论如何打造线下金课
2019-07-15吕亚男
吕亚男
摘 要 本文结合笔者的日常教学实践和参加全国高校青年教师教学竞赛的经历,从知识传授、能力培养和价值塑造三个层面探讨“如何打造金课”。
关键词 金课 知识传授 能力培养 价值塑造
中图分类号:G642 文献标识码:A DOI:10.16400/j.cnki.kjdkx.2019.06.023
On How to Create Off-line Golden Course
LV Yanan
(Basic Course Department of Shandong University of Science and Technology, Taian, Shandong 271019)
Abstract Based on the author's daily teaching practice and the experience of participating in the teaching contest of young teachers in colleges and universities, this paper discusses how to build a golden course from three aspects: knowledge imparting, ability training and value shaping.
Keywords golden course; knowledge imparting; ability training; value shaping
2018 年 6 月 21 日,教育部召开了改革开放以来第一次新时代中国高等学校本科教育工作会议。自此,“消灭水课,打造金课”成为高等学校落实“双一流建设”,提高人才培养质量的基本抓手。“金课”即具有高阶型、创新性和挑战度的课。其中高阶性,就是知识、能力、素质有机融合,培养学生解决复杂问题的综合能力和高级思维。[1]
本文结合笔者的日常教学实践和参加全国高校青年教师教学竞赛的经历,以“高等数学”课程为例,从知识传授、能力培养和价值塑造三个层面探讨“如何打造金课”。
1 从知识传授层面探讨如何打造金课
“师者,所以传道授业解惑也。”传道授业是教师的天职。课堂是教师传道授业的主战场,而课程是教师传道授业的载体。笔者认为,金课绝不是简单的知识传授,但是要打造“金课”,首先从传授知识做起。而传授知识就要讲清知识的来龙去脉,即以“问题的由来、问题的剖析、问题的去向”为主线,引导学生探索知识的本质。
1.1 如何讲清问题的由来
数学是一门历史性或者说积累性很强的科学。[2]高等数学的主干是微积分。从公元前5世纪微积分思想的萌芽,到17世纪中叶牛顿和莱布尼茨创立微积分学,再到19世纪微积分趋于严谨,历时两千四百多年。这是数学发展史上的创举,也是高等数学课程的宝贵财富。一方面,从日常教学情况来看,借助数学史导入问题,符合学生的认知规律,能够激发学生的学习兴趣,加深学生对问题本质的理解。另一方面,从第二、三、四届全国青教赛的竞赛情况来看,33位讲授数学课程的教师中有15位使用了数学史案例,平均占比为45%,并且数学史的引用多集中在引入和小结部分。实践证明,借助学科的发展史讲述问题的由来不失为一剂良方。
1.2 如何剖析问题的本质
高等数学作为一门基础学科,具有高度的抽象性、严密的逻辑性和广泛的应用性。只有在高度抽象和统一的基础上,才能深入的揭示知识的本质规律,进而得以广泛的应用。以数学概念的剖析为例,往往采用“案例导入→类比归纳→抽象概括”的思路,重在挖掘概念中蕴含的思想。比如,在讲解导数的概念时,首先从平面曲线的切线斜率及变速直线运动的瞬时速度入手,分析得到切线斜率即割线斜率的极限,瞬时速度即平均速度的极限。然后,类比归纳两个问题所采用的分析思路和所得结论的共性,进而抽象概括出导数的本质为函数的变化率问题,即函数增量与自变量增量比值的极限。整个分析过程体现了由量变到质变的哲学思想。同样,在剖析性质、计算及应用时,也要注重挖掘知识背后的思想、观点和方法。
此外,剖析问题的本质还要注重知识脉络的整体性,[3]从整体与局部、正向与反向加以类比分析,让学生既见树木又见森林。比如,从定积分到重积分以及曲线、曲面积分,实际是积分思想从一维到高维的推广。这是从概念形成角度进行的由简单到复杂的正向的推广。而涉及到积分运算时,又要考虑如何将重积分转化为定积分,将曲线积分转化为定积分,以及将曲面积分转化为重积分进而转化为定积分。即从高维到低维,从复杂到简单的回归。在教与学中,抓住知识脉络的整体性,高屋建瓴进行剖析,定会事半功倍。
1.3 如何讲清问题的去向
在讲清问题的由来、剖析问题的本质之后,还要注重探索问题的去向,引导学生学以致用。华罗庚先生曾说:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。”[4]要讲清问题的去向,第一,可将高等数学与我们的生活生产实际相结合。比如,发电厂里冷凝塔的形状即为旋转单叶双曲面;桥梁的载荷设计要考虑主拱圈的曲率;警犬的搜毒路线涉及到梯度等等。第二,将高等数学与专业课程相结合。比如,对于经济管理类的学生,可以将导数应用到边际分析、弹性分析中;对于电气工程类的学生,可以将定积分应用到已知电流的时间函数求电压等電学案例中;对于地质工程类的学生,可以将零点定理应用到地洼学说中。第三,将高等数学与科技前沿相结合。比如,应用曲面的面积公式求解“墨子号”量子科学实验卫星对地球表面的实时覆盖面积;应用拉格朗日乘数法求解返回舱进入地球大气层后表面温度的最高点。
综上所述,要打造金课,从传授知识层面而言,应该将每一个知识点打造成一个六面体,教师要力图讲清六面体的每一个面:上是哲学,为什么会产生这个知识;下是实践,这个知识有什么用;后是历史,这个知识从何而来;前是前沿,这个知识去向何方;左、右代表这个知识与其他学科的联系。[5]要完成上述目标,就要求教师要花时间花精力花情感去备课,既要备教材(包括课本、参考书目、文献资料等),又要备学生(包括学情、培养方案、专业课程调研等),还要备教法。讲清知识只是金课的起点,绝非终点。所以,在传授知识的过程中,我们还要注重培养学生的能力。
2 从能力培养层面探讨如何打造金课
高等数学作为非数学专业理工科学生的一门通识必修课,旨在锻炼学生的理性思维,培养学生发现问题和分析解决问题的能力,为学生后继专业课的学习及理论深造奠定必要的数学基础。那么在高等数学课堂教学过程中,采用什么样的方式方法,打造什么样的课堂才能有助于学生的能力培养,是每一位数学教师应该研究和实践的重要课题。
2.1 如何培养学生发现问题的能力
发现问题的能力是指在学习的过程中产生一种发现问题的意识,进而形成一种学习能力。[6]爱因斯坦认为:“提出一个问题比解决一个问题更为重要。” 孔子曾提出“疑思问”的主张,认为“疑是思之始,学之端”。不论是科学家,还是哲学家,一般都认为科学研究和科学发现始于问题。既然发现问题如此之重要,那如何在高等数学课堂教学过程中,培养学生发现问题的能力呢?
首先,在课堂教学的导入部分,教师应该注重“问题的提出”。比如,在讲零点定理时,可以借助实例提出问题:对形状不规则的大理石板材,过其表面上任意一点能否对其表面平均切割?问题的提出,既引出了本节课的主题,也激发了学生迫切的学习愿望。
其次,用问题贯穿课堂教学的起承转合。当然,问题的提出,要经过精心設计;所提的问题,要具有高阶型,要服务于课堂教学。比如,在零点定理的课堂教学过程中,笔者通过提出“如何解决大理石的平均切割问题”、“要学习零点定理,首先要知道什么是零点”、“满足什么条件时,零点才是存在的”、“零点定理可以帮助我们解决什么问题”贯穿零点定理的讲解,引导学生探索零点定理的内容及应用。
再次,在课程的小结部分,利用“问题的提出”进行知识点的延拓,起到承上启下的作用。比如,总结零点定理时,可以提出两类问题。一类是零点定理应用上的延拓。能否用零点定理解决“椅子在不平坦的地面上放平的问题”、“上山下山问题”、“拉橡皮筋的问题”等,旨在引导学生学以致用,加深对零点定理的理解。另一类问题是对零点定理的推广。“如果将零点定理中‘区间端点函数值异号这个条件去掉,定理的结论会发生什么变化呢”,问题的提出即体现了数学问题的研究思路,又起到承上启下的作用,引出下节课将要讲到的介值定理。
总之,要培养学生发现问题的能力,需要教师在进行教学设计的过程中对问题进行精心地设计,在课堂教学过程中以问题为驱动,引导学生“学思结合”、“善思乐思”,潜移默化中增强学生发现问题的意识,进而转化为一种学习能力。
2.2 如何培养学生分析解决问题的能力
分析问题的基础是扎实的知识储备和科学的思维方法。而问题的解决又基于对问题的充分认识与分析,也是发现问题、分析问题之后追求的必然结果。所以,要培养学生分析解决问题的能力,首先要注重课堂的科学性。从教学内容来说,要做到科学准确。在高等数学的课堂教学中,尤其要注意知识间的逻辑关系。从教学方法上来说,要做到科学合理,引导学生“化繁为简、以简驭繁”,“用已知探索未知”。对教学效果而言,要力求让学生将科学知识、科学思维、科学精神融入到生活中,进而形成优良的科学素养。
其次,要注重课堂的启发性。孔子云:“不愤不启,不悱不发。”在课堂教学中,教师是教学过程的参与者、引导者和推动者,而学生是教学的主体。通过教师巧妙的提问,学生思索作答,教师反诘,激起学生的“愤”与“悱”,此时再进行恰如其分的“启”与“发”,才能收到良好的效果。课程的启发性,体现了学生在教学中的自主性、能动性和创造性,培养了学生的科学思维。
再次,要注重课堂的趣味性。课堂的趣味性并非课堂的喧闹与热烈,而是思维的活跃与思辨的张力。一方面,教师要不断提高自身的学术水平,充实自身的知识储备。另一方面,教师要进行充分的学情分析和内容分析,精心设计生动的案例、挖掘知识蕴含的思想、选择恰当的方法策略。在此基础上,力求在课堂教学过程中,引起学生思想上的共鸣,促进学生主动探索与求知。
最后,要注重课堂的开放性。课堂的开放性是指知识应用(向其他领域)的延伸、对新知识的包容、知识创造的可能。[7]“教学”的本质是“教学生学”,教学生“乐学”“会学”“学会”。[8]所以,要彻底改变“传送带”式的单向的、线性的灌输型教学模式,取而代之的是环境宽松、思想开明、心胸开阔、视野开放、善于突破的开放性课堂。
具有科学性、启发性、趣味性和开放性的课堂,才能激发学生独立思考,融会贯通,提高学生“由现象到本质、由无序到规律”的分析能力,养成“知行合一,思行统一”的学习方法,最终促使学生“运其才智,勤其练习,领悟之源广开,纯熟之功弥深”。
3 从价值塑造层面探讨如何打造金课
教师的职责是教书育人,教育的根本目标是立德树人。所以,在传道授业解惑之上,还应考虑“培养什么人,如何培养人”的问题。也就是,在价值塑造层面,教师通过言传身教“自谋修养、意志锻炼和情绪裁节”,[9]在春风化雨、润物无声中令学生有所取法。
首先,格局须高远。“培养什么人,是教育的首要问题。我国是中国共产党领导的社会主义国家,这就决定了我们的教育必须把培养社会主义建设者和接班人作为根本任务。”所以,每一门课程的教师都应该自觉将“课程思政”融入到课堂教学中,努力践行六个下功夫,培养“拥护中国共产党领导和我国社会主义制度、立志为中国特色社会主义奋斗终身的有用人才。”
其次,治学须严谨。教师应该结合自身所专长的学科知识,精心备课、用心上课、诚心反思,做到课前准备充分,课上讲授明晰,考核尽心负责。教师治学的态度与学生求知的态度是密切相关的。教师治学严谨,学生则不敢马虎,对教师心生敬畏,对求知一丝不苟。
再次,修养须提高。“师者,人之模范也”。“在学生眼里,老师是‘吐辞为经、举足为法,一言一行都给学生以极大影响。”所以,教育者应先受教育。教师身先垂范,锻炼意志、裁节情绪、“持志养气”,学生才能通过耳濡目染、观摩所得,自觉提高个人修养。
最后,教育要有爱。爱学生才会把学生当朋友,当自己的子弟;才会设身处地考虑学生之所需;才会甘当学生成长道路上的一块坚实而平稳的铺路石。这样学生才会把你当良师益友;有问题、有困惑才会找你倾诉。[10]老师对学生的教育就像鱼在水中游泳,大鱼前导,小鱼尾随,日日观摩,自然会受到耳濡目染之效。所以,教师应对学生报以深沉的爱,投入精力和时间,打破课堂之局限,担起教书育人之大任。
4 结束语
教书育人是教育分内的事,是高等教育不言自明的本分。大学教师既作为知性而存在,又作為德性而存在,既是学问之师,又是品行之师,既是经师,又是人师。[11]回归教育之本分,实现教书与育人的有机统一,科学性与思想性的有机统一,最终要落实到课程上。所以,“打造金课”是新时代高等教育的必然要求,是推进“四个回归”的具体抓手,是落实“立德树人”根本任务的具体化、操作化和目标化,更是每一位教师的职业良心与历史使命!
基金:山东科技大学优秀教学团队支持计划:大学数学优秀教学团队(编号:JXTD20180509);山东科技大学2018群星计划教育教学改革项目:基于新时代背景下创新人才培养的工程数学教学改革研究(编号:QX2018M91)
参考文献
[1] 吴岩.建设中国“金课”[J].中国大学教学,2018(12):4-9.
[2] 杜瑞芝.数学史辞典新编[M].济南:山东教育出版社,2017:1.
[3] 吕中学.积分的整体性[J].高等数学研究,2019(1):126-128.
[4] 王元,陈德全等.华罗庚科普著作选集[M].上海:上海教育出版社,1984:337.
[5] 李志义.推进六个转变,让水课变成金课[EB/OL].第十一届中国大学教学论坛,2018-11-23.
[6] 裴建平.在数学教学中培养学生“问题发现”能力的实践研究[J].中国现代教育装备,2019(1):53.
[7] 原弘.以青年教师教学竞赛引导课堂教学改革和质量提升[J].中国大学教学,2017(11):77-81.
[8] 李志义.“水课”与“金课”之我见[J].中国大学教学,2018(12):24-29.
[9] 梅贻琦.大学一解[J].清华学报,1941(1):1-12.
[10] 周毓荣.甘当铺路石——做教师的体会[J].山东科技大学学报(社会科学版),2001(12):5-8.
[11] 袁占亭.高等教育“四个回归”的时代意义[J].中国高等教育,2016(12):17-21.