植物锰转运蛋白研究进展
2019-07-23赵秋芳马海洋贾利强陈曙金辉
赵秋芳 马海洋 贾利强 陈曙 金辉
摘 要 锰是植物必需的微量元素,参与植物的多种生命活动过程,包括光合作用、呼吸作用、蛋白质合成和激素活化等。锰缺乏和过量均能影响植物生长和产量。但是目前对锰在植物中吸收、转运过程的分子机制仍了解有限,少数金属转运蛋白家族被报道参与锰在植物体中的吸收、转运和分配,如NRAMP (natural resistance associated macrophage protein), YSL (yellow stripe-like),ZIP (zinc regulated transporter/iron-regulated transporter [ZRT/IRT1]-related protein),CDF/MTP (cation diffusion facilitator/metal toleranceprotein),CAX (cation exchanger),CCX (calcium cation exchangers),P-type ATPases和VIT (vacuolar iron transporter)。本文主要綜述模式植物拟南芥和水稻中锰转运蛋白对锰吸收、分配和维持植物体内锰平衡方面的研究进展,并对相关研究进行展望。
关键词 锰;转运蛋白;拟南芥;水稻
中图分类号 Q945 文献标识码 A
Abstract Mn is an essential nutrient which is needed for a variety of life processes in plants, including photosynthesis, respiration, protein synthesis and hormone activation. Mn deficiency or Mn toxicity could affect plant growth and yield. However, relatively little is known about manganese uptake and mobilization in plants. Several transporter protein families have been implicated in Mn uptake and mobilization in plants. These transporter families include NRAMP (natural resistance associated macrophage protein), YSL (yellow stripe-like), ZIP (zinc regulated transporter/iron- regulated transporter [ZRT/IRT1]-related protein), CDF/MTP (cation diffusion facilitator/metal toleranceprotein), CAX (cation exchanger), CCX (calcium cation exchangers), P-type ATPases and VIT (vacuolar iron transporter). This mini review summarized the recent progresses in researchers on these proteins and their roles in the uptake, mobilization, homeostasis of Mn in plants, particularly in the model plants of Arabidopsis thaliana and rice. Prospects on the researches were also discussed.
Keywords manganese; transporters; Arabidopsis thaliana; rice
DOI 10.3969/j.issn.1000-2561.2019.06.029
锰是植物生长发育所必需的微量元素,是植物叶绿体的组成部分,直接参与植物的光合作用,在光合作用系统II(PSII)中参与催化水分解反应产生氧的过程,并为光合电子传递链提供电子[1-2]。同时锰是植物体内重要的氧化还原剂,参与植物体内的氧化还原反应。另外锰作为多种酶的活化剂参与植物的生命活动,包括DNA合成,糖类代谢和蛋白修饰等[3]。锰作为植物必需的微量元素,锰缺乏会导致植物出现低温敏感、易于感病、植株偏黄等症状,长期缺乏会导致植株长势变弱及产量降低[4-6]。锰过量产生的毒害同样会影响植物生长,植物锰中毒通常表现为叶片变黄,成熟叶片出现褐色斑点,严重时出现坏死,最终导致植物产量降低[7]。事实上,锰毒仅次于铝毒,是对酸性土壤生长的植物毒害最大的金属毒性(pH 5.5或更低)。世界上大约30%的土地是酸性土壤,而近50%潜在的可耕地是酸性土壤[8]。相对于Fe、Zn来说,目前人们对植物应对锰缺乏和胁迫的分子机制的了解较少,仅知道少数金属转运蛋白家族成员可以调节植物对锰吸收、转运和分配,如NRAMP、YSL、ZIP、CAX、CCX、CDF/MTP、P-type ATPases和VIT家族。本文主要综述拟南芥和水稻两种模式植物中的锰转运蛋白对锰的吸收、转运以及分配功能的研究进展。
1 植物锰吸收转运蛋白家族研究
1.1 NRAMP家族
NRAMP(natural resistance-associated macro phage protein)参与多种二价金属离子的吸收和转运,其家族基因已经在多种植物中被鉴定出来,包括番茄[9]、大豆[10]、苹果[11]、天蓝遏蓝菜[12]等。拟南芥包含6个NRAMP家族基因,分别命名为Atnramp1~Atnramp 6。AtNRAMP1被认为是锰高亲和转运蛋白,可以促进根系对锰的高效吸收。研究表明AtNRAMP1定位于细胞质膜上,主要在根系表达,且在锰缺乏时上调表达。在锰缺乏条件下,拟南芥突变体nramp1-1的地上部生物量和根系生长速率明显低于野生型,而高锰条件下,二者没有差异,且锰含量远低于野生型。超表达nramp1基因可以恢复突变体表型并增加对锰毒害的耐受性[3]。AtNRAMP6与AtNRAMP1同源性很高,但并没有转运锰的功能[13]。AtNRAMP3和AtNRAMP4也被证明具有锰和铁的转运功能。在铁缺乏条件Atnramp3-1突变体可以增加植物根系对锰的吸收,而过表达Atnramp3时,锰的吸收减少[14]。Lanquar等[15]研究发现,AtNRAMP3和AtNRAMP4负责将成熟叶片液泡中的锰运输至叶肉细胞的叶绿体中,且二者功能存在冗余。在缺锰条件下,拟南芥生物量的减少仅发生在nramp3nramp4双突变体中,而nramp3或nramp4单突变体均没有出现生物量减少现象。
水稻中包含7个NRAMP家族基因,目前仅报道OsNRAMP3和OsNRAMP5具有吸收转运锰的功能。OsNRAMP3定位在木质部转移细胞和韧皮部维管束,在水稻节中表达量最高,具有转运锰的功能,可以调节锰在新老组织间的分配。在低锰条件下,OsNRAMP3优先转运锰至新叶和花序等新生组织,但在高锰毒害下,锰被转运至成熟组织[16-17]。Ishimaru等研究发现OsNRAMP5 RNAi株系的根系、地上部以及木质部汁液中的锰含量均显著低于野生型,证实OsNRAMP5是一个等离子体膜蛋白,可以调控水稻对锰的吸收,同时参与锰在花和籽粒中的运输[18-19]。杨猛等[20-21]研究发现OsNRAMP5除在水稻根中表达较高外,还在颖壳、叶片等组织表达,但其表达量随着叶龄的增加而降低。进一步研究发现OsNRAMP5在根和地上部维管束系统表达远高于其他部位,且主要集中在木质部附近的薄壁细胞中。Osnramph5突变体在低Mn条件下生长严重受阻,体内Mn含量远低于野生型。Osnramph5突变体即便根中Mn浓度远高于野生型,也不能转移至地上部,说明Osnramph5的突变阻断了根向地上部的运输。
1.2 YSL家族
YSL(Yellow Stripe-Like)蛋白属于寡聚肽转运蛋白家族,部分成员可以运输金属-NA的复合体,参与Fe、Zn、Mn、Cu等金属离子在植物组织内的运输。拟南芥中有8个YSL基因[22],其中Atysl1、Atysl2、Atysl3基因均定位于质膜,在叶片木质部表达量高,具备吸收转运Fe-NA复合体的功能,且在Fe缺乏时表达量下调[23-25]。Conte等[26]研究发现在1 mmol/L Mn2+条件下生长21 d后,无论是单突变体ysl4-2、ysl6-4、ysl6-5还是双突变体ysl4ysl6的地上部生物量均减少,单突变体和双突变体对高锰环境均较为敏感,因AtYSL4和AtYSL6定位于水稻的液泡或内膜,可以推测AtYSL4和AtYSL6具有隔离金属锰在液泡和内膜系统中的作用。Divol等[27]研究发现AtYSL4和AtYSL6作为叶绿体中的铁转运蛋白,通过清除叶绿体中的铁来适应铁毒害。
水稻中有18个YSL家族基因[28]。研究表明OsYSL2参与锰和铁在植物体内的长距离运输和分配,可以运输Mn-NA和Fe-NA复合体[28-29]。OsYSL2主要在叶片、花和发育的种子中表达,在水稻根系中不表达,其表达量不受锰浓度调控,但在缺铁条件下,表达量增加。超表达OsYSL2增加水稻籽粒中的锰含量[29],因其被定位于韧皮部中,推测OsYSL2主要負责韧皮部中锰的装载,但具体作用机制仍需要进一步研究[30]。
OsYSL6在根系和苗中表达,且其表达受不同锰浓度影响,敲除OsYSL6的突变体仅在高锰条件下抑制根系和苗的生长,且总锰含量与野生型间无差异,但是OsYSL6突变体叶肉细胞非原生质体锰含量高于野生型而共质体锰含量低于野生型,酵母中异源表达OsYSL6的研究发现OsYSL6仅转运Mn-NA复合体而对Mn-MA复合体没有运输活性。这一研究结果说明OsYSL6负责Mn-NA复合体在叶肉细胞非原生质体至共质体间的运输[31]。
1.3 ZIP家族
锌铁转运蛋白ZIP (zinc regulated transporter/
iron-regulated transporter [ZRT/IRT1]-rela ted protein)是Zn转运蛋白(ZRT)和Fe转运蛋白(IRT)的合称,目前,已有较多研究ZIP家族转运蛋白在Fe、Mn、Cu、Zn金属转运方面发挥重要作用[32-40]。拟南芥中有15个ZIP家族成员,包括3个AtIRTs和12个AtZIPs[41]。IRT1是Fe高亲和转运蛋白,同时低亲和的转运其他金属[40-41]。AtIRT3是定位于质膜的Zn和Fe转运蛋白[36]。Milner等[42]对拟南芥中12个ZIPs家族成员在转运Fe、Mn、Cu、Zn 4种金属的作用做了初步研究,研究发现ZIP1、ZIP2、ZIP5、ZIP6、ZIP7、ZIP9共6个基因可以全部或者部分补充突变体smf1对锰的吸收。文中对ZIP1和ZIP2进行深入研究发现,AtZIP1和AtZIP2均发挥将锰从根系转运至地上部的作用。AtZIP1被定位于液泡,且在根系中柱组织高度表达,负责将Mn从根细胞液泡中运送到细胞质,AtZIP2在根系中柱高表达,由于AtZIP2被定位于细胞质膜,可能负责将Mn从根系中柱运送至木质部薄壁组织,用于随后转运锰在木质部的装载和运输。水稻ZIP家族成员OsZIP1[43]、OsZIP3[44]、OsZIP4[45]、OsZIP5[46]、OsZIP6[47]、OsZIP7[48]、OsZIP8[49]均被报道作为Zn转运蛋白,参与水稻中Zn的吸收和转运。目前,尚未有报道水稻ZIP家族成员具备锰吸收和转运功能。
1.4 CDF/MTP家族
植物中CDFs(cation diffusion facilitator)家族按照系统进化关系可以分为Zn-CDFs、Fe/Zn- CDFs、Mn-CDFs共3类[50]。首个被鉴定出的Mn- CDF转运子为ShMTP8(ShMTP1),其在拟南芥和酵母中表达可以增加拟南芥和酵母对锰毒害的耐受性[51]。拟南芥共有12个CDFs家族基因被鉴定出来,其中有4个属于Mn-CDFs家族基因,包括AtMTP8、AtMTP9、AtMTP10、AtMTP11[52]。AtMTP11是拟南芥中首个被鉴定出具有锰转运作用的蛋白,AtMTP11在酵母中表达增加了酵母对锰毒害的耐受性。mtp11突变体表现出对高锰超敏,而过表达AtMTP11则增加了拟南芥对高锰的耐受能力,相反mtp11突变体对锰缺乏的耐受能力增加,而过表达植株对锰缺乏的敏感性增加[53]。另外Peiter等[54]研究也表明在基础营养液中atmtp11突变体锰积累高于野生型,表现出对高锰敏感,而对锰缺乏的耐受能力增加的表型。GUS定位显示AtMTP11主要在根尖,茎缘和叶片排水器表达。AtMTP11被定位在液泡前室和高尔基体隔间,因此推测AtMTP11通过调节锰在液泡前室的浓度来适应锰毒害和调节植物体内锰平衡。最新研究表明AtMTP8调控锰和铁在种子中的分布,mtp8功能丧失突变体对高锰敏感,而过表达MTP8株系对高锰的耐受能力增加[55]。
水稻Mn-CDFs家族包括5个基因,其中OsMTP8.1和OsMTP8.2属于亚家族8,OsMTP9、OsMTP11和OsMTP11.1属于亚家族9[56]。目前仅报道OsMTP8.1、OsMTP8.2、OsMTP9的锰吸收和转运机制。2013年OsMTP8.1被分离出来,研究发现OsMTP8.1的表达可以增加酵母中锰的吸收和对锰毒害的耐受能力。在植物中,OsMTP8.1及其他转录本被定位于液泡膜,主要在水稻苗中表达,高锰和低锰供应时会相应的增加和减少OsMTP8.1的表达量。在高锰条件下,OsMTP8.1缺失导致叶绿素含量下降,生长受限,根和苗中锰含量均降低,而其他亲属Zn、Cu、Fe、Mg、Ca和K的积累量并没有变化,证明OsMTP8.1是锰特异性转运蛋白,可以将过量的锰隔离在根系液泡中,以减少高锰对水稻苗的毒害作用[57]。最新发现一个水稻Mn-CDFs家族蛋白OsMTP8.2,它与OsMTP8.1的氨基酸相似度达68%。OsMTP8.2被定位于液泡膜中,主要在水稻根和苗中表达,但表达水平低于OsMTP8.1。OsMTP8.2在酵母中表达可以增强酵母的耐锰毒害能力,但是对Fe、Zn、Co、Ni和Cd等金属均没有作用。进一步研究发现mtp8.1的突变体中同时敲除OsMTP8.2,其在高锰环境中的生长进一步受到限制,且该突变体根系锰含量以及根系与总锰吸收量之比均低于野生型和mtp8.1突变体,说明OsMTP8.2可以与OsMTP8.1共同作用将锰隔离在苗和根的液泡中,以减轻高锰对水稻的毒害[58]。Ueno等[59]则证实OsMTP9负责根系内外皮层间的转运和根系对锰的吸收。OsMTP9主要在根系表达,被定位于外皮层和内皮层的细胞膜上,同时证实OsMTP9在酵母和蛋白脂质体中具有锰转运能力,且OsMTP9敲除后降低了水稻对锰的吸收及其在地上部的运输。
1.5 CAX家族和CCX家族
在许多植物组织中,将过量Mn固定在液泡中是提高对Mn耐受性的关键机制之一[60-61]。CAX转运家族成员就发挥着该作用。CAX(cation exchanger)家族在拟南芥中存在6个家族成员,被分为两个亚家族,AtCAX1、AtCAX3和AtCAX4属于ⅠA亚家族,AtCAX2、AtCAX5和AtCAX6属于ⅠB亚家族。研究发现CAX2参与Mn在液泡中的固定,GUS研究表明AtCAX2在植物组织中均有表达,且在花,维管,顶端分生组织表达较高,cax2突变体可以减少Mn2+/H+在液泡中的反向运输能力[62],且在酵母中表达CAX2可以提高对Mn胁迫的耐受性[63]。在烟草中表达拟南芥CAX2和CAX4,可以有效地将Mn2+隔离在液泡中,进而提高烟草对Mn胁迫的耐受能力[64-65]。另外CAX5也被报道具有Mn固定在液泡的功能[66]。与CAX1和CAX5不同,CAX4是通过调节植物根系发育来适应金属胁迫的。Mei等[67]研究表明CAX4主要在根系中表达,在高锰胁迫下,cax4突变株的主根和侧根均减少,因此CAX4可以通过对根系生长调节进而适应高锰环境。水稻中有5个CAX家族成员,被命名为OsCAX1a、OsCAX1b、OsCAX1c、OsCAX2和OsCAX3,其中OsCAX1a、OsCAX1b、OsCAX1c属于ⅠA亚家族,OsCAX2、OsCAX3属于ⅠB亚家族。其中OsCAX1a和OsCAX3可以增加酵母的锰耐受能力,因此被认为是植物中的锰的转运蛋白[68-69]。
拟南芥的CCX(cation calcium exchanger)家族由5个成员组成(CCX1-5),曾被命名为CAX7-11。野生酵母表达AtCCX3后,Mn含量是野生型的两倍,而在烟草中表达后,成熟叶片的锰含量显著增加,导致叶片坏死,证明AtCCX3具有锰转运功能[70],而其他AtCCXs成员尚未有报道具有锰转运功能。
1.6 P-type ATPases家族
ECAs属于P-type ATPases中的Ca2+-ATPase亚家族,被报道具有锰转运功能。植物中的Ca2+- ATPase被分为P2A-type ATPases和P2B-type ATPases,均被认为是Ca离子泵。拟南芥中包含4个P2A-type ATPases(AtECA1-4),水稻中包含3个(OsECA1-3)。研究表明AtECA1和AtECA3可以作为Mn2+泵,将Mn2+从细胞质中移除并将其输送到各自的内膜室的功能。AtECA1定位于内质网,且在花和根系的表达量较高,Wu等[71]研究发现在50 μmol/L Mn2+的标准营养介质中,Ateca1突变体与野生型的生长表现差异不大,而在高Mn2+(0.5 mmol/L)環境下,生物量严重减少,植株发黄萎蔫,突变体的根毛伸长和根尖组织生长严重受阻,在野生型中表达(CAMV35S:: ECA1) 基因恢复了野生型的表型,因此AtECA1在植物细胞适应锰胁迫中发挥重要作用。AtECA3定位于高尔基体,在根尖,排水器,保卫细胞,维管组织中有很高表达[72]。2个Ateca3突变体表现出相反的表型。Ateca3-2对锰缺乏较为敏感[73],无锰条件下,Ateca3-2突变体生长受阻,叶片发黄,而在添加微量Mn后,植物恢复正常。Ateca3-4等位突变体对Mn毒害更敏感[73],因此AtECA3等位基因间的变异造成的AtECA3的Mn2+转运功能的差异的原因仍需进一步研究。AtECA2和AtECA4并未发现具有锰运输功能。
1.7 VIT家族
目前,AtVIT1是功能较为清楚的转运蛋白,负责锰在液泡中的吸收。研究发现AtVIT1在发育中的种子中高量表达,可将Fe2+和Mn2+隔离在液泡中[74]。OsVIT1和OsVIT2是AtVIT1的同源基因,研究表明OsVIT1和OsVIT2在水稻旗叶和叶鞘中高量表达。在酵母中,OsVIT1和OsVIT2可以转运Fe2+、Zn2+和Mn2+至液泡中,而在水稻中,OsVIT1和OsVIT2仅被证实具有转运Fe和Zn的功能,负责Fe和Zn在旗叶和种子之间的运输[74]。
2 問题与展望
本文综述了近年来在模式植物拟南芥和水稻中有关锰转运蛋白及其吸收、转运锰,调节植物体内锰平衡方面的研究,这些研究加深了我们对锰转运体以及植物响应环境中锰浓度变化机制的认识。但仍有大量问题有待解决:比如大多数锰转运蛋白IRT、CAX等并非锰特异性转运蛋白,可以同时转运铁或钙等金属,运转何种金属离子
是如何决策的以及有没有锰专一转运蛋白等?另外,锰转运体如何控制植物体内锰稳态的分子机制,例如拟南芥和水稻细胞中的锰运输途径(图1)[77],仍然知之甚少,需要进一步探索。如何利用已知的与锰吸收、转运、分配相关的基因,培育出适应锰缺乏土壤或者高锰土壤生长的作物新品种,对提高作物产量、保证粮食安全有重要意义,更应该是未来的研究方向。
图片引自文献[75],并做部分修改。
参考文献
Goussias C, Boussac A, Rutherford A W. Photosystem II and photosynthetic oxidation of water: an overview[J]. Philosophical Transactions of the Royal Society. B: Biological sciences, 2002, 357: 1369–1381, 1419–1420
Nickelsen J, Rengstl B. Photosystem II assembly: from cyanobacteria to plants[J]. Plant of Review Annual Biology, 2013, 64: 609–635.
Cailliatte R, Schikora A, Briat J F, et al. High-affinity manganese uptake by the metal transporter NRAMP1 is essential for Arabidopsis growth in low manganese conditions[J]. The Plant Cell, 2010, 22(3): 904-917.
Hebbern C A, Pedas P, Schjoerring J K, et al. Genotypic differences in manganese efficiency: field experiments with winter barley (Hordeum vulgare L.)[J]. Plant and Soil, 2005, 272(1/2): 233-244.
Hebbern C A, Laursen K H, Ladegaard A H, et al. Latent manganese deficiency increases transpiration in barley (Hordeum vulgare)[J]. Physiologia Plantarum, 2010, 135(3): 307-316.
Husted S, Laursen K H, Hebbern C A, et al. Manganese deficiency leads to genotype-specific changes in fluorescence induction kinetics and state transitions[J]. Plant Physiology, 2009, 150(2): 825-833.
Marschner H. Marschners mineral nutrition of higher plants[M]. Pittsburgh: Academic Press, 2012.
Kochian L V, Hoekenga O A, Pi?eros M A. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency[J]. Annual Review of Plant Biology, 2004, 55(1): 459-493.
Bereczky Z, Wang H Y, Schubert V, et al. Differential regulation of nramp and irt metal transporter genes in wild type and iron uptake mutants of tomato[J]. Journal of Biological Chemistry, 2003, 278(27): 24697-24704.
Kaiser B N, Moreau S, Castelli J, et al. The soybean NRAMP homologue, GmDMT1, is a symbiotic divalent metal transporter capable of ferrous iron transport[J]. Plant Journal, 2010, 35(3): 295-304.
Xiao H, Yin L, Xu X, et al. The iron-regulated transporter, MbNRAMP1, isolated from Malus baccata is involved in Fe, Mn and Cd trafficking[J]. Annals of Botany, 2008, 102(6): 881-889.
Oomen R J, Wu J, Lelièvre F, et al. Functional characterization of NRAMP3 and NRAMP4 from the metal hyperaccumulator Thlaspi caerulescens[J]. New Phytologist, 2010, 181(3): 637-650.
Cailliatte R, Lapeyre B, Briat J F, et al. The NRAMP6 metal transporter contributes to cadmium toxicity[J]. Biochemical Journal, 2009, 422(2): 217-228.
Thomine S, Lelièvre F, Debarbieux E, et al. AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency[J]. The Plant Journal, 2003, 34(5): 685-695.
Lanquar V, Ramos M S, Lelièvre F, et al. Export of vacuolar manganese by AtNRAMP3 and AtNRAMP4 Is required for optimal photosynthesis and growth under manganese deficiency[J]. Plant Physiology, 2010, 152(4): 1986-1999.
Yamaji N, Sasaki A, Xia J X, et al. A node-based switch for preferential distribution of manganese in rice[J]. Nature Communications, 2013, 4(9): 2442.
Yang M, Zhang W, Dong H, et al. OsNRAMP3 is a vascular bundles-specific manganese transporter that is responsible for manganese distribution in rice[J]. PLoS One, 2013, 8(12): e83990.
Ishimaru Y, Takahashi R, Bashir K, et al. Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport[J]. Scientific Reports, 2012, 2: 286.
Ishimaru Y, Bashir K, Nakanishi H, et al. OsNRAMP5, a major player for constitutive iron and manganese uptake in rice[J]. Plant Signaling and Behavior, 2012, 7(7): 763-766.
Yang M, Zhang Y, Zhang L, et al. OsNRAMP5 contributes to manganese translocation and distribution in rice shoots[J]. Journal of Experimental Botany, 2014, 65(17): 4849-4861.
楊 猛. 水稻NRAMP家族基因在Mn和Cd转运中的功能研究[D]. 武汉: 华中农业大学, 2014.
Curie C, Panaviene Z, Loulergue C, et al. Maize yellow stripe1 encodes a membrane protein directly involved in Fe (III) uptake[J]. Nature, 2001, 409(6818): 346-349.
Jr D D R, Roberts L A, Sanderson T, et al. Arabidopsis Yellow Stripe-Like2 (YSL2): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine-metal complexes[J]. Plant Journal, 2010, 39(3): 403-414.
Waters B M, Chu H H, Didonato R J, et al. Mutations in Arabidopsis yellow stripe-like1 and yellow stripe-like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds[J]. Plant Physiology, 2006, 141(4): 1446-1458.
Chu H H, Chiecko J, Punshon T, et al. Successful reproduction requires the function of Arabidopsis YELLOW STRIPE-LIKE1 and YELLOW STRIPE-LIKE3 Metal-Nico tia namine transporters in both vegetative and reproductive structures[J]. Plant Physiology, 2010, 154(1): 197-210.
Conte S S, Chu H H, Rodriguez D C, et al. Arabidopsis thaliana Yellow Stripe1-Like4 and Yellow Stripe1-Like6 localize to internal cellular membranes and are involved in metal ion homeostasis[J]. Front Plant Science, 2013, 4(283): 1-16.
Divol F, Couch D, Conéjéro G, et al. The Arabidopsis YELLOW STRIPE LIKE4 and 6 transporters control iron release from the chloroplast[J]. Plant Cell, 2013, 25(3): 1040-1055.
Koike S, Inoue H, Mizuno D, et al. OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem[J]. The Plant Journal, 2004, 39(3): 415-424.
Ishimaru Y, Masuda H, Bashir K, et al. Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese[J]. The Plant Journal, 2010, 62(3): 379-390.
Shao J F, Yamaji N, Shen R F, et al. The key to Mn homeostasis in plants: regulation of Mn transporters[J]. Trends in Plant Science, 2017, 22(3): 215-224.
Sasaki A, Yamaji N, Xia J, et al. OsYSL6 is involved in the detoxification of excess manganese in rice[J]. Plant Physiology, 2011, 157(4): 1832-1840.
Eide D, Broderius M, Fett J, et al. A novel iron-regulated metal transporter from plants identified by functional expression in yeast[J]. Proceedings of the National Academy of Sciences, 1996, 93(11): 5624-5628.
Grotz N, Fox T, Connolly E, et al. Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency[J]. Proceedings of the National Academy of Sciences, 1998, 95(12): 7220-7224.
Wintz H, Fox T, Wu Y Y, et al. Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis[J]. Journal of Biological Chemistry, 2003, 278(48): 47644-47653.
Pedas P, Ytting C K, Fuglsang A T, et al. Manganese efficiency in barley: identification and characterization of the metal ion transporter HvIRT1[J]. Plant Physiology, 2008, 148(1): 455-466.
Milner M J, Seamon J, Craft E, et al. Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis[J]. Journal of Experimental Botany, 2013, 64(1): 369-381.
Zhang H, Zhao S, Li D, et al. Genome-wide analysis of the ZRT, IRT-Like protein (ZIP) family and their responses to metal stress in Populus trichocarpa[J]. Plant Molecular Biology Reporter, 2017, 35(5): 534-549.
Fu X Z, Zhou X, Xing F, et al. Genome-wide identification, cloning and functional analysis of the zinc/iron-regulated transporter-like protein (ZIP) gene family in trifoliate orange (Poncirus trifoliata L. Raf.)[J]. Frontiers in Plant Science, 2017, 8: 588.
Long L, Persson D P, Duan F, et al. The iron-regulated transporter 1 plays an essential role in uptake, translocation and grain-loading of manganese, but not iron, in barley[J]. New Phytologist, 2018, 217(4): 1640-1653.
M?ser P, Thomine S, Schroeder J I, et al. Phylogenetic relationships within cation transporter families of Arabidopsis[J]. Plant Physiology, 2001, 126(4): 1646-1667.
Vert G, Grotz N, Dedaldechamp F, et al. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth[J]. The Plant Cell, 2002, 14(6): 1223-1233.
Yang T J, Perry P J, Ciani S, et al. Manganese deficiency alters the patterning and development of root hairs in Arabidopsis[J]. Journal of Experimental Botany, 2008, 59(12): 3453-3464.
Ramegowda, Yamunarani, Venkategowda, et al. Expression of a rice Zn transporter, OsZIP1, increases Zn concentration;in tobacco and finger millet transgenic plants[J]. Plant Biotechnology Reports, 2013, 7(3): 309-319.
Sasaki A, Yamaji N, Mitani-Ueno N, et al. A node-localized transporter OsZIP3 is responsible for the preferential distribution of Zn to developing tissues in rice[J]. Plant Journal, 2015, 84(2): 374-384.
Ishimaru Y, Masuda H, Suzuki M, et al. Overexpression of the OsZIP4 zinc transporter confers disarrangement of zinc distribution in rice plants[J]. Journal of Experimental Botany, 2007, 58(11): 2909.
Lee S, Jeong H J, Sun A K, et al. OsZIP5 is a plasma membrane zinc transporter in rice[J]. Plant Molecular Biology, 2010, 73(4-5): 507-517.
Kavitha P G, Sam K, Mathew M K. Functional characterization of a transition metal ion transporter, OsZIP6 from rice (Oryza sativa L.)[J]. Plant Physiology and Biochemistry, 2015, 97(6): 165-174.
Ricachenevsky F K, Punshon T, Lee S, et al. Elemental profiling of rice FOX lines leads to characterization of a new Zn plasma membrane transporter, OsZIP7[J]. Frontiers in Plant Science, 2018, 9: 865-877.
Lee S, Sun A K, Lee J, et al. Zinc deficiency-inducible OsZIP8, encodes a plasma membrane-localized zinc transporter in rice[J]. Molecules and Cells, 2010, 29(6): 551-558.
Montanini B, Blaudez D, Jeandroz S, et al. Phylogenetic and functional analysis of the Cation Diffusion Facilitator (CDF) family: improved signature and prediction of substrate specificity[J]. BMC Genomics, 2007, 8(1): 107-123.
Delhaize E, Kataoka T, Hebb D M, et al. Genes encoding proteins of the cation diffusion facilitator family that confer manganese tolerance[J]. The Plant Cell, 2003, 15(5): 1131-1142.
Gustin J L, Zanis M J, Salt D E. Structure and evolution of the plant cation diffusion facilitator family of ion transporters[J]. BMC Evolutionary Biology, 2011, 11(1): 76-88.
Delhaize E, Gruber B D, Pittman J K, et al. A role for the AtMTP11 gene of Arabidopsis in manganese transport and tolerance[J]. The Plant Journal, 2007, 51(2): 198-210.
Peiter E, Montanini B, Gobert A, et al. A secretory pathway-localized cation diffusion facilitator confers plant manganese tolerance[J]. Proceedings of the National Academy of Sciences, 2007, 104(20): 8532-8537.
Eroglu S, Meier B, Von W N, et al. The vacuolar manganese transporter MTP8 determines tolerance to Fe deficiency-induced chlorosis in Arabidopsis[J]. Plant Physiology, 2016, 170(2): 1030-1045.
Chen Z, Fujii Y, Yamaji N, et al. Mn tolerance in rice is mediated by MTP8. 1, a member of the cation diffusion facilitator family[J]. Journal of Experimental Botany, 2013, 64(14): 4375-4387.
Takemoto Y, Tsunemitsu Y, Fujii-Kashino M, et al. The tonoplast-localized transporter MTP8.2 contributes to manganese detoxification in the shoots and roots of Oryza sativa L[J]. Plant and Cell Physiology, 2017, 58(9): 1573-1582.
Ueno D, Sasaki A, Yamaji N, et al. A polarly localized transporter for efficient manganese uptake in rice[J]. Nature Plants, 2015, 1(12): 15170.
Gonzalez A, Lynch JP. Subcellular and tissue Mn compartmentation in bean leaves under Mn toxicity stress[J]. Australian Journal of Plant Physiology, 1999, 26(8): 811-822.
Fernando D R, Batianoff G N, Baker A J, et al. In vivo localization of manganese in the hyperaccumulator Gossia bidwillii (Benth.) N. Snow & Guymer (Myrtaceae) by cryo-SEM/EDAX.[J]. Plant Cell and Environment, 2010, 29(5): 1012-1020.
Pittman J K, Shigaki T, Marshall J L, et al. Functional and regulatory analysis of the Arabidopsis thaliana CAX2 cation transporter[J]. Plant Molecular Biology, 2004, 56(6): 959-971.
Shigaki T, Hirschi K D. Diverse functions and molecular properties emerging for CAX cation/H+ exchangers in plants[J]. Plant Biology, 2010, 8(4): 419-429.
Hirschi KD, Korenkov VD, Wilganowski NL, et al. Expression of Arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance[J]. Plant Physiology, 2000, 124: 125–133.
Korenkov V, Hirschi K, Crutchfield J D, et al. Enhancing tonoplast Cd/H antiport activity increases Cd, Zn, and Mn tolerance, and impacts root/shoot Cd partitioning in Nicotiana tabacum L[J]. Planta, 2007, 226(6): 1379-1387.
Edmond C, Shigaki T S, Nelson M D, et al. Comparative analysis of CAX2-like cation transporters indicates functional and regulatory diversity[J]. Biochemical Journal, 2009, 418(1): 145-154.
Mei H, Cheng N H, Zhao J, et al. Root development under metal stress in Arabidopsis thaliana requires the H+/cation antiporter CAX4[J]. New Phytologist, 2009, 183(1): 95-105.
Kamiya T, Akahori T, Maeshima M. Expression profile of the genes for rice cation/H+ exchanger family and functional analysis in yeast[J]. Plant Cell Physiology, 2005, 46: 1735-1740.
Kamiya T, Maeshima M. Residues in internal repeats of the rice cation/H+ exchanger are involved in the transport and selection of cations[J]. Journal of Biological Chemistry, 2004, 279: 812-819.
Morris J, Tian H, Park S, et al. AtCCX3 Is an Arabidopsis Endomembrane H+-dependent K+ transporter[J]. Plant Physiology, 2008, 148(3): 1474-1486.
Wu Z Y, Liang F, Young J C, et al. An Endoplasmic Reticulum-Bound Ca?/Mn? Pump, ECA1, Supports Plant Growth and Confers Tolerance to Mn? Stress[J]. Plant Physiology, 2002, 130(1): 128-137.
Mills R F, Doherty M L, Lopez-Marques R L, et al. ECA3, a Golgi-localized P2A-type ATPase, plays a crucial role in manganese nutrition in Arabidopsis[J]. Plant Physiology, 2008, 146(1): 116-128.
Li X, Chanroj S, Wu Z, et al. A distinct endosomal Ca2+/Mn2+ pump affects root growth through the secretory process[J]. Plant Physiology, 2008, 147(4): 1675-1689.
Sun A K, Punshon T, Lanzirotti A, et al. Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1[J]. Science, 2006, 314(5803): 1295-1298.
Zhang Y, Xu Y, Yi H, et al. Vacuolar membrane transporters OsVIT1 and OsVIT2 modulate iron translocation between flag leaves and seeds in rice[J]. Plant Journal, 2012, 72(3): 400-410.
Socha A L, Guerinot M L. Mn-euvering manganese: the role of transporter gene family members in manganese uptake and mobilization in plants[J]. Frontiers in Plant Science, 2014, 5: 106.