如何进行小学数学应用题审题阅读训练
2019-06-12张国文
张国文
【中图分类号】G632 【文献标识码】A
【文章编号】2095-3089(2019)11-0182-01
数学是一门抽象性很强的学科,尤其是在解答应用题的时候,需要把抽象的数量关系从问题描述中抽取出来。因此,小学数学应用题不仅是分析数量关系,还要学会理解和分析题意。要聊会学生应用题的审题阅读方法,帮助学生弄清题意,理解题意,搞清楚已知条件和问题分别是什么,才能真正学会解答应用题目。
一、阅读教学方法在小学应用题中的运用
在审题阅读过程中,首先得弄清楚题目中呈现的词汇的含义,尤其是应用题,题材内容非常广泛,并且文字描述十分精炼,用数学的名词术语表达一些数量关系,对低年级的小学生来说,阅读一道数学题可能比阅读一篇语文课文还要难。如果连题目都阅读不清楚,更无从谈起解题了。因此,首先得教导小学生重视数学的词汇表达,弄清楚一些词汇的涵义。
1.名词术语的教学。
在很多题目中,数学的名词术语对整个题目有决定性的运用。比如反映农业生产方面的术语有:日产量、亩产量、总产量平均产量等,表示数量关系的名次术语有:一共、还剩、原本有、和……同样多等。这些名词术语对题目的分析理解起着至关重要的运用,一定要带领学生认识并且领悟名词术语的涵义,还可以指导学生用名词术语进行造句,真正理解它所表达的意义。
2.代词、副词的教学。
要读懂题意,还要弄清一些代词、副词的涵义。在题目中出现的代词,要弄清楚他所代表的涵义,这不仅需要学生具备理解词汇的能力,还得学会分析上下文。另外,题目中也经常出现副词,表示事情发展的程度,发生的范围、时间等,这对理解题意也是非常重要的。
3.属性概念的教学。
最后,还要扩充小学生的词汇量,因为在题目中经常设计一些属性词汇。比如苹果、西瓜属于水果,小麦、大米属于粮食,土豆,西红柿属于蔬菜,毛笔、铅笔盒属于文具等。如果学生搞不清这些名次所代表的物品的属性,也难得到正确的答案。
二、小学生数学审题能力地培养
1.读一读。
读题肯定是了解题目的第一步,也是培养审题能力的开始。通过阅读,首先要了解题意,对题目的内容形成大概的了解个感知,弄清楚题目描述的是一件什么事情,认清题目中藴含的关系和事理。
阅读,首先要对题目中表达的数学名詞术语有清晰的认识,像上文提到的表示数量关系的各种单位符号,都需要特别注意。比如在倍数关系题目中“倍”的含义,是……的俩倍,比……多俩倍,都是常见的表达。还有计算行程问题中,比如“相向而行”、“相背而行”等,如果学生不能理解这些术语,也就无法正确分析题意。其次,要对题目中表示数量关系的句子反复推敲,比如“学校举行趣味运动会,四班运球39个,比三班多运球12个,问三班运了多少个球?”有的小学生很容易背题目中的表述给绕晕了,不清楚到底是四班运球多还是三班运球多。这就要抓住关键句子“比三班多运球12个”,联系上下文这里省略了主语“四班”,完整表述应该是“四班比三班多运球12个”。很明显是四班多,三班少,在根据数量关系,很容易计算三班的运球总量。
2..想一想。
在阅读题目的时候,要引导学生多加思考,边读边想,对题目进行重复感知。首先要思考题目中呈现的已知条件那些与问题有直接关系,那些条件有间接关系,而哪些条件是用来干扰的,是多余无用的条件。其次,要善于发现题目中藴含的隐藏条件。尤其是一些倍数关系、数量关系,往往用很少的字眼来呈现,学生容易忽略。另外,还要思考条件与条件直接的关系,比如A和B之间有一定关系,而B和C之间的关系。尤其是复合型的应用题,他最后的问题往往不能通过已知条件直接计算出来,而要对已知条件进行加工,求出中间问题,猜得到解决最终问题的钥匙。
3.设一设。
数学是比较抽象的知识和学科,小学生的抽象逻辑思维本就有限,如果数学题目的描述跟小学生的生活相差较大,学生没有类似的生活经验和阅历,那么对题目的分析理解肯定存在很大的困难。因此,在数学教学中,可以根据题目的情节创设成熟悉的问题情景,或者在不改变题目条件的前提下,可以把叙述的事件更改转换成学生较为熟悉的事例。也可以直接借用实物进行显示,让学生直观呈现题目中表述的数量关系。在一些问题条件比较模糊个隐藏的题目上,可以通过画图或者是物演示的方式让学生理解和弄清问题。
4.划一划。
小学生的分析理解能力毕竟有限,只读一遍题目很难分清已知条件和未知条件。因此,在数学审题过程中,可以培养小学生“划一划”的良好习惯,用划一划的方法划出题目中的已知条件,需要解决的问题,重点的词语和数量关系。甚至可以让小学生按照以上的方式把题目中的藴含内容例出来,加强对题目的分析和认知。同时弥补了小学生注意集中性差,注意范围小,感知比较粗略不足。
因此,在数学审题中要加强学生的阅读能力,通过划一划,更好的理清数量关系,划一划的主要目的是抓住文字表述中的关键词,因为数学题目是通过语言文字表述中的关键变量,分清数量关系,才能对题目中的关系进行分解,化繁为简,化难为易。