拉格朗日四平方定理的证明
2019-05-13黄波
科技视界 2019年8期
黄波
【摘 要】拉格朗日四平方定理又被称为Bachet猜想。说的是任何正整数都能被写成至多4个数的平方和。虽然定理由费马用无限下降的方法给出了证明,但证明过程很繁杂。欧拉没有成功证明定理。对这个定理第一个发表的證明是由拉格朗日于1770年利用了欧拉四平方等式给出的。本文参阅了相关的外文资料,对该定理给出了严格的证明。
【关键词】拉格朗日四平方定理;证明
中图分类号: G633.6文献标识码: A 文章编号: 2095-2457(2019)08-0156-002
DOI:10.19694/j.cnki.issn2095-2457.2019.08.068
拉格朗日四平方定理又被称为Bachet猜想。说的是任何正整数都能被写成至多4个数的平方和。虽然定理由费马用无限下降的方法给出了证明,但证明过程很繁杂。欧拉没有成功证明定理。对这个定理第一个发表的证明是由拉格朗日于1770年利用了欧拉四平方等式给出的。本文参阅了相关的外文资料,其主要证明过程如下:
到这里,我们知道任意的奇素数,都能写成4个整数的平方和。于是,任何正整数都能写成4个整数的平方和。定理证毕。