内沉积变质岩发生部分熔融,形成富锡岩浆。他们从构造演化历史视角看待全球大规模锡成矿作用,同样的,秦克章等(2017)提出南岭地区大规模钨锡成矿作用具有多重构造背景下叠加改造成矿的特征,说明大陆演化过程强烈影响成矿。华仁民等(2010)也指出,南岭东段和西段分别以钨和以锡矿化为主的差异是由于地层中W和Sn丰度的差异造成的。由此可见,古老的基底地层可能是重要的锡来源,但与锡矿化相关岩浆岩的研究说明壳幔相互作用在各锡多金属矿床中广泛发生,地幔物质可能也是锡的重要来源,且地幔物质混入的比例可能与矿化类型有直接关系(席斌斌等,2007)。
即使在源区岩石富锡的情况下,要形成富锡岩浆,也需要锡能够有效的从源岩中迁移到熔体中。高温下原岩的部分熔融是非常重要的条件。岩石中锡主要赋存于磁铁矿、黑云母、榍石等矿物中(Lehmann, 1990),只有在高温部分熔融作用下,黑云母等其他富锡矿物才会发生分解,使锡释放进入熔体(Raimbaultetal., 1995)。各Sn-Ag成矿带中,成矿岩浆的形成均有不同程度地幔物质的参与,暗示大陆地壳下部基性岩浆的存在,它们提供的热液可能是源岩中的锡能够释放的重要因素。
在Sn-Ag成矿系统中,由于Ag多金属矿化与Sn矿化存在时间和空间上的联系,相应的Ag、Pb、Zn等金属应该也来自岩浆。对Mole花岗岩的研究显示,早期出溶的流体中除Sn含量高外,Ag、Pb、Zn、Cu等金属的含量也很高,外围围岩中的Ag-Pb-Zn矿化与花岗岩内Sn矿化具有一致的岩浆来源(Audétatetal., 1998, 2000a, b; Drivenesetal., 2016)。实验模拟研究显示,基性岩浆结晶分异至50%时,残余熔体成分为流纹英安-流纹质,此时5/6的Ag可以从岩浆进入出溶流体(Yin and Zajaca,2018);酸性岩浆在低压条件(100MPa)下的去气作用也可以提供形成斑岩和浅成低温矿床的所有Ag多金属(Simonetal., 2009),均支持Ag的岩浆来源。但当矿床极度富Ag时,仅用高分异本身不能解释,长时间的岩浆活动可能是重要的因素,可能存在多期次高分异富银岩浆的叠加作用,如Cerro Rico矿床的岩浆-热液活动可能持续了至少0.2Myr,深部存在大的岩浆房(Riceetal., 2005)。然而,对于原始岩浆中银是否富集,及银在岩浆源区中是否富集等问题,尚无明确解释。此外,由于Ag的活动性,天水流体对围岩的淋滤作用也可能带来一部分的Ag,但目前也无明确的证据可以证实或排除这一可能性(Desanoisetal., 2019)。总体上,在全球多个Sn-Ag成矿带内,Ag的来源都是未解之谜。不仅如此,对何种源区条件和岩浆演化条件能形成同时富锡和银的岩浆这一问题也缺乏限定。
对于S的来源,部分矿床硫同位素落在0值附近,暗示硫的岩浆来源(Freiberg矿区,Seifert and Sandmann, 2006);也有一部分矿床S同位素变化较大:玻利维亚Sn-Ag成矿带内硫化物的δ34S值可以从-9.3‰到+7.9‰,且不同矿床之间也有较大的差异,如此大的变化范围很难用单一硫源来解释。大兴安岭南部成矿带内也有部分矿床硫同位素变化较大,如黄岗梁δ34S值可以从-9‰到+4.5‰(周振华,2011),冯建忠等(1992)将其解释为多成因起源。除深部岩浆起源的岩浆硫外,富集34S的源区可能来自循环的天水对围岩寒武纪-奥陶纪地层或白垩纪地层中蒸发岩的淋滤,而亏损34S的源区可能来自古生代地层中蕴含的生物成因硫化物(Sugakietal., 1990)。显然,引起S同位素变化的原因是多样的,需要综合考虑围岩和区域地层的影响。由于酸性岩浆中S含量很低,成矿需要的S含量是比较高的,除去地层中的S,是否还有其他S的来源?考虑到区域上幔源岩浆的普遍加入,是否有来自地幔岩浆的S加入到成矿中?如果有,是通过何种途径实现的?
2.2 富锡-银成矿流体的形成
成矿岩浆在侵位后,伴随岩体的冷却及物理化学条件的改变,会导致大量成矿流体出溶进而形成成矿流体,这一过程对热液矿床的形成至关重要,被称为岩浆热液过渡阶段。我国南岭锡钨多金属矿床中普遍发育反映岩浆热液过渡阶段的结构构造,如与锡矿化关系密切的骑田岭黑云母二长花岗岩内普遍发育蠕虫结构、文象结构、花斑结构、伟晶岩壳、晶洞构造等一系列流体出溶结构;花岗岩的石英斑晶内发育大量熔融包裹体和熔-流包裹体,且它们与含CO2气相包裹体和含子晶多相包裹体共生;对包裹体的研究显示熔体在很高的温度就开始演化出流体(>530℃),最早出溶的流体为富CO2气相和高盐度含子晶相,与芙蓉锡多金属矿床中流体包裹体的类型一致;熔-流包裹体内固相矿物成分复杂,包括长石、方解石、金红石、白钨矿和金属氧化物等,暗示其捕获的流体具有较强的成矿能力(汪雄武等,2004; 毕献武等,2008; 双燕等,2009; 单强等,2011)。柿竹园成矿岩体顶部形成的似伟晶岩壳和块状云英岩也是岩浆演化晚期分异出的富挥发分熔浆(浆液过渡态流体)形成的,它们还与碳酸盐围岩反应,形成钾长石化和大范围的石榴子石透辉石矽卡岩化,之后,随着温度和压力的降低,流体性质转为热液性质,形成退变质氧化物阶段和硫化物阶段矿化(祝新友等,2015)。俄罗斯Chukotka地区与锡成矿相关的花岗岩晶洞中可见大量熔-流包裹体,均一温度在790~935℃,包裹体中的流体成分是岩浆中出溶流体的直接记录,PIXE分析显示这些流体富Cl、Ca、Mn、Cu、Zn、As、Br等成分,与多相子晶流体包裹体反映的成分吻合(Kamenetskyetal., 2004)。内蒙古维拉斯托矿床的成矿碱长花岗岩、云英岩和锡石-闪锌矿-石英脉内也发育大量的熔融、熔-流和流体包裹体,但其记录的流体为含CO2低盐度流体(<11.7%NaCleqv)(孙雅琳等,2017)。
总之,上述研究显示锡多金属矿床从岩浆到热液的演化过程可能是复杂的,出溶流体性质也并非总是一致的,决定成矿流体性质的主要因素可能包括两个方面:1)岩浆演化程度及其中挥发分的含量;2)岩浆氧逸度。研究表明,出溶流体的成分受控于不断演化的残余熔体中水、Cl和F的含量,由于Cl在流体与熔体间的分配系数(DClfluid/melt)与熔体中F含量为负相关(Webster and Hollowan, 1990),且主要以氯合物形式迁移的金属(Sn, Pb, Zn, Cu, Ag)的Dmetalfluid/melt与Cl含量呈正相关(Taylor and Wall, 1984; Lehmann, 1990; Keppler and Wyllie, 1991),因此当早期熔体中F含量较低时,DClfluid/melt较大,可形成高盐度流体,进而早期出溶的流体具高Sn及Pb、Zn、Cu、Ag等金属含量特征(Audétatetal., 1998, 2000b; Müller and Seward, 2001; Drivenesetal., 2016)。流体包裹体研究也证明,多数锡矿床中早期成矿流体具有高温、高盐度的特征(Kelly and Rye, 1979; Sugakietal., 1988; Audétatetal., 1998; Mlynarczyk and Williams-Jones, 2006;徐佳佳等,2009; Meietal., 2015)。但也有部分矿床中成矿早期流体显示中低盐度特征,如玻利维亚Huanuni锡矿(5.6%~11.1%NaCleqv),然而流体包裹体成分分析这些低盐度流体中锡含量较低,不能代表真正的成矿流体(Mülleretal., 2001)。由于早期热液脉常受后期热液作用的改造,若不仔细进行矿物生长世代鉴别和流体包裹体岩相学分析,有可能获得的流体数据代表的并非真正的早期流体。
熔体较低的氧逸度有助于锡从熔体中分配进入岩浆热液。在磁铁矿系列(高氧逸度)岩浆中,锡呈+4价,磁铁矿和榍石具有非常高的锡分配系数(D榍石Sn=60,D磁铁矿Sn=4~12),在岩浆结晶分异早阶段,锡会进入矿物中而分散,不能形成富锡的残余熔体。而在钛铁矿系列(低氧逸度)岩浆中,锡呈+2价,此时D<1,故在结晶分异过程中不会被分散而在残余熔体中富集,所以钛铁矿系列的岩浆是形成锡矿的必要条件(Ishihara, 1977, 1979)。玻利维亚锡矿带的岩浆低氧逸度的性质来源于源区厚层页岩中高的碳含量(Lehmann, 1982),俄罗斯远东Khingan-Okhotsk带内的岩浆岩的低氧逸度与年轻的热的弧后盆地的俯冲有关,盆地中的碳酸盐沉积物加入到岩浆源区,形成了还原的酸性岩浆(Satoetal., 2002)。
2.3 锡-银多金属成矿系统流体的演化
锡成矿阶段的流体均一温度多集中于300~400℃,盐度为5%~21%NaCleqv,少部分可达35% NaCleqv,银主成矿阶段的流体均一温度多<280℃,盐度多<10% NaCleqv(Grantetal., 1980; 张德全,1993;Meietal., 2015; 刘瑞麟等,2018; Desanoisetal., 2019)。总体上,成矿系统从早期以Sn矿化为主到晚期以Ag矿化为主,流体的温度和盐度均呈逐步降低的趋势。对玻利维亚Sn-Ag成矿带内4个典型矿集区的矿床开展的流体包裹体研究证明:无论是在同一成矿系统内还是在矿集区范围内,随着金属矿化由Sn-W-Bi→Sn→Sn-Ag→Ag-Pb-Zn,成矿流体的温度和盐度均在不断变低,反映了成矿流体不断冷却和/或稀释的过程(Sugakietal., 1988)。O-H同位素研究显示,流体的冷却和/或稀释可能与天水流体的加入有关。虽然早期成矿流体具有岩浆水的特征,但从锡成矿阶段开始,天水流体就开始不断加入到成矿系统中,且天水的比例在成矿晚期可以达到60%~70%以上(Kelly and Rye, 1979; Grantetal., 1980; Wangetal., 2006; Ouyangetal., 2014; Feketeetal., 2016; Liuetal., 2016; 陈公正等,2018)。而且,天水流体参与到成矿系统中的时间和程度在不同矿床中有差异,可能与岩体的形状和侵位深度有关,如澳大利亚Yankee矿床,成矿与浅侵位的大岩体有关,从成矿早期开始,天水就可与岩浆水持续作用,导致高盐度流体的不断稀释与降温,从而使锡石有效沉淀形成富矿石(Audétatetal., 1998; Feketeetal., 2016);侵位较深的岩体,成矿早期的静岩压力环境使天水不能进入成矿系统,只有在流体压力降至近静水条件后,天水才可参与到成矿系统中(Fournier, 1999)。
上述实例展现了简单的单一期次流体不断演化并与天水流体混合的过程,实际上,虽然有相同的演化趋势,但流体的演化路径可能是多样的。比如不同阶段矿化可能是深部岩浆房多期次出溶的不同或相同性质流体叠加成矿的表现,大兴安岭大井矿床就存在多期次不同成矿流体的叠加作用(王玉往等,2002;王莉娟等,2006, 2015);再如不断加入的天水流体的成分可能由于淋滤地表围岩而发生改变,进而影响成矿系统流体的演化;此外,成矿流体与围岩的反应也会影响流体的演化。已有研究者对与Sn-Ag多金属成矿系统类似的斑岩Cu-Mo-热液脉状Zn-Pb-Ag-Cu成矿系统的流体演化进行了精细刻画,我们可以从中窥见流体演化过程的确是复杂的。这些被称为科迪勒拉型的热液脉状Zn-Pb-Ag-Cu矿床,常叠置于斑岩Cu-Mo矿之上或围绕斑岩体分带,与斑岩矿化构成完整的成矿系统(Morococha, Catchpoleetal., 2011; Cerro de Pasco, Baumgartneretal., 2008; Rottieretal.,2016, 2018a,b)。脉状多金属矿床的成矿流体与斑岩型矿化的流体具有相似的成分,证实多金属矿床成矿流体起源于深部斑岩岩浆出溶流体(Catchpoleetal., 2015; Rottieretal., 2016),从深部斑岩岩浆流体出溶到浅部热液脉状矿化,可以有两种流体演化模式:(1)深部斑岩系统出溶的中等密度流体在沉淀出含Cu-Fe硫化物后,未经历相分离直接上升到浅部持续冷却成矿(Catchpoleetal., 2011, 2015; Reedetal., 2013; Ortelli, 2015);(2)深部斑岩系统早期出溶的中等密度流体在经历相分离后产生的高盐度流体储存在深部,随后与较晚期出溶的富气相流体或循环的天水流体混合,然后上升到浅部成矿(Baumgartneretal., 2008; Bendezu and Fontbote, 2009; Rottieretal., 2018b)。由此可见,查明流体的演化路径将有助于我们深入理解Sn-Ag成矿系统的成矿过程。以石英、萤石等矿物的阴极发光图像为基础,详细鉴定矿物及包裹体的生成顺序,利用传统冷热台和安装了近红外显微镜的冷热台进行透明和不透明金属矿物内包裹体的显微测温,配合单个流体包裹体LA-ICP-MS成分分析,尽量全面的获得不同阶段成矿流体的温度、盐度和成分信息,将是解决上述问题的有效有段。
2.4 热液蚀变过程中流体的演化
成矿流体上升期间的降压作用导致相分离而形成高盐度流体和含酸性挥发分的气相流体(Henley and McNabb, 1978)。由于非挥发性的硼酸易在高盐度流体中富集,它们交代围岩地层和/或岩体,形成了成矿系统最中心位置最早发育的大规模强电气石化(Lynch and Ortega, 1997)。挥发性的HCl, HF和SO2易在气相流体中富集,它们上升到浅部最终被冷的大气水吸收,产生了酸性流体,随后淋滤周围的围岩而形成高级泥化蚀变。流体快速冷却时,其酸度会逐渐增加(Hemley and Hunt, 1992; Giggenbach, 1997),而产生在Cerro Rico中看到的石英-地开石向上变为多孔石英的蚀变带,其中赋存大量的Ag,多孔石英带流体的pH可以<2。在高级泥化带的底部,还可见到少量的叶腊石,其形成温度较高(>300℃)。
针对斑岩Cu-浅成低温Au-Cu-As成矿系统的研究,认为早期形成的多孔石英带或石英-黄铁矿-绢云母脉系为较晚期富Au成矿流体提供了通道,这些通道控制着叠加于早期钾化蚀变带和Cu矿化带之上的、向上开口的高级泥化带和Au矿化(Heinrich, 2005; Pudacketal., 2009)。此外,由于Sn-Ag系统成矿流体是从较还原的岩浆中出溶,而Cu-Au系统流体则来自高氧化的岩浆(Ishihara, 1977, 1979),两者出溶的流体性质存在差异,斑岩铜矿对应的高级泥化带中常出现含Cu-As的硫砷铜矿,斑岩锡矿的浅部不常出现As,而出现含Sb的矿物,如脆硫锑铅矿(Sillitoeetal., 1998)。
总体上,对Sn-Ag成矿系统热液蚀变过程中流体的演化研究还较少,多数解释仍借鉴了研究较为深入的斑岩型Cu-浅成低温热液Au-Cu成矿系统,由于出溶流体性质和氧逸度的差异,各热液蚀变带形成的原因可能需要重新认识或考虑。
2.5 金属沉淀机制
理论研究认为,Sn在成矿流体中主要以二价Sn(II)与Cl组成配合物形式(如Sn(II)Cl2)迁移(Halteretal., 1998; Müller and Seward, 2001),当Sn沉淀为锡石时,流体中的Sn由二价Sn(II)变为四价Sn(IV),因此,锡石的沉淀要求发生氧化和消耗H+的反应(Heinrich, 1990)。然而,Schmidt (2018)指出,在非常宽泛的温度、压力和氧逸度条件下,Sn(IV)与Cl的配合物也可以在成矿流体中稳定存在,相比之下,二价Sn(II)只能在较低的氧逸度条件下稳定。而且,在一些地质实例中,锡石沉淀时并未发生明显的氧化反应(Wangetal., 2006; Zhangetal., 2017),实验研究也说明氧化并非有效的锡石沉淀机制(Wilson and Eugster, 1990),进一步证实Sn(IV)-Cl配合物的重要性。这种情况下,无需氧化反应,当流体-围岩反应发生、流体发生稀释(与天水混合)或HCl 活度降低时,均可导致锡石沉淀(Schmidt, 2018)。Heinrich (1990)也曾提出促使锡石沉淀的三个机制:一为长石水解造成的酸中和作用(发生在蚀变矿物形成阶段);二为流体沸腾导致的气相分离,有效消耗了H+和Cl-;三为岩浆热液流体与天水流体的混合,并未强调氧逸度变化对锡石沉淀的绝对控制作用。而且,由于锡矿成矿类型的多样性,可能Sn(II)和Sn(IV)与Cl的配合物均为重要的Sn迁移形式,不同成矿类型中控制锡石沉淀的机制可能是有差异的,如流体与围岩反应在与云英岩化或矽卡岩化相关的锡矿床中是锡石沉淀的重要机制(Korgesetal., 2018),但是多数热液脉状矿床实例研究则显示流体沸腾、降温和与天水混合等控制了锡石的沉淀(Sugakietal., 1988; Audétatetal., 2000; Caietal., 2007; Meietal., 2015;郭理想等,2018; 刘瑞麟等,2018)
3 锡-银多金属成矿系统内铟的成矿特征
铟作为稀有分散金属,具有良好的光渗透性和导电性,被广泛应用于液晶显示器、半导体材料、太阳能电池等高科技产业中,近来更是被列为战略性关键金属(翟明国等,2019),需求不断上涨。铟的主要来源是锡石硫化物矿床和VMS型矿床,此外,一些Sn-W矿床、SEDEX矿床和斑岩铜矿也提供了少量的铟(Schwarz-Schampera and Heizig, 2002; 李晓峰等,2007; Werneretal., 2017)。与锡多金属矿床相关的铟矿床主要分布于玻利维亚、中国华南和大兴安岭南段、日本、俄罗斯远东、欧洲Erzgebirge等地区(Seifert and Sandmann, 2006; Murakami and Ishihara, 2013; Pavlovaetal., 2015),如玻利维亚、中国华南和日本的铟储量分别达到了12000t、11000t和9000t(Zhangetal., 1998; Ishiharaetal., 2006, 2008, 2011),其分布区域几乎涵盖了所有Sn-Ag多金属矿床的分布范围。查明此类成矿系统内In的规模、赋存状态、成矿过程和成矿机制,不仅可以更好地对金属资源进行全面开发利用,还有助于全面深入认识此类型矿床的成因。
铟在锡多金属矿床内主要产于以硫化物为主的成矿阶段,尤其是Zn和Cu矿化阶段。最重要的含In矿物是富Fe的黑色闪锌矿,其次是黄铜矿、黄锡矿等,此外还发现了一些In的独立矿物,成分分别为CuInS2(roquesite 硫铟铜矿)、AgInS2(laforetite)和FeIn2S4(dzhalindite 羟铟石)。硫化物中In含量一般在10n×10-6~100n×10-6,闪锌矿中In通常在0.1%~7%,最高可达13.5%,如玻利维亚Cerro Rico和San Vincente矿床闪锌矿中的In分别达到1.2%和2.0%;黄铜矿和黄锡矿中的In分别可以达到0.4%和0.31%(Seifert and Sandmann, 2006; Sinclairetal., 2006; Cooketal., 2009; Ishiharaetal., 2011; Murakami and Ishihara, 2013)。In在这些矿物中可以以显微包裹体或离子替代方式进入矿物晶格中,例如In在黄铜矿、锡石、黄锡矿等矿床中可呈显微包裹体产出,但In在闪锌矿中可进入矿物晶格,替代方式为(2Zn2+)↔(Cu+or Ag+,In3+)(Murakami and Ishihara, 2013; Werneretal., 2017a),有时硫铟铜矿呈固溶体形式产于闪锌矿中,形成于富Cu流体对闪锌矿的交代作用(Sinclairetal., 2006)。一般认为,在成矿后期以Ag为主的矿化阶段内,透明的贫Fe闪锌矿通常不含或含非常低的In,本阶段贫In,但最近研究显示,玻利维亚的Cerro Rico和Huari Huari矿床成矿后期发育的脆硫锑铅矿中富集In、Cu、Sn和Ag,In含量可达到100n×10-6~1000×10-6,所以,在以Ag矿化为主的成矿阶段内,Pb-Sb矿物也可能提供有经济价值的铟(Murakami and Ishihara, 2013)。由此看来,我们还未充分认识到In在锡多金属矿床内的赋存状态,是否还有其它重要含In矿物的存在?而且,除闪锌矿外,In在其它硫化物中的赋存状态和/或离子替代形式及替代机制也需进一步研究。
由于铟可以在火山喷气形成的高温气相中富集,且富铟的矿床(如Sn-Ag多金属、VMS矿床、浅成低温Au-Ag-贱金属矿床、斑岩Cu矿)主要为岩浆热液成因,故一般认为铟为岩浆来源(Seifert and Sandmann, 2006; 李晓峰等,2007)。玻利维亚成矿带内与锡多金属矿床相关的岩浆岩属于钛铁矿系列,In的来源与岩浆岩相同,故In的最终来源为基底的泥质沉积岩(Ishiharaetal., 2011)。然而,Ishiharaetal. (2009)对玻利维亚、日本和中国华南相关沉积岩的分析显示,其中并未发现In异常。Murakami and Ishihara(2013)基于相关矿床硫同位素与岩浆岩氧逸度的关系以及锡多金属矿床中普遍存在的磁黄铁矿,认为这类矿床形成的氧逸度条件要高于钛铁矿系列岩浆,成矿可能需要有一些较氧化的岩浆参与进来,而且氧化性岩浆还可携带足够多的硫,他们提出在日本岛弧,增生楔内还原性沉积物和深部起源的氧化性岩浆的共同作用,可以解释丰富的S、Sn、Cu和In的共同来源。Pavlovaetal. (2015)收集对比了酸性岩、中性岩、基性岩、各类沉积岩中Sn、In和Ag的含量,沉积岩(页岩)和花岗岩中Sn含量最高;Ag和In的分布状态相似,在酸性岩中的含量变化较大,在基性岩中含量略高于酸性岩,在黑色页岩中也较高,最高含量出现在黑色页岩的硫化物中和玄武岩的硫化物中,均可达到10n×10-6。由于地幔物质在锡多金属成矿系统中也普遍存在,故Pavlovaetal. (2015)认为In可能是多来源的。总之,对于In的来源尚没有明确的答案,但更多的证据指向了深部/地幔物质可能是重要的In源区,岩浆的混合作用可能也是不可或缺的,但这一猜测仍需进一步验证。此外,富In的矿床内多存在火山活动的现象,这也是多数Sn-Ag多金属矿床的特征之一,In成矿作用与火山活动存在什么样的成因联系?目前尚不清楚。
4 存在问题与研究展望
(1)壳幔相互作用对成矿岩浆和成矿物质的贡献
传统观点认为,与Sn成矿相关的成矿岩浆主要源于中上地壳物质的部分熔融。然而,大量的研究表明,与Sn-W或Sn-Nb-Ta成矿组合的矿床相比,在以锡石-硫化物为主要成矿组合的矿床中,普遍存在更多地幔组分的加入现象,例如我国个旧Sn-Cu矿田(程彦博,2012)、本文所述的以Sn-Ag成矿为主的矿床。证据包括:成矿岩浆的源区有不同比例地幔组分的加入;矿区普遍发育与成矿同期的幔源碱性基性岩浆;成矿流体的He同位素介于地壳与地幔之间;成矿早期形成的电气石中富集Co、Ni、Cr等在地幔中富集的元素。这些地幔组分在Sn-Ag多金属成矿过程中所起的作用是什么?除了提供热源,是否提供了某些金属(Ag、Cu、In…?)或成矿必须的S?地幔组分与地壳组分是如何相互作用的?众多问题尚待解决。
(2)火山作用与成矿之间的关系
Sn-Ag多金属成矿系统内多发育火山活动,如玻利维亚成矿带内发育与成矿同期的Los Frailes 火山岩带,部分矿床发育火山-侵入杂岩体,部分矿床则直接产于火山穹窿的不同部位。俄罗斯远东地区与中国大兴安岭南段也发育与成矿同期的火山岩。研究认为矿化略晚于火山穹窿的形成,且矿化赋存于火山穹窿相关的高渗透性带或断裂带中,如环状断裂、喷发的角砾岩体和层状凝灰岩,但矿化相关的流体可能来自深部的岩浆系统(Cumminghametal., 1991, 1994)。Chengetal. (2018)研究了澳大利亚Queensland地区与Sn-F成矿相关的火山-侵入岩系统,提出火山岩代表了深部岩浆房结晶分异产生的晶粥组分,而成矿相关的岩体则代表了岩浆房结晶分异之后的高演化岩浆,正是由于火山活动发生在岩浆去气之前,才能保证挥发分和成矿金属在岩浆晚期聚集而不会散失。由此可见,火山作用不仅可能为成矿提供就位空间,还可以有效的指示深部岩浆过程。有一个问题是Chengetal. (2018)的模型是建立在与岩基有关的Sn-F成矿基础之上的,本文所述的Sn-Ag多金属矿床多与浅成侵入体相关,在这种模式下,火山作用又起到了何种作用呢?有待进一步研究揭示。
(3)以锡矿化为主矿床和以银矿化为主矿床之间的联系
在同一Sn-Ag多金属成矿带中,锡与银在同一矿床中虽然常共同出现,但通常的情况是,大型Ag矿往往贫Sn,而有经济价值的Sn矿只有少量的Ag,在同一矿床中Sn和Ag同时达到大型的个例并不十分普遍,报道的例子仅限于Cerro Rico、白音查干和Deputatskoe。这三种不同特征的矿床在岩浆源区特征、热液蚀变-矿化类型与组合、成矿时代等方面具有一致的特征,究竟是何种原因造成其成矿金属组合的差异?可能有三方面原因需要考虑:1)岩体的侵位深度:当侵入深度较深时,可能形成以Sn为主的矿床,而较浅侵位的矿床则可能形成Sn-Ag矿化,例如在俄罗斯Sn-Ag多金属成矿带内,形成深度较深的锡矿成矿与花岗质岩体有关,中等深度的与次火山-侵入体有关,浅部的锡矿化则与火山岩相关,并伴有Sn-Ag多金属矿床(Noklebergetal., 2005)。2)矿床剥蚀程度:贫Ag富Sn的矿床可能是浅部的银矿化被剥蚀了,而富Ag贫Sn的矿床则可能是未找到深部的锡矿。例如玻利维亚带内Tasna矿床既是剥蚀程度较高的锡矿(Sillitoeetal., 1998),边家大院和白牛厂Ag-Pb-Zn矿床的深部也找到了独立的锡矿体(张洪培,2006;Zhaietal., 2018a)。3)成矿流体性质:成矿岩浆岩所含金属的差异必然会导致出溶流体性质的差异,而流体的性质又直接决定了矿化金属的类型,故同一成矿带内不同矿床所含金属的差异也可能是不同的流体性质决定的。总之,要将这几种情况进行合理区分,究竟矿床形成时就是富银或富锡的?还是后期剥蚀或勘探工作尚未发现的结果?进而建立合理的矿床成因模型,最终服务找矿勘查工作。
(4)不同金属元素的起源与耦合成矿
Sn在沉积岩和花岗岩中含量最高,而Ag和In在沉积岩和基性岩所含的硫化物中含量最高,因而,同一矿床中产出的众多金属元素和成矿元素(Sn-Ag-In-S)是否是来自同一源区?由于它们的元素地球化学性质差异,其从岩浆熔体中出溶进入流体的时间也有差异。如南岭地区的钨锡矿实际上与大的复式岩体内部发育的同期或晚期的高演化、富挥发分的小岩株(枝)有直接的成因联系(袁顺达,2017),锡一般是在岩浆演化到最晚期阶段才进入流体相中;实验研究显示,要使银从岩浆中有效出溶,流体的成分一般是流纹英安-流纹质的,此时的结晶度为50%。由此可见,锡和银可能不是同时从岩浆中出溶进入流体的,两者可能是从时间上较接近的两期不同性质岩浆中出溶的,比如大兴安岭大井矿床就存在多个矿化中心,形成富锡矿体和富铜矿体的流体具有不同的来源,两者在同一矿区叠加成矿(王玉往等,2002;王莉娟等,2006,2015)。也不能排除晚期基性岩浆注入酸性岩浆房导致大量银从熔体分配到流体中的可能性。此外,在富Sn含Ag的矿床内及含Sn富Ag的矿床内,成矿流体出溶的条件与同时富Sn和Ag的矿床有何差异?这些问题都有待将来开展更多实验岩石学和研究岩浆-热液过渡过程中原位微区熔体-流体成分,获得初始流体中Sn和Ag的含量以及它们在流体/熔体间的分配系数等证据来加以解释。
此外,不同元素迁移和沉淀的条件也有明显差异,最直观的表现是在Sn-Ag多金属矿床中常发育比较显著的矿化分带现象,多数研究集中于流体包裹体和稳定同位素的研究,金属分带的成因多被解释为流体的持续降温和天水流体的加入。但这两个因素几乎在所有矿床形成过程中都会发生,简单用来解释复杂的金属分带显然不太合适。只有有效识别出不同金属矿物沉淀的温度、压力,才能很好的解释金属元素的分带现象。除传统上的流体包裹体研究手段外,随着硫化物微量元素和同位素原位分析和面扫描技术的飞速发展,还可以有效获取大量矿床形成的精细过程方面的信息,如元素行为与赋存状态、成矿流体和硫的来源、矿物的化学分带性等(范宏瑞等,2018),再结合热力-动力学模型计算,获得不同矿物形成时流体的P-T-fO2-fS2-pH信息,进而回答是否存在不同期次/成分流体的叠加、金属矿物沉淀的物理化学条件及相关的金属分带等成矿过程中的关键问题。
致谢适逢叶大年院士八十华诞,在此感谢叶先生的鼓励、指导与启发!感谢北京矿产地质研究院祝新友研究员和中国科学院地质与地球物理研究所曹明坚副研究员对本文提出的宝贵修改意见!