APP下载

多策略人工蜂群算法在梯级水电站优化调度中的应用

2019-06-24谢海华孙辉龚文引

南水北调与水利科技 2019年2期

谢海华 孙辉 龚文引

摘要:梯级水电站优化调度问题的准确、快速求解,是水利学科领域需解决的基本问题。针对该问题,提出了一种新的多策略人工蜂群算法。为更好地平衡算法的全局搜索与局部搜索能力,新算法在两个具有代表性的解搜索策略基础上,对其融合构成新的搜索策略,同时保留了原有的两个解搜索策略。新算法的三个候选解搜索策略,增强了对各类优化问题求解的适应性。为验证新算法的适应性及可行性,不仅在经典的基准测试函数中对其进行测试,并且将其应用于梯级水电站优化调度问题。实验结果表明,新算法具有适应性强、收敛速度快等优点。

关键词:梯级水电站;优化调度;人工蜂群算法;收敛速度;多策略

中图分类号:TV11文献标志码:A

Abstract:To accurately and quickly solve the optimal operation problem of cascade hydro-power stations is a challenge in the field of water conservancy.A new multi-strategy artificial bee colony algorithm was proposed in this study.In order to better balance the global search and local search capabilities of the algorithms,two representative solution search strategies were used in this new algorithm,and they were combined to form a new search strategy while retaining the original two solution search strategies.Therefore,the new algorithm contained three candidate solution search strategies in the process of searching new solutions,which was convenient to strengthen the adaptability to various optimization problems.The adaptability and feasibility of the new algorithm were tested in the classic benchmark function and applied to the optimal operation of cascade hydro-power stations.Experimental results showed that the new algorithm had the advantages of stronger adaptability and faster convergence speed.

Key words:cascade hydro-power stations;optimal dispatch;artificial bee colony algorithm;rate of convergence;multi-strategy

梯級水电站的优化调度,是一个高维、多约束、非线性问题。解决该问题的核心是建立准确反应实际优化调度问题的模型和采用适当的求解方法[1]。目前,优化调度的数学模型相对成熟,但对于多约束条件下,快速及准确求解是该问题的难点所在。传统方法和群智能方法是解决优化调度问题的主要方法[2-3],其中传统方法包括:线性规划(Linear Programming,LP)[4]、非线性规划(Nonlinear Programming,NLP)[5]、动态规划(Dynamic Programming,DP)[6]和大系统法(Large-scale System,LS)[7];群智能方法包括:人工蜂群(Artificial Bee Colony,ABC)算法[8]、蚁群算法(Ant Colony Optimization,ACO)[9]、遗传算法(Genetic Algorithm,GA)[10]、粒子群算法(Particle Swarm Optimization,PSO)[11]等。传统方法能有效解决单库水电站调度问题,但对于梯级水电站的优化调度问题,不仅方法复杂且存在“维数灾”、易陷入局部最优等缺点。相比传统方法,群智能算法具有实现简单、求解速度快等优点[12]。

2005年,土耳其学者karaboga为解决多变量函数问题,提出了ABC算法,其具有收敛速度快、参数少、鲁棒性强等优点,并广泛应用至各行业,如机器人路径优化[13-14]和图像处理[15]等。相比其他群智能算法,ABC算法对维度不敏感(问题维度的高低不影响ABC算法性能)是它的一个显著特点。故本文采用ABC算法求解高维的梯级水库优化调度问题。遵循着“算法没有最好”的理念,ABC算法亦存在缺点,如全局搜索与局部搜索之间的平衡性较差。针对该问题,众多的研究者提出了许多改进方案。较经典的有Zhu[16]等人提出的GABC、Gao[17]等人提出的MABC、Kiran[18]等人提出的ABCVSS,其中,Zhu等人针对ABC算法局部搜索能力弱的缺点,将全局最优引入到解搜索策略中;Gao等人针对ABC算法全局搜索与局部搜索能力平衡性差的缺点,通过引入控制参数,以达到目的;Kiran等人为丰富解搜索策略,构成了解搜索策略池,以适应多种类型优化问题。

目前的研究表明,更好地平衡ABC算法的全局搜索与局部搜索能力,可有效改善算法的总体性能。为此本文提出了一种新的多策略人工蜂群算法(Multi-strategy Artificial bee colony,MsABC)算法。

[6] YOUNG G K.Finding reservoir operating rules[J].Journal of the Hydraulics Division,1967,93(6):297-322.

[7] ARVANITIDIS N V,ROSING J.Optimal operation of multireservoir systems using a composite representation[J].IEEE Transactions on Power Apparatus & Systems,1970,PAS-89(2):327 -335.

[8] KARABOGA D.An idea based on honey bee swarm for numerical optimization,Technical Report-TR06[M].Erciyes University:Kayseri,Turkey,2005.

[9] DORIGO M,CARO G D.Ant colony optimization:a new meta-heuristic[J].Proceedings of the Congress on Evolutionary Computation,1999,2(4):1470-1477.

[10] GOLDBERG D E.Genetic algorithm in search[Z].Addison-Wesley,Reading,1989.

[11] KENNEDY J,EBERHART R.Particle swarm optimization[C].IEEE International Conference on Neural Networks,1995.Proceedings.IEEE,2002,4:1942-1948.

[12] 焦鈺,王建群,贾洋洋.基于狼群算法的水电站优化调度模型参数优选[J].南水北调与水利科技,2017,15(2):58-64.(JIAO Y,WANG J Q,JIA Y Y.Parameter analysis of wolf pack search algorithm applied to optimal operation of hydropower station[J].South-to-North Water Transfers and Water Science & Technology,2017,15(2):58-64.(in Chinese)) DOI:10.13476/j.cnki.nsbdqk 2017.02.009.

[13] 黎竹娟.人工蜂群算法在移动机器人路径规划中的应用[J].计算机仿真,2012,29(12):247-250.(LI Z J.Application of artificial bee colony algorithm in path planning of mobile robot[J].Computer Simulation,2012,29(12):247-250.(in Chinese))

[14] 谭玉新,杨维,徐子睿.面向煤矿井下局部复杂空间的机器人三维路径规划方法[J].煤炭学报,2017,42(6):1634-1642.(TAN Y X,YANG W,XU Z R.Three-dimensional path planning method for robot in underground local complex space[J].Journal of China Coal Society,2017,42(6):1634-1642.(in Chinese)) DOI:10.13225/j.cnki.jccs.2016.1047

[15] 肖永豪.蜂群算法及在图像处理中的应用研究[D].广州:华南理工大学,2011.(XIAO Y H.Study on artificial bee colony algorithm and its application in image processing[D].Guangzhou:South China University of Technology,2011.(in Chinese))

[16] ZHU G,KWONG S.Gbest-guided artificial bee colony algorithm for numerical function optimization[J].Applied Mathematics & Computation,2010,217(7):3166-3173.

[17] GAO W,LIU S.A modified artificial bee colony algorithm[J].Computers & Operations Research,2012,39(3):687-697.

[18] KIRAN M S,HAKLI H,GUNDUZ M,et al.Artificial bee colony algorithm with variable search strategy for continuous optimization[J].Information Sciences,2015,300:140-157.DOI:10.1016/j.ins.2014.12.043.

[19] GAO W,LIU S,HUANG L.A novel artificial bee colony algorithm based on modified search equation and orthogonal learning[J].IEEE Transactions on Cybernetics,2013,43(3):1011.

[20] CUI L,ZHANG K,LI G.et al.Modified Gbest-guided artificial bee colony algorithm with new probability model[J].Soft Compute.2018(22):2217-2243.DOI:10.1109/TSMCB.2012.2222373.

[21] 王坤.改进人工蜂群算法在梯级水库群优化调度中的应用[D].南昌:南昌工程学院,2017.(WANG K.The application of artificial bee colony algorithm in optimal operation of cascade reservoirs is improved[D].Nanchang:Nanchang Institute of Technology,2017.(in Chinese))

[22] KARABOGA D,GORKEMLI B.A quick artificial bee colony (qABC) algorithm and its performance on optimization problems[J].Applied Soft Computing,2014,23(5):227-238.DOI:10.1016/j.asoc.2014.06.035.

[23] 成鵬飞,方国华,黄显峰.基于改进人工蜂群算法的水电站水库优化调度研究[J].中国农村水利水电,2013(4):109-112.(CHENG P F,FANG G H,HUANG X F.Optimal operation of hydropower station reservoir based on improved bee colony algorithm[J].China Rural Water and Hydropower,2013(4):109-112.(in Chinese))

[24] 李文莉,李郁侠,任平安.基于云变异人工蜂群算法的梯级水库群优化调度[J].水力发电学报,2014,33(1):37-42.(LI W L,LI Y X,REN P A.Optimal operation of cascade reservoirs based on cloud variation-artificial bee colony algorithm[J].Journal of Hydroelectric Engineering,2014,33(1):37-42.(in Chinese))