APP下载

高温和干旱对水稻的影响及其机制的研究进展

2019-05-24段骅佟卉刘燕清许庆芬马骏王春敏

中国水稻科学 2019年3期
关键词:灌浆籽粒淀粉

段骅 佟卉 刘燕清 许庆芬 马骏 王春敏



高温和干旱对水稻的影响及其机制的研究进展

段骅*佟卉 刘燕清 许庆芬 马骏 王春敏

(天津市农作物研究所 天津市农作物遗传育种重点实验室,天津 300384;*通讯联系人,E-mail: duanhua2004@gmail.com)

高温和干旱是影响水稻生长、发育、产量和品质的两个最重要的环境因子,全面理解高温和干旱胁迫对评价气候变化对水稻生产的影响至关重要。概述了高温、干旱及其复合胁迫对水稻生长发育、产量形成和稻米品质的影响;从光合作用、抗氧化系统、内源激素、蔗糖-淀粉代谢途径关键酶活性、分子机制等方面阐述其生理机制;提出减轻水稻高温干旱胁迫的调控措施;对未来深入开展水稻高温干旱逆境的研究提出建议。

水稻;高温;干旱;高温干旱复合胁迫;产量;品质;生理机制

气候变化是21世纪中国乃至全球农业面临的严峻挑战之一,对农业的影响直接关系到粮食安全和经济安全。水稻是我国最主要的粮食作物之一,生殖生长期遇35℃以上的高温就会对水稻产生危害[1]。全球气候变化报告[2]指出,近130年(1880-2012年)全球平均地表温度上升了0.85℃,预计2016-2035年全球平均地表温度将继续升高0.3℃~0.7℃,水稻遭受干旱胁迫的面积将扩大一倍。而气候变化造成粮食产量和品质的降低,主要原因在于高温和干旱胁迫[2]。近年来国内外学者针对高温或干旱单一因子影响水稻的特征和机理进行了大量研究,涉及生长发育[3-5]、生理生态[6, 7]、产量与品质[8, 9]等方面。但在大田生产中,高温和干旱同时发生的几率逐年增加[10],加重了高温或干旱对水稻产量和品质形成的危害。笔者就高温和干旱对水稻产量和品质的影响及其生理机制进行综述,以期进一步认识高温和干旱与水稻产量和品质形成的关系,为指导水稻高温干旱育种、抗热节水栽培,保障我国粮食安全提供理论参考。

1 高温与干旱对水稻生长发育及产量和品质的影响

1.1 对生长发育的影响

在不同发育时期,水稻对高温的响应表现不同,敏感程度依次为抽穗开花期>幼穗发育期>灌浆期[11, 12]。在抽穗开花期遇到高温,能使开花期提前[13, 14],致使花药开裂不良、花粉萌发率低和花粉活力下降,最终造成水稻籽粒败育[15-17];幼穗发育期遇到高温,会抑制颖花分化,导致颖花退化;在灌浆期遇到高温,会缩短灌浆期,阻碍籽粒充实[18]。营养生长期遇到高温会促进水稻的生长,株高、茎蘖数、叶面积和地上部干物质量明显增加[19]。

水稻营养生长期遇到干旱胁迫,光合作用受到限制,叶面积减小、分蘖减少[20],叶片易卷曲[21];水稻生殖生长期对干旱胁迫高度敏感,干旱不仅导致叶面积减小,株高和收获指数降低,还会阻碍水稻的生殖器官发育,如降低可育花粉数量、延长开花期、致使花药异常开裂等[12, 22];灌浆中后期干旱导致叶片早衰,灌浆持续时间缩短,同化物供应受限,粒重降低。

有关高温和干旱复合胁迫对水稻生长发育的影响,已有学者进行了初步研究[17, 23]。多数研究认为,大气温度和土壤温度的升高会提高作物蒸腾耗水量和农田蒸散量,增加作物总耗水量,造成干旱缺水或进一步加剧干旱胁迫的危害[24-26],如Lawas等[10]发现,水稻抽穗灌浆期间,高温干旱复合胁迫显著降低株高和生物量;但Rang等[17]利用不同基因型水稻品种为材料,在开花期设置高温、干旱和高温干旱复合胁迫,通过花药开裂、花粉萌发和主穗结实率等指标,观察不同品种对高温、干旱的响应。结果表明,虽然高温、干旱和高温干旱双重胁迫均导致主穗败育,但高温胁迫造成的空粒率在不同处理中最高。高温干旱复合胁迫对主穗发育的影响并没有远大于高温或干旱单一胁迫的影响,这体现了高温和干旱复合胁迫的独特性和复杂性。

1.2 对产量及其构成因素的影响

水稻减数分裂期和抽穗开花期是对高温和水分胁迫最敏感的时期[27-29]。在水稻开花当日,如果田间遭遇高温或水分胁迫,就会导致花药异常开裂[30, 31],传粉受阻[32, 33]和花粉发育异常[34],造成小穗不育,易形成空秕粒,从而导致结实率和粒重降低,进而使水稻减产[35]。营养生长期高温或干旱影响分蘖发生,进而降低有效穗数[21, 36]。

现有较多报道证明[37-39],水稻抽穗开花期高温干旱双重胁迫会导致产量下降,高温干旱双重胁迫的影响大于单一高温或干旱胁迫。在产量构成要素中,结实率降幅最为明显,而对于千粒重,则有不同的结论。多数研究认为[33, 37, 39],高温干旱会显著降低千粒重,但也有研究发现[38],在胁迫环境下光合产物集中供应少数籽粒,会引起千粒重在一定幅度上的增加,但粒重之增远不足以弥补结实率和实粒数之失,最终还是会导致产量大幅下降。

1.3 对稻米品质的影响

稻米品质形成是品种遗传特性和环境条件综合作用的结果[11]。在环境因子中,温度升高对稻米品质影响的研究和进展最多[11, 35, 40]。虽然对水稻品质的影响尚存在诸多不确定性,这可能与品质分析和研究比较复杂有关,但研究结果多为不利的影响。灌浆结实期是环境影响稻米品质的关键时期,特别是灌浆前、中期高温对品质的影响最大[41]。高温通过缩短灌浆持续期,降低光合产物积累和运转、籽粒中蔗糖-淀粉代谢酶活性以及胚乳细胞发育和淀粉体的充实等生理过程,造成整精米率降低和直链淀粉含量降低[42, 43]、垩白粒率和垩白度增加、蛋白质含量和糊化温度升高[11],导致稻米品质变劣[11, 35, 44]。

干旱对稻米品质的影响与基因型和水分胁迫程度有关。结实期土壤适度干旱,可以显著提高籽粒内蔗糖-淀粉代谢途径中关键酶活性和灌浆速率,降低内源乙烯水平,显著提高稻米的最高黏度和崩解值,降低垩白度和消减值,改善品质,而重度干旱的结果则相反[45]。

关于高温干旱复合胁迫下稻米品质的变化,相关研究报道较少。笔者[33, 39]曾观察到,抽穗灌浆早期高温、干旱或高温干旱双重胁迫显著降低了稻米的精米率、整精米率和崩解值,增加了垩白米率、垩白度和消减值,但在品种间存在很大差异,高温及高温干旱双重胁迫对高温干旱敏感型品种的影响大于耐热耐旱型品种,稻米品质在高温干旱双重胁迫下变劣的幅度大于单一胁迫。高焕晔等[46]研究也表明,在相同胁迫时间内,高温干旱复合胁迫导致稻米直链淀粉含量降低和蛋白质含量增高的效应远大于单一高温胁迫和干旱胁迫。表1总结了高温和干旱对水稻不同生育阶段生长发育及产量和品质的影响。

2 高温与干旱影响水稻生长发育与产量形成的生理机制

2.1 光合作用

水稻遭遇高温或干旱单一胁迫会导致光合作用速率下降[35],一种原因是气孔限制,即胁迫促使气孔关闭,降低气孔导度,导致CO2供应受阻,进而降低光合作用和物质生产[54];另一种是非气孔限制,即胁迫通过影响植株内Rubisco活性和光系统PSⅡ结构而抑制光合作用[55]。现有研究均表明,水稻在高温干旱复合胁迫下光合作用速率较单一胁迫下大幅降低[56-60]。然而,水稻在高温干旱复合胁迫下光合作用速率降低的原因,究竟是由气孔因素还是非气孔因素引起,尚无定论。赵凤云等[60]认为,叶绿素含量及其比例是高温干旱复合胁迫下水稻光合作用降低的原因;刘照等[59]发现,气孔因素和非气孔因素均会导致高温干旱复合胁迫下水稻光合速率下降;高焕晔等[56]虽然比较了水稻在高温、干旱单一胁迫与双重胁迫间的光合生理差异,包括叶绿素含量和气孔导度等参数的变化,但是不同胁迫下影响光合作用的气孔限制与非气孔限制的比重如何,并未详细阐述;Perdomo等[58]研究观察到,水稻在干旱下光合速率降低的原因是气孔因素,而在高温下以及在高温干旱复合胁迫下,光合降低的原因与水稻植株内Rubisco活性降低显著相关。

表1 高温和干旱对水稻不同生育阶段生长发育及产量和品质的影响

2.2 抗氧化系统

活性氧(reactive oxygen species,ROS)在调控生物进程(如生长、发育和响应逆境胁迫)中作为信号分子起关键作用[61]。在干旱或高温等逆境胁迫下,活性氧的积累会导致大量细胞氧化损伤,抑制水稻光合作用[62]。为防止植物体受损,活性氧会被抗氧化机制清除。植物内的抗氧化系统可分为酶促系统和非酶促系统两大类,酶促系统主要包括超氧化物歧化酶(SOD)、谷胱甘肽还原酶(GR)、过氧化物酶(POD)和过氧化氢酶(CAT)等,非酶促系统主要由抗坏血酸(ASA)和还原性谷胱甘肽(GSH)构成。抗氧化系统也会受到逆境胁迫的影响[61]。

现有研究均表明,高温胁迫或干旱胁迫下,水稻抗氧化酶活性下降,清除能力降低,活性氧积累增加,膜脂过氧化作用加剧,细胞膜结构和功能受到破坏,质膜透性增加,剑叶生理生化机能受到伤害,光合速率降低[21, 49, 63, 64]。而高温或干旱胁迫对抗氧化系统的影响程度因品种的耐热性不同而存在差别[52, 65]。最近,Lai等[66]发现生物钟调控基因在昼夜节律条件下表现出特定的表达阶段,白天ROS清除系统的效率较高。Byeon和Back[67]观察到,夜间高温对水稻的影响与褪黑素的产生密切相关,褪黑素作为一种有效的抗氧化剂,能有效清除夜间高温下植物细胞中的ROS。因此,夜间ROS清除系统效率较低可能是水稻生产对夜间温度升高更敏感的原因之一。

有研究报道[37, 68],高温干旱复合胁迫下,水稻叶片中的抗氧化酶SOD和POD的活性降低,丙二醛、脯氨酸及超氧阴离子含量增加,降低了水稻的抗氧化能力;但也有研究发现[69],在高温胁迫、干旱胁迫及高温与干旱的复合胁迫下,水稻叶片的SOD、POD、CAT的活性总体上均显著高于对照,但SOD在高温与严重干旱的长期复合胁迫下,其活性比对照显著下降。

2.3 内源激素

根据植物激素对植物生长发育的调控作用可以将其分为抑制型植物激素和促进型植物激素两类。通常将脱落酸(abscisic acid,ABA)和乙烯称为抑制型植物激素,将生长素(indole-3-acetic acid,IAA)、细胞分裂素(cytokinins,CTK)和赤霉素(gibberellin,GA)称为促进型植物激素。杨建昌等[70]研究表明,在减数分裂期遭受水分胁迫,颖花中ABA、乙烯和1-氨基环丙烷-1-羧酸(ACC)浓度显著增加。Yang等[71]发现,结实期适度土壤干旱,导致水稻籽粒激素平衡发生改变,特别是赤霉素减少和ABA增加,促进了茎鞘中贮藏性14C的运转,加快了籽粒灌浆速率。还有一些研究表明,适度干旱后的复水灌溉可以显著提高叶片[72]和籽粒[73]中的CTK含量,这将有助于提高作物的光合能力和对氮素的吸收利用[74],加速胚乳细胞增殖,提高籽粒产量[75]。Tang等[76]发现,高温降低水稻花药中IAA、赤霉素含量,但增加ABA含量。

植物体内的多胺,最常见的有腐胺(putrescine,Put)、亚精胺(spermidine,Spd)和精胺(spermine,Spm),被普遍认为是生长调节物质或激素的第二信使,调节植物的生长、发育、形态建成和对环境逆境的响应[77-79]。曹云英等[3, 80]报道,灌浆期高温胁迫引起剑叶多胺积累,耐热性强的品种积累得更多,说明多胺积累能增强水稻对高温的适应性。Yang等[81]观察到,水稻具有较强的增强叶片多胺生物合成能力,以响应水分胁迫。多胺在植物防御水分胁迫中的作用因多胺形式和胁迫阶段而异。具有更高水平的游离型Spd/Spm和非溶性结合Put以及早期游离多胺积累的生理特性,对水稻适应干旱更有利。

李钰等[68]研究表明,高温干旱复合胁迫下,水稻内源激素中IAA、玉米素(ZT)和 GA 含量下降,而ABA和水杨酸(SA)含量上升,但作者并未比较高温或干旱单一胁迫下的内源激素变化。高温干旱复合胁迫如何影响水稻籽粒内源激素和多胺水平,目前尚缺乏充分的试验证据。

2.4 蔗糖-淀粉代谢途径关键酶活性

稻米胚乳中的淀粉约占糙米质量的90%以上[82],籽粒灌浆实质上是淀粉合成与累积的过程。源器官光合同化物(含茎鞘储存的非结构性碳水化合物)以蔗糖的形式经韧皮部运输到籽粒,之后在一系列酶作用下形成淀粉[83, 84]。据报道[84],水稻胚乳发育期参与籽粒蔗糖-淀粉代谢途径的酶有33种,但5种酶在其中起关键作用[84-86]。这些酶包括蔗糖合酶(sucrose synthase,EC 2.4.1.13,SuS)、腺苷二磷酸葡萄糖焦磷酸化酶(ADP glucose pyrophosphorylase, EC 2.7.7.27, AGP)、淀粉合酶(starch synthase,EC 2.4.1.21, StS)、淀粉分支酶(starch branching enzyme,EC 2.4.1.18, SBE)和淀粉脱支酶(starch debranching enzyme,EC 3.2.1.70, DBE)。其中,淀粉合酶又分为可溶性淀粉合酶(soluble starch synthase,EC 2.4.1.18, SSS)和颗粒结合型淀粉合酶(granule bound starch synthase, EC 2.4.1.242, GBSS),每组酶有几种同工型[87]。在灌浆期水稻籽粒里,这5种酶活性与籽粒灌浆速率和淀粉积累速率正相关[83, 84, 88]。

高温胁迫会影响这些酶的活性,进而影响籽粒中淀粉的生成[43, 89]。Jiang等[89]观察到,花后高温下SBE和GBSS活性降低,SSS活性增加,导致支链淀粉的分支频率下降,从而导致胚乳支链淀粉长链的比例增加。Cheng等[90]则发现,高温下AGP活性和蔗糖浓度增加,而淀粉积累和SuS活性降低。

Yang等[88]研究表明,在适度土壤干旱条件下,水稻籽粒灌浆过程中SuS、SSS和SBE活性显著增强,与淀粉积累速率呈正相关。土壤干旱使AGP活性增强,但与淀粉积累速率相关性较小。GBSS及酸性转化酶活性受土壤干旱的影响较小。结果表明,水稻在籽粒灌浆期遭遇土壤干旱,可以通过调节蔗糖-淀粉代谢途径关键酶活性增大库强,从而加快籽粒灌浆速率。

针对水稻抽穗开花期遭遇高温、干旱单因子胁迫影响籽粒淀粉积累和酶活性的研究已较多,但高温干旱复合胁迫研究较少。笔者[91]发现,水稻遭遇高温和干旱双重胁迫时,SuS、AGP、StS、SBE和DBE活性降低,淀粉中长链比例上升,短链比例下降,说明高温干旱胁迫通过淀粉合成关键酶而影响籽粒淀粉的合成与积累,最终影响水稻品质。

2.5 分子机制

逆境胁迫会使植物改变自身的生理生化、分子细胞水平来顺应不利的生存环境。对不同逆境胁迫下植物的不同组织器官、不同生长发育阶段、不同环境胁迫因子响应时的差异表达的功能基因进行分析筛选,获取关键功能基因和抗性之间的联系,将有助于从转录水平上了解胁迫因子的伤害机理及植物适应逆境胁迫的分子机制[92]。

Shen等[93]最近报道,类受体蛋白激酶ERECTA基因(简称“ER基因”)可以通过调控细胞死亡,提高转基因作物的耐热性。研究还发现,ER基因在水稻和番茄中也有相同的功能,它能使转基因植物在正常气温下保证不减产,高温条件下,产量优势明显。其主要原因在于ER基因能促进植物细胞数量增多,细胞体积增大,导致各器官与生物量的增大。Li等[94]成功发掘出水稻抗热数量性状基因(Thermo-tolerance 1),并揭示了作物抗热新机制,能增强包括水稻、草坪草和十字花科等在内的多种植物的抗热性,在水稻、小麦、玉米、大豆和蔬菜等作物抗热育种中有广泛的应用前景。Li等[95]研究了耐热型水稻品种(N22)和热敏感品种(Moroberekan)的花药、授粉前雌蕊和授粉后雌蕊的代谢组学和转录组学变化,发现复合胁迫下N22编码糖转运蛋白基因()和细胞壁转化酶基因()的表达量增高,而敏感型品种表现出和基因表达量降低、CSA(Carbon Starved Anther)基因表达量增高。

近年来,水稻抗逆分子机制的研究主要集中在转录因子及其分子调控机制方面。在水稻中,目前研究较多的转录因子类型主要有bZIP[96, 97]、MYB/MYC[98]、WRKY[99]、AP2/EREBP[100]和NAC[101],它们的结构通常由DNA结合结构域、转录活化结构域、寡聚化位点和核定位信号组成[102]。例如,当、和在水稻中过表达时,其通过调节脱水蛋白、膜转运蛋白的表达,增强水稻抗旱性[103-105]。过表达能增强谷氨酰胺合成酶()、谷氨酰胺转移酶()和谷氨酸脱羧酶3()等靶基因的表达,并调节其他氨基酸代谢基因,从而提高水稻的耐热性[98]。如受热处理诱导,在热激诱导启动子的驱动下,的超量表达显著提高转基因水稻幼苗的高温和干旱抗性[106];被丝裂原活化蛋白激酶(MAP)激活,过量表达显著提高水稻的耐旱性[107]。ERF类转录因子SUB1A不仅能增强水稻的耐涝性,而且能提高水稻的抗旱性[108]。关于DREB类转录因子的研究报道较多,Chen等[109]从水稻中分离到3个与拟南芥同源的基因、和,其中过量表达和均可显著提高水稻耐旱性。同样,已证明NAC家族的转录因子在水稻的耐旱性中起关键作用,例如,、、和的过表达通过增加水稻根数和直径来改善耐旱性[101, 110-113]。过表达的转基因水稻通过调节气孔减少水分流失,在营养和生殖阶段均表现出抗旱性[114]。

3 减轻水稻高温干旱胁迫的调控措施

3.1 选育耐热耐旱新品种

现有研究已经明确,不同品种间耐热、耐旱的能力差异较大,选用耐高温和抗旱品种可在一定程度上减轻高温或干旱的危害。长期以来,我国的作物育种的方向以高产(含抗病虫)和优质为主,但未来应确立抗逆、广适性的育种目标,以此作为解决高温、干旱等非生物逆境胁迫的主要技术途径之一。由于耐热和耐旱性状是两个有区别但又密切相关的性状,至今虽已获得一批具有较强耐热或耐旱性的水稻品系,但既耐热、又耐旱、还高产的品系较少,且尚未获得商业用品种。因此,采用常规育种与分子育种紧密结合的技术路线可能是尽快获得可在大面积上应用的耐热耐旱新类型品种的一个关键环节。

3.2 应对高温干旱的栽培调控技术

利用耕作、栽培和化控技术减轻高温干旱等逆境对作物的伤害,特别是减少逆境对作物产量与品质的不利影响,是水稻生产主要的措施之一。如根据高温天气规律和水稻高温、干旱敏感期,通过调整播种期,使开花结实期避开高温和干旱,已经成为缓解开花期高温和干旱危害的主要对策之一[115]。

合理施肥和适宜的水分管理也可有效提高水稻的抗热抗旱能力。抽穗结实期遭受高温胁迫,在穗分化期[116]和开花期[117]适当施用氮肥,以及在抽穗期采用轻干湿交替灌溉[118],可以提高根系性能和地上部植株生理活性,从而获得较高的产量和较好的稻米品质。也有研究报道,通过配合施用生物炭和磷肥,在高温胁迫发生时,可以减轻或减缓高温胁迫带来的产量损失[119]。

前人为了缓解逆境对水稻带来的不利影响,利用化控技术做了大量的尝试,如喷施维生素C、维生素E、油菜素内酯、茉莉酸甲酯、水杨酸等植物生长调节剂[120-122],以及喷施吡唑醚菌酯[123]等化学制剂,都取得了较好的效果。今后在深入阐明水稻耐高温、耐干旱机理的基础上,需从多途径选择栽培调控措施,突出作物生理调控作用,即利用作物本身或给作物创造环境发挥作物对逆境的适应能力和抵抗能力,以促进不同技术途径的深入发展,在实际生产中得到更广泛的应用。

3.3 响应高温干旱的分子调控机制

随着基因工程的深入,筛选和培育耐热、耐旱新品种已从简单的生理生化研究拓展到分子生物学领域当中。目前可通过调节抗性蛋白表达、选择耐性基因载体和遗传改良等多种方法进一步提高植物的抗逆性。中国科学院遗传与发育生物学研究所薛勇彪研究组与程祝宽研究组合作,成功克隆了1个耐热基因(Thermotolerant Growth Required 1)。该基因编码细胞核定位的DEAD-box RNA解旋酶。作为pre-rRNA的分子伴侣保证了高温下细胞分裂所需的rRNA有效加工,从而增强了水稻的耐热能力[124]。该研究不仅阐明了水稻耐高温的分子机制,而且为分子培育耐高温水稻品种提供了基因资源。

随着分子生物学和生物化学的不断进步和完善,利用现代生物技术,诸如生物信息学分析、蛋白互作分析、组学分析、基因芯片技术、高通量RNA测序(RNA-Seq)技术以及全基因组关联分析(GWAS)技术等,对这些问题进行深入地探索与分析,有望全面系统地理解水稻逆境相关转录因子的详细调控机理,为水稻抗逆机理研究提供更多的理论依据。图1总结了高温干旱对水稻的影响及其调控模式。

4 展望

4.1 高温和干旱影响水稻体内生理代谢整体认识

水稻对高温和干旱胁迫的响应是一个复杂的、但又是有序的生理生化过程,这一过程涉及水稻逆境下生长发育规律和养分吸收规律、根系形态建成和生理机制、酶学机制和激素机理、源库协调机制和物质运转分配机理、品质形成特点与机理。要充分认识其机理还要进行大量艰苦的工作。今后建议从群体、个体、组织、器官、细胞和分子等不同水平上研究水稻对高温和干旱及其复合胁迫的响应机制,揭示水稻对单一及复合胁迫响应和适应性机理;将水稻的产量和品质作为抗逆性的评定指标。研究并应用耕作、栽培、化控技术减轻高温和干旱对作物的伤害,特别是减少高温和干旱对作物产量与品质的不利影响。突出作物生理调控作用,即利用作物本身或给作物创造环境发挥作物对逆境的适应能力和抵抗能力。

4.2 多胁迫因子对水稻生长发育的交互影响

目前的研究多集中在高温或干旱单因子对水稻的影响,但双因子乃至高温、干旱、高CO2浓度或高O3浓度等多因子耦合作用的研究甚少。未来气候变化对水稻产量和品质的最终影响取决于所有环境因子间的协同作用,多因子的共同作用才能代表大田条件下水稻生长发育的真实情景。因此,水稻生殖生长期不同气候变化因子单独和耦合影响有待加强研究。另外,充分利用各种研究手段,如大田控制试验、遮雨棚、土培池、玻璃温室、人工气候室等模拟水稻的生长环境,综合分析温度、水分等多种环境因子的作用,是揭示水稻对高温、干旱等多重胁迫响应的基础。

4.3 水稻抗高温和干旱的分子设计育种与基因组编辑

近年来,我国在水稻生物学、进化与基因组学和激素生物学等领域表现尤为突出,并取得了许多突破性的研究成果[125, 126],标志着中国在该领域居于引领地位。如李家洋团队率先提出并践行“分子设计育种”的理念,在系统研究作物产量、品质、耐逆性、营养高效、抗病虫等复杂农艺性状调控机理的基础上,挖掘关键基因的有利变异,通过品种设计进行多基因的配组优化,实现复杂性状的定向改良,达到综合性状优异的目标,为我国水稻分子设计育种与生产的跨越式发展奠定了开创性基础[127]。基因组编辑是近年来生命科学领域的突破性技术,能够精确改造生物基因组DNA,从而在不改变其目标基因组整体稳定性的基础上直接对目的基因进行分子设计改良,其终产品无任何外源DNA成分,具有广阔的应用前景。我国科学家在作物基因组编辑技术领域取得多项突破性进展,使我国成为作物基因组编辑研究的国际领跑者[128, 129]。未来开展水稻高温、干旱抗性的改良研究,需要首先鉴定和了解控制抵抗高温、干旱胁迫的关键基因,解析其表达调控机制、作用机理、信号途径和不同基因组合形成的调控网络。然后,根据需要改良的耐热、抗旱等农艺性状进行针对性的设计,选择最适宜的等位基因组,最终培育出抗高温、干旱以及高温干旱复合胁迫的水稻新品种,是水稻育种的发展方向。

图1 高温和干旱对水稻的影响及其调控模式

Fig. 1. Mode chart in the effect of heat and drought on rice and its regulation.

[1] Jagadish S, Murty M, Quick W. Rice responses to rising temperatures–challenges, perspectives and future directions., 2015, 38(9): 1686-1698.

[2] IPCC. Climate Change 2013: The Physical Science Basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2013: 1535.

[3] Cao Y Y, Chen Y H, Chen M X, Wang Z Q, Wu C F, Bian X C, Yang J C, Zhang J H. Growth characteristics and endosperm structure of superior and inferior spikelets ofrice under high-temperature stress., 2016, 60(3): 532-542.

[4] Sánchez B, Rasmussen A, Porter J R. Temperatures and the growth and development of maize and rice: A review., 2014, 20(2): 408-417.

[5] Davies W J, Zhang J. Root signals and the regulation of growth and development of plants in drying soil., 1991, 42(1): 55-76.

[6] Zhang C X, Fu G F, Yang X Q, Yang Y J, Zhao X, Chen T T, Zhang X F, Jin Q Y, Tao L X. Heat stress effects are stronger on spikelets than on flag leaves in rice due to differences in dissipation capacity., 2016, 202(5): 394-408.

[7] Ouyang W, Struik P C, Yin X, Yang J. Stomatal conductance, mesophyll conductance, and transpiration efficiency in relation to leaf anatomy in rice and wheat genotypes under drought., 2017, 68(18): 5191-5205.

[8] Peng S, Huang J, Sheehy J E, Laza R C, Visperas R M, Zhong X, Centeno G S, Khush G S, Cassman K G. Rice yields decline with higher night temperature from global warming., 2004, 101(27): 9971-9975.

[9] Zhang H, Zhang S, Yang J, Zhang J, Wang Z. Postanthesis moderate wetting drying improves both quality and quantity of rice yield., 2008, 100(3): 726-734.

[10] Lawas L M F, Shi W, Yoshimoto M, Hasegawa T, Hincha D K, Zuther E, Jagadish S K. Combined drought and heat stress impact during flowering and grain filling in contrasting rice cultivars grown under field conditions., 2018, 229: 66-77.

[11] Krishnan P, Ramakrishnan B, Reddy K R, Reddy V. High-temperature effects on rice growth, yield, and grain quality., 2011, 111: 87-206.

[12] Wassmann R, Jagadish K, Heuer S, Ismail A M, Redona E, Serraj R, Singh R, Howell G, Pathak D S, Sumfleth K. Climate change affecting rice production: The physiological and agronomic basis for possible adaptation strategies., 2009, 101: 59-122.

[13] Sadras V O, Monzon J P. Modelled wheat phenology captures rising temperature trends: Shortened time to flowering and maturity in Australia and Argentina., 2006, 99(2): 136-146.

[14] Barnabás B, Jäger K, Fehér A. The effect of drought and heat stress on reproductive processes in cereals., 2008, 31(1): 11-38.

[15] Jagadish S V K, Cairns J, Lafitte R, Wheeler T R, Price A H, Craufurd P Q. Genetic analysis of heat tolerance at anthesis in rice., 2010, 50(5): 1633-1641.

[16] Jagadish S V K, Craufurd P Q, Wheeler T R. High temperature stress and spikelet fertility in rice (L.)., 2007, 58(7): 1627-1635.

[17] Rang Z W, Jagadish S V K, Zhou Q M, Craufurd P Q, Heuer S. Effect of high temperature and water stress on pollen germination and spikelet fertility in rice., 2011, 70(1): 58-65.

[18] 成臣, 曾勇军, 程慧煌, 谭雪明, 商庆银, 曾研华, 石庆华. 齐穗至乳熟期不同温度对水稻南粳 9108 籽粒激素含量, 淀粉积累及其合成关键酶活性的影响. 中国水稻科学, 2019, 33(1): 57-67.

Cheng C, Zeng Y J, Cheng H H, Tan X M, Shang Q Y, Zeng Y H, Shi Q H. Effects of different temperature from full heading to milking on grain filling stage on grain hormones concentrations, activities of enzymes involved in starch synthesis and accumulation in rice Nanjing 9108., 2019, 33(1): 57-67. (in Chinese with English abstract)

[19] 王啟梅, 李岩, 刘明, 李刚华, 刘正辉, 唐设, 丁承强, 王绍华, 丁艳锋. 营养生长期高温对水稻生长及干物质积累的影响. 中国稻米, 2015, 21(4): 33-37.

Wang Q M, Li Y, Liu M, Li G H, Liu Z H, Tang S, Ding C Q, Wang S H, Ding Y F. Effects of high temperature at vegetative stage on rice growth and dry weight., 2015, 21(4): 33-37. (in Chinese with English abstract)

[20] Lipiec J, Doussan C, Nosalewicz A, Kondracka K. Effect of drought and heat stresses on plant growth and yield: a review., 2013, 27(4): 463-477.

[21] Pandey V, Shukla A. Acclimation and Tolerance Strategies of Rice under Drought Stress., 2015, 22(4): 147-161.

[22] Kumar A, Bernier J, Verulkar S, Lafitte H, Atlin G. Breeding for drought tolerance: direct selection for yield, response to selection and use of drought-tolerant donors in upland and lowland-adapted populations., 2008, 107(3): 221-231.

[23] Jagadish K S V, Cairns J E, Kumar A, Somayanda I M, Craufurd P Q. Does susceptibility to heat stress confound screening for drought tolerance in rice?, 2011, 38(4): 261-269.

[24] Mittler R. Abiotic stress, the field environment and stress combination., 2006, 11(1): 15-19.

[25] 赵鸿, 王润元, 尚艳, 王鹤龄, 张凯, 赵福年, 齐月, 陈斐. 粮食作物对高温干旱胁迫的响应及其阈值研究进展与展望. 干旱气象, 2016, 34(1): 1-12.

Zhao H, Wang R Y, Shang Y, Wang H L, Zhang K, Zhao F N, Qi Y, Chen F. Progress and perspectives in studies on responses and thresholds of major food crops to high temperature and drought stress., 2016, 34(1): 1-12. (in Chinese with English abstract)

[26] Suzuki N, Rivero R M, Shulaev V, Blumwald E, Mittler R. Abiotic and biotic stress combinations., 2014, 203(1): 32-43.

[27] Belder P, Bouman B, Cabangon R, Guoan L, Quilang E, Yuanhua L, Spiertz J, Tuong T. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia., 2004, 65(3): 193-210.

[28] Matsui T, Omasa K, Horie T. The difference in sterility due to high temperatures during the flowering period among-rice varieties., 2001, 4(2): 90-93.

[29] Saini H S, Westgate M E. Reproductive development in grain crops during drought., 1999, 68: 59-96.

[30] Matsui T, Omasa K. Rice (L.) cultivars tolerant to high temperature at flowering: anther characteristics., 2002, 89(6): 683-687.

[31] 曹云英, 段骅, 杨立年, 王志琴, 刘立军, 杨建昌. 抽穗和灌浆早期高温对耐热性不同籼稻品种产量的影响及其生理原因. 作物学报, 2009, 35(3): 512-521.

Cao Y Y, Duan H, Yang L N, Wang Z Q, Liu L J, Yang J C.Effect of high temperature during heading and early grain filling on grain yield ofrice cultivars differing in heat-tolerance and its physiological mechanism., 2009, 35(3): 512-521. (in Chinese with English abstract)

[32] Matsui T, Kobayasi K, Kagata H, Horie T. Correlation between viability of pollination and length of basal dehiscence of the theca in rice under a hot-and-humid condition., 2005, 8(2): 109-114.

[33] 段骅, 苏京平, 傅亮, 剧成欣, 刘立军, 杨建昌. 耐热耐旱性不同水稻品种的农艺和生理性状. 植物生理学报, 2015, 51(10): 1658-1668.

Duan H, Su J P, Fu L, Ju C X, Liu L J, Yang J C. Agronomic and physiological traits of rice cultivars differing in heat and drought tolerances., 2015, 51(10): 1658-1668. (in Chinese with English abstract)

[34] Jagadish S, Muthurajan R, Oane R, Wheeler T R, Heuer S, Bennett J, Craufurd P Q. Physiological and proteomic approaches to address heat tolerance during anthesis in rice (L.)., 2009, 61(1): 143-156.

[35] Xiong D, Ling X, Huang J, Peng S. Meta-analysis and dose-response analysis of high temperature effects on rice yield and quality., 2017, 141: 1-9.

[36] Bunnag S, Pongthai P. Selection of rice (L.) cultivars tolerant to drought stress at the vegetative stage under field conditions., 2013, 4(9): 1701-1708.

[37] 谢华英, 马均, 代邹, 李玥, 孙加威, 赵建红, 徐徽, 孙永健. 抽穗期高温干旱胁迫对杂交水稻产量及生理特性的影响. 杂交水稻, 2016, 31(1): 62-69.

Xie H Y, Ma J, Dai Z, Li Y, Sun J W, Zhao J H, Xu H, Sun Y J. Effects of high temperature and drought stress in heading stage on grain yield and physiological characteristics of hybrid rice.2016, 31(1): 62-69.(in Chinese with English abstract)

[38] 高焕晔, 宗学凤, 吕俊, 王玲, 杨爱杰, 闫荣, 张燕, 董玉锋, 王三根. 高温干旱双重胁迫对水稻产量与品质的影响. 三峡生态环境监测, 2016, 1(2): 10-17.

Gao H Y, Zong X F, Lv J, Wang Li, Yang A J, Yan R, Zhang Y, Dong Y F, Wang S G. Combined effects of high temperature and drought stress on yield and quality of rice., 2016, 1(2): 10-17. (in Chinese with English abstract)

[39] 段骅, 唐琪, 剧成欣, 刘立军, 杨建昌. 抽穗灌浆早期高温与干旱对不同水稻品种产量和品质的影响. 中国农业科学, 2012, 45(22): 4561-4573.

Duan H, Tang Q, Ju C X, Liu L J, Yang J C. Effect of high temperature and drought on grain yield and quality of different rice varieties during heading and early grain filling periods., 2012, 45(22): 4561-4573. (in Chinese with English abstract)

[40] Sharma K, Sharma N. Influence of high temperature on sucrose metabolism in chalky and translucent rice genotypes., 2017, 88(3): 1275-1284.

[41] 董明辉, 陈培峰, 乔中英, 吴翔宙, 赵步洪, 蒋媛媛, 杨建昌. 水稻不同粒位籽粒米质对花后不同时段温度胁迫的响应. 作物学报, 2011, 37(3): 506-513.

Dong M H, Chen P F, Qiao Z Y, Wu X Z, Zhao B H, Jiang Y Y, Yang J C. Effect of temperature at different durations after anthesis on rice quality and variations between positions on a panicle.,2011, 37(3): 506-513. (in Chinese with English abstract)

[42] Yamakawa H, Hakata M. Atlas of rice grain filling-related metabolism under high temperature: joint analysis of metabolome and transcriptome demonstrated inhibition of starch accumulation and induction of amino acid accumulation., 2010, 51(5): 795-809.

[43] Yamakawa H, Hirose T, Kuroda M, Yamaguchi T. Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray., 2007, 144(1): 258-277.

[44] Wassmann R, Dobermann A. Climate change adaptation through rice production in regions with high poverty levels., 2007, 4(1): 1-24.

[45] 刘凯, 张耗, 张慎凤, 王志琴, 杨建昌. 结实期土壤水分和灌溉方式对水稻产量与品质的影响及其生理原因. 作物学报, 2008, 34(2): 268-276.

Liu K, Zhang H, Zhang S F, Wang Z Q, Yang J C. Effects of soil moisture and irrigation patterns during grain filling on grain yield and quality of rice and their physiological mechanisms.,2008, 34(2): 268-276.(in Chinese with English abstract)

[46] 高焕晔, 王三根, 宗学凤, 腾中华, 赵芳明, 刘照. 灌浆结实期高温干旱复合胁迫对稻米直链淀粉及蛋白质含量的影响. 中国生态农业学报, 2012, 20(1): 40-47.

Gao H Y, Wang S G, Zong X F, Teng Z H, Zhao F M, Liu Z. Effects of combined high temperature and drought stress on amylose and protein contents at rice grain-filling stage., 2012, 20(1): 40-47. (in Chinese with English abstract)

[47] 周建霞, 张玉屏, 朱德峰, 林贤青, 向镜, 陈惠哲, 胡声博. 高温下水稻开花习性对受精率的影响. 中国水稻科学, 2014, 28(3): 297-303.

Zhou J X, Zhang Y P, Zhu D F, Lin X Q, Xiang J, Chen H Z, Hu S B.Influence of flowering characteristics on spikelet fertility under high temperature.,2014, 28(3): 297-303. (in Chinese with English abstract)

[48] 陶龙兴, 谈惠娟, 王熹, 曹立勇, 宋建, 程式华. 高温胁迫对国稻 6 号开花结实习性的影响. 作物学报, 2008, 34(4): 669-674.

Tao L X, Tan H J, Wang X, Cao L Y, Song J, Cheng S H. Effects of high temperature stress on flowering and grain-setting characteristics for Guodao 6., 2008, 34(4): 669-674. (in Chinese with English abstract)

[49] 张桂莲, 廖斌, 汤平, 唐文帮, 肖应辉, 陈立云. 灌浆结实期高温对水稻剑叶生理特性和稻米品质的影响. 中国农业气象, 2014, 35(6): 650-655.

Zhang G L, Liao B, Tang P, Tang W B, Xiao Y H, Chen L Y. Effects of high temperature stress during grain-filling period on physiological characteristics in flag leaves and grain quality of rice., 2014, 35(6): 650-655. (in Chinese with English abstract)

[50] Pantuwan G, Fukai S, Cooper M, Rajatasereekul S, O’Toole J. Yield response of rice (L.) genotypes to different types of drought under rainfed lowlands: Part 1. Grain yield and yield components., 2002, 73(2-3): 153-168.

[51] 李俊周, 乔江方, 李梦琪, 杜彦修, 赵全志. 短时水分胁迫对水稻叶片光合作用的影响. 干旱地区农业研究, 2017, 35(3): 126-129.

Li J Z, Qiao J F, Li M Q, Du Y X, Zhao Q Z. The effects of short-term water stress on leaf photosynthesis in rice., 2017, 35(3): 126-129. (in Chinese with English abstract)

[52] 段素梅, 杨安中, 黄义德, 吴文革, 许有尊, 陈刚. 干旱胁迫对水稻生长, 生理特性和产量的影响. 核农学报, 2014, 28(6): 1124-1132.

Duan S M, Yang A Z, Huang Y D, Wu W G, Xu Y Z, Chen G. Effects of drought stress on growth and physiological feature and yield of various rice varieties.,2014, 28(6): 1124-1132. (in Chinese with English abstract)

[53] 江学海, 李刚华, 王绍华, 罗德强, 周维佳, 刘正辉, 李敏, 丁艳锋. 不同生育阶段干旱胁迫对杂交稻产量的影响. 南京农业大学学报, 2015, 38(2): 173-181.

Jiang X H, Li G H, Wang S H, Luo D Q, Zhou W J, Liu Z H, Li M, Ding Y F. Effect of drought stress at different growth stages on grain yield ofhybrid rice., 2015, 38(2): 173-181. (in Chinese with English abstract)

[54] 段骅, 杨建昌. 高温对水稻的影响及其机制的研究进展. 中国水稻科学, 2012, 26(4): 393-400.

Duan H, Yang J C. Research advances in the effect of high temperature on rice and its mechanism., 2012, 26(4): 393-400.(in Chinese with English abstract)

[55] Nishiyama Y, Murata N. Revised scheme for the mechanism of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery., 2014, 98: 8777-8796.

[56] 高焕晔, 宗学凤, 吕俊, 徐宇, 何秀娟, 董玉锋, 张燕, 王三根. 高温干旱双重胁迫下水稻灌浆结实期的光合生理变化. 三峡生态环境监测, 2018, 3(2): 68-76.

Gao H Y, Zong X F, Lu J, Xu Y, He X J, Dong Y F, Zhang Y, Wang S G. Photosynthetic physiological changes of rice in combined threat of high temperature and drought stress at grain-filling stage., 2018, 3(2): 68-76. (in Chinese with English abstract)

[57] Radhakrishna N K A, Chenniappan V, Dhashnamurthi V. Combined effects of drought and moderately high temperature on the photosynthesis, PS II photochemistry and yield traits in rice (L.)., 2018, 23(3): 408-415.

[58] Perdomo J A, Capó-Bauçà S, Carmo-Silva E, Galmés J. Rubisco and rubisco activase play an important role in the biochemical limitations of photosynthesis in rice, wheat, and maize under high temperature and water deficit., 2017, 8: 490.

[59] 刘照, 高焕烨, 王三根. 高温干旱双重胁迫对水稻剑叶光合特性的影响. 西南师范大学学报, 2011, 36(3): 161-165.

Liu Z, Gao H Y, Wang S G. Effect of high temperature and drought stress on the photosynthesis characteristics in rice., 2011, 36(3): 161-165. (in Chinese with English abstract)

[60] 赵凤云, 徐忠俊. 干旱高温胁迫下转基因水稻的生理变化. 西北植物学报, 2009, 29(2): 240-248.

Zhao F Y, Xu Z J. Physiological changes of transgenic rice under drought and heat stress., 2009, 29(2): 240-248.

[61] Baxter A, Mittler R, Suzuki N. ROS as key players in plant stress signalling., 2014, 65(5): 1229-1240.

[62] Asada K. Production and scavenging of reactive oxygen species in chloroplasts and their functions., 2006, 141(2): 391-396.

[63] 兰旭, 顾正栋, 丁艳菲, 王珂, 江琼, 朱诚. 花期高温胁迫对水稻颖花生理特性的影响. 中国水稻科学, 2016, 30(6): 637-646.

Lan X, Gu Z D, Ding Y F, Wang K, Jiang Q, Zhu C. Effect of high temperature stress on physiological characteristics of spikelet of rice during flowering stage.,2016, 30(6): 637-646. (in Chinese with English abstract)

[64] 王艳, 高鹏, 黄敏, 陈浩, 杨志荣, 孙群. 高温对水稻开花期剑叶抗氧化酶活性及基因表达的影响. 植物科学学报, 2015, 33(3): 355-361.

Wang Y, Gao P, Huang M, Chen H, Yang Z R, Sun Q. Effects of high temperature on the activity and expression of antioxidative enzymes in rice flag leaves during flowering stage., 2015, 33(3): 355-361.(in Chinese with English abstract)

[65] 张桂莲, 蔡志欢, 李波, 廖斌, 唐文帮, 肖应辉, 陈立云. 水稻对减数分裂期高温胁迫的生理响应. 杂交水稻, 2016, 31(3): 64-67.

Zhang G L, Cai Z H, Li B, Liao B, Tang W B, Xiao Y H, Chen L Y. Physiological responses of rice to high temperature stress during meiosis stage., 2016, 31(3): 64-67.(in Chinese with English abstract)

[66] Lai A G, Doherty C J, Mueller-Roeber B, Kay S A, Schippers J H, Dijkwel P P.regulates ROS homeostasis and oxidative stress responses., 2012, 109(42): 17129-17134.

[67] Byeon Y, Back K. Melatonin synthesis in rice seedlings in vivo is enhanced at high temperatures and under dark conditions due to increased serotonin N-acetyltransfer ase and N-acetylserotonin methyltransferase activities., 2014, 56(2): 189-195.

[68] 李钰. 高温干旱复合胁迫下水稻的应答响应. 合肥: 安徽农业大学, 2018.

Li Y. The rice(L.) response to the combined stress of high temperature and drought. Hefei: Anhui Agricultural University, 2018. (in Chinese with English abstract)

[69] 高焕晔, 宗学凤, 吕俊, 张燕, 董玉锋, 何秀娟, 徐宇, 王三根. 灌浆结实期水稻对高温干旱胁迫的抗性生理响应. 三峡生态环境监测, 2017, 2(1): 11-27.

Gao H Y, Zong X F, Lv J, Zhang Y, Dong Y F, He X J, Xu Y, Wang S G. Resistant physiological response of rice to combined stress of high temperature and drought at grain-filling stage., 2017, 2(1): 11-27.(in Chinese with English abstract)

[70] 杨建昌, 刘凯, 张慎凤, 王学明, 王志琴, 刘立军. 水稻减数分裂期颖花中激素对水分胁迫的响应. 作物学报, 2008, 34(1): 111-118.

Yang J C, Liu K, Zhang S F, Wang X M, Wang Z Q, Liu L J. Hormones in rice spikelets in responses to water stress during meiosis., 2008, 34(1): 111-118.(in Chinese with English abstract)

[71] Yang J C, Zhang J H, Wang Z Q, Zhu Q S, Wang W. Hormonal changes in the grains of rice subjected to water stress during grain filling., 2001, 127(1): 315-323.

[72] Zhang H, Chen T, Wang Z, Yang J, Zhang J. Involvement of cytokinins in the grain filling of rice under alternate wetting and drying irrigation., 2010, 61(13): 3719-3733.

[73] Zhang H, Li H, Yuan L, Wang Z, Yang J, Zhang J. Post-anthesis alternate wetting and moderate soil drying enhances activities of key enzymes in sucrose-to-starch conversion in inferior spikelets of rice., 2012, 63(1): 215-227.

[74] Talla S K, Panigrahy M, Kappara S, Nirosha P, Neelamraju S, Ramanan R. Cytokinin delays dark-induced senescence in rice by maintaining the chlorophyll cycle and photosynthetic complexes., 2016, 67(6): 1839-1851.

[75] Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production., 2005, 309(5735): 741-745.

[76] Tang R S, Zheng J C, Jin Z Q, Zhang D D, Huang Y H, Chen L G. Possible correlation between high temperature-induced floret sterility and endogenous levels of IAA, GAs and ABA in rice (L.)., 2008, 54(1): 37-43.

[77] Tomosugi M, Ichihara K i, Saito K. Polyamines are essential for the synthesis of 2-ricinoleoyl phosphatidic acid in developing seeds of castor., 2006, 223(2): 349-358.

[78] Alcázar R, Marco F, Cuevas J C, Patron M, Ferrando A, Carrasco P, Tiburcio A F, Altabella T. Involvement of polyamines in plant response to abiotic stress., 2006, 28(23): 1867-1876.

[79] Paschalidis K A, Roubelakis-Angelakis K A. Spatial and temporal distribution of polyamine levels and polyamine anabolism in different organs/tissues of the tobacco plant. Correlations with age, cell division/expansion, and differentiation., 2005, 138(1): 142-152.

[80] 曹云英, 陈艳红, 李卫振, 唐仙伯, 赵华, 王志琴, 杨建昌. 水稻减数分裂期幼穗激素, 多胺和蛋白质对高温的响应. 植物生理学报, 2015, 51(10): 1687-1696.

Cao Y Y, Chen Y H, Li W Z, Tang X B, Zhao H, Wang Z Q, Yang J C. Responses of hormones, polyamines and proteins in young panicles of rice to high temperature during meiosis.,2015, 51(10): 1687-1696. (in Chinese with English abstract)

[81] Yang J, Zhang J, Liu K, Wang Z, Liu L. Involvement of polyamines in the drought resistance of rice., 2007, 58(6): 1545-1555.

[82] Yoshida S. Physiological aspects of grain yield., 1972, 23(1): 437-464.

[83] Nakamura Y, Yuki K. Changes in enzyme activities associated with carbohydrate metabolism during the development of rice endosperm., 1992, 82(1): 15-20.

[84] Nakamura Y, Yuki K, Park S-Y, Ohya T. Carbohydrate metabolism in the developing endosperm of rice grains., 1989, 30(6): 833-839.

[85] Kato T, Shinmura D, Taniguchi A. Activities of enzymes for sucrose-starch conversion in developing endosperm of rice and their association with grain filling in extra-heavy panicle types., 2007, 10(4): 442-450.

[86] Preiss J, Ball K, Smith-White B, Iglesias A, Kakefuda G, Li L. Starch biosynthesis and its regulation., 1991, 19: 539-547.

[87] Ahmadi A, Baker D A. The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat., 2001, 35(1): 81-91.

[88] Yang J C, Zhang J H, Wang Z Q, Zhu Q S, Liu L. Activities of enzymes involved in sucrose-to-starch metabolism in rice grains subjected to water stress during filling., 2003, 81(1): 69-81.

[89] Jiang H, Dian W, Wu P. Effect of high temperature on fine structure of amylopectin in rice endosperm by reducing the activity of the starch branching enzyme., 2003, 63(1): 53-59.

[90] Cheng F, Zhong L, Zhao N, Liu Y, Zhang G. Temperature induced changes in the starch components and biosynthetic enzymes of two rice varieties., 2005, 46(1): 87-95.

[91] 段骅. 高温与干旱对水稻产量和品质的影响及其生理机制. 扬州: 扬州大学, 2013.

Duan H. Effect of high temperature and soil drying on the yield quality and quantity of rice and its physiological mechanism. Yangzhou: Yangzhou University, 2013. (in Chinese with English abstract)

[92] 张纯, 唐承晨, 王吉永, 郭龙妹, 王莉莉, 黎万奎. 转录组学在植物应答逆境胁迫中的研究进展. 生物学杂志, 2017, 34(2): 86-90.

Zhang C, Tang C C, Wang J Y, Guo L M, Wang L L, Li W K. Advances on transcriptome of plants under stresses., 2017, 34(2): 86-90. (in Chinese with English abstract)

[93] Shen H, Zhong X, Zhao F, Wang Y, Yan B, Li Q, Chen G, Mao B, Wang J, Li Y. Overexpression of receptor-like kinase ERECTA improves thermotolerance in rice and tomato., 2015, 33(9): 996.

[94] Li X M, Chao D Y, Wu Y, Huang X, Chen K, Cui L G, Su L, Ye W W, Chen H, Chen H C. Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice., 2015, 47(7): 827.

[95] Li X, Lawas L M, Malo R, Glaubitz U, Erban A, Mauleon R, Heuer S, Zuther E, Kopka J, Hincha D K. Metabolic and transcriptomic signatures of rice floral organs reveal sugar starvation as a factor in reproductive failure under heat and drought stress., 2015, 38(10): 2171-2192.

[96] Maruyama K, Urano K, Yoshiwara K, Morishita Y, Sakurai N, Suzuki H, Kojima M, Sakakibara H, Shibata D, Saito K. Integrated analysis of the effects of cold and dehydration on rice metabolites, phytohormones, and gene transcripts., 2014, 164: 1759-1771.

[97] Fukao T, Xiong L. Genetic mechanisms conferring adaptation to submergence and drought in rice: simple or complex?, 2013, 16(2): 196-204.

[98] El-Kereamy A, Bi Y M, Ranathunge K, Beatty P H, Good A G, Rothstein S J. The rice R2R3-MYB transcription factor OsMYB55 is involved in the tolerance to high temperature and modulates amino acid metabolism., 2012, 7(12): e52030.

[99] Song Y, Ai C, Jing S, Yu D. Research progress on functional analysis of rice WRKY genes., 2010, 17(1): 60-72.

[100]Nakano T, Suzuki K, Fujimura T, Shinshi H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice., 2006, 140(2): 411-432.

[101]Lee D K, Chung P J, Jeong J S, Jang G, Bang S W, Jung H, Kim Y S, Ha S H, Choi Y D, Kim J K. The rice OsNAC6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance., 2017, 15(6): 754-764.

[102]罗成科, 肖国举, 李茜. 水稻逆境相关转录因子研究进展. 广西植物, 2015, 35(6): 942-945.

Luo C K, Xiao G J, Li Q. Research advance of the transcription factors related to stress resistances in rice., 2015, 35(6): 942-947. (in Chinese with English abstract)

[103]Liu C, Mao B, Ou S, Wang W, Liu L, Wu Y, Chu C, Wang X. OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice., 2014, 84: 19-36.

[104]Tang N, Zhang H, Li X, Xiao J, Xiong L. Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice., 2012, 158: 1755-1768.

[105]Xiang Y, Tang N, Du H, Ye H, Xiong L. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice., 2008, 148(4): 1938-1952.

[106]Wu X, Shiroto Y, Kishitani S, Ito Y, Toriyama K. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter., 2009, 28(1): 21-30.

[107]Shen H, Liu C, Zhang Y, Meng X, Zhou X, Chu C, Wang X. OsWRKY30 is activated by MAP kinases to confer drought tolerance in rice., 2012, 80(3): 241-253.

[108]Fukao T, Yeung E, Bailey-Serres J. The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice., 2011, 23(1): 412-427.

[109]Chen J Q, Meng X P, Zhang Y, Xia M, Wang X P. Over-expression of OsDREB genes lead to enhanced drought tolerance in rice., 2008, 30(12): 2191-2198.

[110]Lee D K, Jung H, Jang G, Jeong J S, Kim Y S, Ha S H, Do Choi Y, Kim J K. Overexpression of the OsERF71 transcription factor alters rice root structure and drought resistance., 2016, 172(1): 575-588.

[111]Jeong J S, Kim Y S, Redillas M C, Jang G, Jung H, Bang S W, Choi Y D, Ha S H, Reuzeau C, Kim J K. OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field., 2013, 11(1): 101-114.

[112]Redillas M C, Jeong J S, Kim Y S, Jung H, Bang S W, Choi Y D, Ha S H, Reuzeau C, Kim J K. The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions., 2012, 10(7): 792-805.

[113]Jeong J S, Kim Y S, Baek K H, Jung H, Ha S H, Do Choi Y, Kim M, Reuzeau C, Kim J K. Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions., 2010, 153(1): 185-197.

[114]You J, Zong W, Li X, Ning J, Hu H, Li X, Xiao J, Xiong L. The SNAC1-targeted gene OsSRO1c modulates stomatal closure and oxidative stress tolerance by regulating hydrogen peroxide in rice., 2012, 64(2): 569-583.

[115]郭建茂, 吴越, 杨沈斌, 江晓东, 谢晓燕, 王锦杰, 申双和. 典型高温年不同播期一季稻产量差异及其原因分析. 中国农业气象, 2017, 38(2): 121-130.

Guo J M, Wu Y, Yang S B, Jiang X D, Xie X Y, Wang J J, Shen S H. Yield differences and its causes for one season rice under different sowing dates in typical high temperature year., 2017, 38(2): 121-130. (in Chinese with English abstract)

[116]段骅, 傅亮, 剧成欣, 刘立军, 杨建昌. 氮素穗肥对高温胁迫下水稻结实和稻米品质的影响. 中国水稻科学, 2013, 27(6): 591-602.

Duan H, Fu L, Ju C X, Liu L J, Yang J C. Effects of application of nitrogen as panicle fertilizer under high temperature on seed setting and grain quality of rice during heading and grain filling.,2013, 27(6): 591-602. (in Chinese with English abstract)

[117]缪乃耀, 唐设, 陈文珠, 李刚华, 刘正辉, 王绍华, 丁承强, 陈琳, 丁艳锋. 氮素粒肥缓解水稻灌浆期高温胁迫的生理机制研究. 南京农业大学学报, 2017, 40(1): 1-10.

Miao N Y, Tang S, Chen W Z, Li G H, Liu Z H, Wang S H, Ding C Q, Chen L, Ding Y F. Research of nitrogen granular fertilizer alleviating high temperature stress at rice grain filling stage and its physiological mechanism.,2017, 40(1): 1-10. (in Chinese with English abstract)

[118]段骅, 俞正华, 徐云姬, 王志琴, 刘立军, 杨建昌. 灌溉方式对减轻水稻高温危害的作用. 作物学报, 2012, 38(1): 107-120.

Duan H, Yu Z H, Xu Y J, Wang Z Q, Liu L J, Yang J C. Role of irrigation patterns in reducing harms of high temperature to rice.,2012, 38(1): 107-120.(in Chinese with English abstract)

[119]Fahad S, Hussain S, Saud S, Hassan S, Tanveer M, Ihsan M Z, Shah A N, Ullah A, Khan F, Ullah S. A combined application of biochar and phosphorus alleviates heat-induced adversities on physiological, agronomical and quality attributes of rice., 2016, 103: 191-198.

[120]Fahad S, Hussain S, Saud S, Hassan S, Ihsan Z, Shah A N, Wu C, Yousaf M, Nasim W, Alharby H. Exogenously applied plant growth regulators enhance the morpho-physiological growth and yield of rice under high temperature., 2016, 7: 1250.

[121]刘霞, 唐设, 窦志, 李刚华, 刘正辉, 王绍华, 丁承强, 丁艳锋. 茉莉酸甲酯对武运粳 24 和宁粳 3 号灌浆早期高温胁迫生理特性的影响. 中国水稻科学, 2016, 30(3): 291-303.

Liu X, Tang S, Dou Z, Li G H, Liu Z H, Wang S H, Ding C Q, Ding Y F. Effects of MeJA on the physiological characteristics ofrice wuyunjing 24 and ningjing 3 during early grain filling stage under heat stress.,2016, 30(3): 291-303. (in Chinese with English abstract)

[122]符冠富, 张彩霞, 杨雪芹, 杨永杰, 陈婷婷, 赵霞, 符卫蒙, 奉保华, 章秀福, 陶龙兴, 金千瑜. 水杨酸减轻高温抑制水稻颖花分化的作用机理研究. 中国水稻科学, 2015, 29(6): 637-647.

Fu G F, Zhang C X, Yang X Q, Yang Y J, Chen T T, Zhao X, Fu W M, Feng B H, Zhang X F, Tao L X, Jin Q Y. Action mechanism by which SA alleviates high temperature induced inhibition to spikelet differentiation., 2015, 29(6): 637-647. (in Chinese with English abstract)

[123]Mohammad R I, 符冠富, 奉保华, 陶龙兴, 金丽华, 陈婷婷. “稻清”减轻水稻穗期高温伤害的原因分析. 中国稻米, 2018, 24(3): 21-24.

Mohammad R I, Fu G F, Feng B H, Tao L X, Jin L H, Chen T T. Physiological mechanisms involved in “Daoqing” alleviating the damage on rice under heat stress., 2018, 24(3): 21-24. (in Chinese with English abstract)

[124]Wang D, Qin B, Li X, Tang D, Zhang Y, Cheng Z, Xue Y. Nucleolar DEAD-box RNA helicase TOGR1 regulates thermotolerant growth as a pre-rRNA chaperone in rice., 2016, 12(2): e1005844.

[125]陈凡, 钱前, 王台, 董爱武, 漆小泉, 左建儒, 杨淑华, 林荣呈, 萧浪涛, 顾红雅, 陈之端, 姜里文, 白永飞, 孔宏智, 种康. 2017 年中国植物科学若干领域重要研究进展. 植物学报, 2018, 53(4): 391-440.

Chen F, Qian Qian, Wang T, Dong A W, Qi X Q, Zuo J R, Yang S H, Lin R C, Xiao L T, Gu H Y, Chen Z D, Jiang L W, Bai Y F, Kong H Z, Chong K. Research advances in plant science in China in 2017., 2018, 53(4): 391-440. (in Chinese with English abstract)

[126]王小菁, 萧浪涛, 董爱武, 王台, 钱前, 漆小泉, 陈凡, 左建儒, 杨淑华, 顾红雅, 陈之端, 姜里文, 白永飞, 孔宏智, 种康. 2016 年中国植物科学若干领域重要研究进展. 植物学报, 2017, 52(4): 394-452.

Wang X J, Xiao L T, Dong A W, Wang T, Qian Q, Qi X Q, Chen F, Zuo J R, Yang S H, Gu H Y, Chen Z D, Jiang L W, Bai Y F, Kong H Z, Chong K (2017). Research advances in plant science in China in 2016., 2017, 52(4): 394-452. (in Chinese with English abstract)

[127]陈明江, 刘贵富, 余泓, 王冰, 李家洋. 水稻高产优质的分子基础与品种设计. 科学通报, 2018, 63(14): 1275-1289.

Chen M J, Liu G F, Yu H, Wang B, Li J Y. Towards molecular design of rice plant architecture and grain quality., 2018, 63(14): 1276-1289. (in Chinese with English abstract)

[128]Gao C X. The future of CRISPR technologies in agriculture., 2018, 19: 275-276.

[129]Meng X B, Hu X X, Liu Q, Song X, Gao C, Li J, Wang K. Robust genome editing of CRISPR-Cas9 at NAG PAMs in rice., 2018, 61: 122-125.

Research Advances in the Effect of Heat and Drought on Rice and Its Mechanism

DUAN Hua*, TONG Hui, LIU Yanqing, XU Qingfen, MA Jun, WANG Chunmin

(,,,;*Corresponding author, E-mail: duanhua2004@gmail.com*Corresponding author, E-mail: duanhua2004@gmail.com)

Heat and drought are two major environmental stresses that affect rice growth, productivity, and grain quality. a comprehensive understanding of which is critical to evaluate the impacts of climate change on crop production. We review the independent and combined effects of heat and drought on rice growth, yield, and grain quality, demonstrate the possible mechanisms involved from multiple perspectives, such as photosynthesis, antioxidant system, endogenous hormones, activities of the key enzymes involved in sucrose-to-starch conversion, and molecular profiling, proposes reasonable strategies to mitigate the stress of environmental heterogeneity, and provide considerable suggestions for future study.

rice; heat; drought; combined heat and drought; grain yield; quality; physiological mechanism

Q945.78; S511.01

A

1001-7216(2019)03-0206-13

10.16819/j.1001-7216.2019.8106

2018-09-20;

2019-01-28。

国家自然科学基金资助项目(31601248);天津市应用基础与前沿技术研究计划资助项目(15JCQNJC14800);天津市科技支撑重点项目(18YFZCNC01150)。

猜你喜欢

灌浆籽粒淀粉
从人工合成淀粉说开去
山西省主推小麦品种籽粒形态性状分析
籽粒苋的饲用价值和高产栽培技术
谷子灌浆期喷施硫酸锌增产
浅谈设备基础二次灌浆
油菜联合收获籽粒受力分析及损伤评价
解淀粉芽孢杆菌Lx-11
解淀粉芽孢杆菌的作用及其产品开发
大面积超厚层灌浆料施工工艺
小满过麦畴有感