集合降雨预报驱动洪水预报模型的铁甲水库洪水预报研究
2019-05-22宁作鹏
宁作鹏
(辽宁省丹东水文局,辽宁 丹东 118001)
降雨信息在很大程度上是决定水文预报精度的重要驱动数据,通常情况下可根据地面雨量站网获取降雨数据,但对水文预报驱动模型利用实测降雨数据驱动时,下垫面条件以及流域内降雨特点等因素可对预见期产生显著影响,从而对预报时效产生一定影响[1,2]。据此,驱动水文预报的重要依据逐渐转变为及时、定量、准确的降雨预报,在流域洪水预报作业中已有学者运用降雨预报信息开展研究,如包红军等[3]在淮河流域洪水预报中,运用集合降雨预报;张洪刚等[4]利用洪水预报模型与预报降水耦合试验,分析了长江三峡水库区间流域。影响洪水预报的主要因素为准确、可靠的降雨预报,单一的确定性数值降雨预报为目前应用较为常见的方法,该方法具有模式误差、大气自身混沌以及初值误差等特点,因此预测结果通常具有很大的不确定性与随机性,在处理预报结果不确定性问题时集合预报技术具有较好的适用性[5]。对单一的定值预报通过多成员、多模式的扰动预报技术可转变为多集成、多模式的概率预报,对于延长洪水预见期以及提高降雨预报准确率具有重要的现实意义。
近年来,鸭绿江支流柳林河上游的铁甲水库下垫面发生了较为明显的改变,从而增加了洪水预报难度,并对铁甲水库洪水预见期和预报精度提出了更高的要求。鉴于此,本文以铁甲水库为例,结合降雨实测资料和3种不同集合降雨预报产品,分别对各模式短期预报效果利用多项评测指标与Talagrand分布图、Brier评分和TS评分进行评估[6]。然后利用实测降雨和NCEP降雨预报驱动新安江模型,对比分析了模型洪水模拟效果,验证了洪水预报中集合降雨预报的可行性与准确性[7]。
1 数据来源
1.1 区域概况
铁甲水库位于柳林河上游,是一座以生活与工农业供水为主,兼顾旅游开发、养鱼、发电等功能的大型水利枢纽工程。水库控制河道长27.4km,流域控制面积241.0km2,属于温带半湿润季风气候区,冬无严寒、夏无酷暑,年均气温8℃。径流区域降雨充沛,年降水量在800~1200mm范围,其中每年的7、9月占全年降雨量的65%以上,并且多以暴雨和强降雨为主。流域内气候凉湿,植被覆盖率较低,下游区域植被以栎林为主,其他区域主要是以枫桦、红松为主的针阔叶混交林。沿江可耕地面积8.9万hm2,主要农作物类型有水稻、大麦、小米、大豆,土壤有机质含量较低且土质疏松,在水力和风力侵蚀作用下极易被溶蚀,土壤抗冲刷能力较差。由于特殊的气候环境与地貌特征,使得该区域洪水预见期和降雨汇流时间较短,延长洪水预见期已成为水库实时洪水调度的迫切需求[8],利用实测降雨和NCEP降雨预报驱动新安江模型[9],对于提升水库防洪综合效益具有重要意义。
1.2 TIGGE资料整理
每小时降雨观测资料来源于2012—2016年鸭绿江流域各雨量站3~10h观测数据,集合预报降雨资料由TIGGE中心提供,其中空间分辨率为0.5°,累计最小预报时间为6h。实测资料与格点资料分别为站点数据和TIGGE降雨预报数据,由于落入鸭绿江流域内的格点较少,所以可通过双线性差值法转化为站点资料,然后进行降雨预报可行性检验分析[10]。
由于现有雨量分级标准与TIGGE中心提供的降雨预见期不同,因此可按照随着时段的增加不同累计时段在同一降雨量级的降雨量成倍递增的原则,进一步划分雨量级。根据12与1h降雨量可插值得到6h标准,并且大暴雨及以上降雨次数在鸭绿江流域较少,因此未考虑该级别降雨,按照上述原则与方法得到雨量级别划分,见表1。
表1 降雨量级划分 单位:mm
2 预报评估方法
2.1 TS评分和偏差Bias分析
不确定性集合预报具有概率与定量预报的综合特征,因此本文对定量预报效果分别采用TS与偏差Bias进行分析,并对概率预报技巧的合理性与预报精度利用Brier与CRPS评分进行评估。
TS评分是用于观测和度量某时间发生的准确率参数,因此可称为临界成功指数CSI,在我国降雨预报分析中的应用最为常见[11]。在中值预报和集合平均评估中,预报准确率随TS值的增大而增高,计算方法为:
TS=NA/(NA+NB+NC)
(1)
TS评分对命中频数较为敏感且仅仅分析某时间预报发生的次数,因此在分析预报误差原因时存在一定的局限性。偏差Bias可有效弥补这种不足,它综合了空报与漏报2种状况。偏差Bias值为1时,则预报结果处于理想状态,大于1或小于1分别代表预报存在空报与漏报现象,其表达式为:
Bias=(NA+NB)/(NA+NC)
(2)
式中,NA、NB、NC—报对、空报与漏报次数。
2.2 Brier评分与CRPS评分
Brier评分是综合性评价概率预报结果的重要参数,对集合预报效果可利用该指标进行检验,表达式为:
(3)
式中,N—某时间的总预报次数;Pi、Oi—预报概率与观测概率。
Oi值为1则该时间发生,反之则代表该时间未发生。Brier评分值处于0~1区间,概率预报效果随Brier值的增大而降低,其值为0、1时分别代表预报效果最好和预报失效。Brier评分可进一步分解为不确定性、分辨率与可靠性的衡量,而对于集合预报的整体性能可根据连续等级概率分数CRPS评判。CRPS评分是反映累积分布函数与预报值之间差别的参数,预报值绝对误差的平均在预报值为确定的单一值时等同于CRPS值。预报模式的预报性能可通过Brier评分与CRPS得到更加直观地反映,各量级事件的Brier评分的几何平均值通常为实际应用中CRPS的取值,计算方法为:
(4)
式中,N、yi—各雨量级数与实况;F(t)、H(t-yi)—预报与实况累计分布函数。
2.3 Talagrand分布图
Talagrand分布图是对集合预报系统的可靠性利用实测值与集合成员之间的离散程度来反映的有效方法,因此也成为排名直方图。分布越平坦则离散程度越平均,因此系统的可靠性越好。具体的计算流程为:将按升序排列后的集合成员预测值落入各个区间,并统计分析相应的频数。如果集合预报成员和落入的区间分别为M与M+1个,则在某个区间内势必会存在实测值,其表达式为:
Frequencyi=fi/N
(5)
式中,Frequencyi、fi—落入区间的概率和样本数;N—总的样本数。
3 洪水预报分析
3.1 参数率定
鸭绿江流域属于温带半湿润季风气候区,流域内水源涵养多、植被覆盖面积广,蓄满产流为主要的产流方式,因此可考虑新安江蓄满产流模型进行洪水过程的模拟分析[12]。本文降雨量数据来源于2012年以后的雨量监测站,因此数据样本较小,对于新安江模型参数的率定考虑采用1990—2011年的15场历史洪水,并以2012—2016年的4场洪水进行模型的率定检验。对模型利用遗传算法进行多次的迭代运算,并最终趋于稳定状态,模型主要参数的检验结果见表2。
表2 参数率定结果
对各参数取值的合理性根据《水文预报》中相关说明进行分析,结果表明受近年人类活动影响不透水面积比例Im取值相对偏大,并且该值呈现出增大的变化趋势,其原因与不透水面积增大相关,因此可认为该值取值区间较为合理。与相邻流域平均水平相比Wm取值较大,考虑是鸭绿江流域多年逐渐增大的水稻耕地面积具有明显的雨水截留作用,从而增大了土壤的蓄水能力,因此该参数值也比较合理[13]。将4场次实测降雨产汇流参数输入模型,对模型预报精度进行检验,结果见表3,模型检验合格且具有较高的模拟精度。
表3 实测降雨产汇检验结果
3.2 集合降雨预报驱动新安江模型
在一定程度上各预报结构均存在数据缺失的现象,并且预报效果大致相同,因此本文对新安江模型的驱动可考虑NCEP集合降雨数据,并检验模型的产汇流状况,结果见表4。
表4 基于NCEP预报降雨的模型产汇流检验结果
降雨历程与洪水的形成具有较为密切的关系,降雨预报的精确性可通过洪水流量过程来体现。根据表4产汇流检验结果,对新安江模型利用NCEP预报降雨驱动的4场次洪水检验,结果表明除20120809场次洪水的径流量与洪峰相对误差大于20%,被认为检验不合格以外,其他各场次均满足检验要求并具有较高的模拟精度。并且,20160815场次洪水的洪峰相对误差正向误差为2.81%,其他场次均低于实测值并处于-16.28%~-22.41%区间,分析其原因是在几何平均法计算集成预报成员时,对部分降雨极值过于偏重并对预测峰值造成一定的影响[14]。对比分析2种驱动数据下的洪水模拟过程可知:在洪水过程线中2种驱动数据具有较强的一致性,由此进一步说明集合预报降雨相对于其他驱动具有更高的模拟精度,具有理想的模拟效果。集合降雨预报的预见期相对于实测降雨驱动最小可提前6h预见期。总而言之,在鸭绿江流域中TIGGE降雨预报呈现出良好的模拟效果,并可显著提高洪水预见期,可为水库的综合调度和提前制定防洪措施提供一定参考。
4 结论
本文结合实测降雨数据资料和3种短期集合降雨数据,对鸭绿江流域铁甲水库洪水预报进行研究分析,并对短期预报效果分别采用Talagrand分布图、Brier与TS评分进行了评价;为进一步分析洪水预报过程中集合降雨预报的可行性与可靠性,本文对新安江模型利用集合降雨数据驱动,得出的主要结论如下。
(1)对于小雨量级别的预报各机构提供的方法均呈现出理想的预报效果,并具有较高的模拟精度,各模型在大雨及以上级别降雨预报时较差,主要表现为出现漏报与空报现象,其原因可能是该区域实测高雨量级数据较少,从而降低了该雨量级评价结果的准确性。
(2)在洪水过程线中2种驱动数据具有较强的一致性,由此进一步说明集合预报降雨相对于其他驱动具有更高的模拟精度,具有理想的模拟效果,集合降雨预报的预见期相对于实测降雨驱动最小可提前6h预见期。
(3)集合降雨预报驱动洪水的预报模型对降雨洪水预报对于水库水情分析和防洪调度提供了比较新颖的水情分析思路和洪水预报方法,对于气陆耦合模型的可能性研究提出了很好的思路和建议,其学术理论研究价值和实际的应用具有广阔的前景。