土霉素处理对柑橘黄龙病的防治效果及PP2基因表达的影响
2019-04-12姚廷山周彦DiannAchor王年周常勇
姚廷山,周彦,Diann Achor,王年,周常勇
土霉素处理对柑橘黄龙病的防治效果及PP2基因表达的影响
姚廷山1,2,周彦1,Diann Achor3,王年3,周常勇1,2
(1西南大学/中国农业科学院柑桔研究所,中国重庆 400712;2西南大学植物保护学院,中国重庆 400716;3美国佛罗里达大学柑橘教育 与研究中心,美国佛罗里达 33850)
【目的】评价土霉素(oxytetracycline,OTC)药剂对不同发病程度柑橘黄龙病(Huanglongbing,HLB)的防治效果,并检测OTC处理后韧皮部关键基因——韧皮部蛋白2(PP2)的表达量变化,为HLB的有效防控提供科学依据,也为OTC作用机理研究提供参考。【方法】应用可有效抑制、杀死病原菌的OTC,树干定量注射0.1 g/树于不同发病程度HLB(初感染、轻度发病和重度发病3组)的4年生Valencia夏橙,注射后7、30、60、90 d定期采集Valencia叶片样品监测HLB致病菌Liberibacter asiaticus(Las)含量、淀粉含量及PP2基因表达量变化。树干注射OTC后90 d采集不同处理Valencia的嫩叶、成熟叶片及茎,进行淀粉染色光学显微观察(LM),直观反映植株累积淀粉的变化。树干注射OTC后80 d调查柑橘嫩叶抽发的情况,综合一系列指标评价OTC对HLB的防治效果。【结果】注射OTC 0.1 g/树对初感染HLB的4年生Valencia植株治疗作用最明显,7 d后检测即为阴性,并可保持90 d,其成熟叶片的淀粉含量明显减少,但茎内仍有淀粉粒富集;轻度发病夏橙注射90 d后叶片内的Las含量从(1.68×106±858884)cells/g叶片减至(7.21×104±30981)cells/g叶片,下降幅度极为明显,其成熟叶片内的淀粉含量在90 d内一直呈下降趋势;重度发病植株注射后叶片内的Las含量从(4.10×108±3.04×108)cells/g叶片减至(2.80×107±2.70×107)cells/g叶片,但从数量而言仍然有较多分布,除了新长出的秋梢,其成熟叶及茎内的淀粉粒含量仍旧很大,说明0.1 g/株OTC不足以治愈4年生重度发病Valencia夏橙。对PP2基因表达分析结果显示,注射OTC后30 d,Valencia夏橙体内的PP2基因表达量大幅度下降,随后90 d内表达量稳定,与注射后30 d的表达量较为一致。【结论】OTC可以用于HLB的防控,对初感染(Las含量为<9.00×105cells/g叶片)及轻度发病(Las含量为9.00×105—9.00×107cells/g叶片)的柑橘植株治疗作用较好,不适用于重度发病植株(Las含量为>9.00×107cells/g叶片)的治疗。注射OTC后,PP2基因表达量下降明显,说明OTC可有效减少韧皮部病菌等的胁迫压力。
黄龙病;Liberibacter asiaticus(Las);土霉素;淀粉;韧皮部蛋白2
0 引言
【研究意义】柑橘黄龙病(Huanglongbing,HLB)是世界柑橘产业的毁灭性传染病害,病原为一种寄生于韧皮部筛管组织的革兰氏阴性细菌,可导致叶片黄化、果实畸形早落、种子败育及根系腐烂,直至树体死亡[1-3]。HLB病原菌分为亚洲种. L. asiaaticus(Las)[4]、非洲种. L. africanus(Laf)[5]和美洲种. L. americanus(Lam)[6-7],其中Las及其传播媒介昆虫亚洲柑橘木虱(ACP,)在全球分布最普遍,危害也最严重。迄今为止,HLB无抗病品种且病原仍无法分离培养,导致其有效防控研究进展缓慢,给柑橘产业带来了前所未有的挑战[8]。因此有效抑制植株中黄龙病菌的含量是当前研究的重点内容[9],开展对目前唯一明确能直接杀死HLB病菌的抗生素的效果评价及作用机制具有重要意义。【前人研究进展】研究表明,大量喷施农药杀灭亚洲柑橘木虱及移除HLB病树的联合防控方法花费巨大且效果不明显,尤其地势平坦或飓风、台风等影响地区,无法控制亚洲柑橘木虱的扩散[9]。柑橘抗病育种和亚洲柑橘木虱的遗传转化途径研究为HLB的防控提供了希望,但离田间有效应用还有较大距离[10-11]。抗生素是目前唯一明确能直接杀死HLB病菌的化学药物,在温网室试验中,土霉素(OTC)可高效抑制HLB病菌[12-13],但喷施的OTC很难进入叶片组织,只能通过抑制叶表面的其他细菌来保护植株生长[14],光照和降雨会加速OTC的流失,影响周边环境[15],因此需要建立替代方法来提高OTC的防治效果,同时减少对环境的影响。树干注射是直接将化学物质或营养物质输送到植物体内的目标精确、环境友好的方法,在植物营养供给和病虫害防控中被广泛应用[16-17]。亚洲和南非曾用树干注射杀菌剂进行HLB防控,但因其劳动力及设备费的高昂而推广受限。此外,树干注射OTC后一旦停止用药,次年HLB还会复发[18-19]。近期迫于HLB的严重威胁,美国佛罗里达州已放开对OTC的使用,并开展药剂筛选、施用方法等研究[9,13]。HLB病原菌在柑橘韧皮部繁殖及扩展,因此具有维持植物形态、运转内部物质及愈合伤口等功能的韧皮部蛋白成为研究焦点[20-21]。尤其是韧皮部蛋白中含量最多的一种通过二硫键共价连接的二聚体多聚GlcNAc结合凝集素,即韧皮部蛋白2(phloem protein 2,PP2)[22]。免疫细胞化学定位研究显示,PP2不仅分布于伴胞,在植物筛管分子中也有分布[23-24],由于堵塞韧皮部中的筛管是黄龙病菌致病的主要方式,因此PP2蛋白可能成为HLB防控的关键。【本研究切入点】然而,OTC对HLB发病程度不同柑橘的治疗效果尚未研究,施用OTC与柑橘韧皮部关键基因PP2的关系也未见报道。【拟解决的关键问题】应用qRT-PCR、高效液相色谱(HPLC)等监测植株中Las、OTC和PP2基因的含量变化,评价OTC对不同患病程度柑橘的治疗效果,探索OTC防控HLB的可能作用机制。
1 材料与方法
试验于2017年在美国佛罗里达大学柑橘研究与教育中心完成。
1.1 供试材料
供试柑橘为4年生Valencia夏橙(),由美国佛罗里达大学柑橘研究与教育中心提供。2017年3月放置于温室中保存。定期浇水并每3个月使用“Citrus gain”肥料(Bougainvillea Growers International,St. James City,FL,USA)提供矿物质营养。
药剂:Agro-OTC(FireLine 17WP,AgroSource,Inc.)。
1.2 供试材料分组
根据检测的Las基因组拷贝数进行分组,分为初感染、轻度发病及重度发病3组,每组3株Valencia重复。试验选择Valencia夏橙成熟叶片(1年叶),使用直径0.9 cm打孔器在植株东西南北中5个方位各选取1片叶打孔取样,Wizard Genomic DNA纯化试剂盒(Promega)提取基因组DNA。纯度及浓度检测后稀释至10 ng∙µL-1作为qRT-PCR扩增模板。20 µL qRT-PCR反应体系:2 µL模板,2×mix 10 µL(Qiagen,Valencia,CA),10 µmol∙L-1上/下游引物CQULA04F(5′-TGGAGGTGTAAAAGTTGCCAAA)/CQULA04R(5′-CCAACGAAAAGATCAGATATTCCTCTA)各1 µL[25],10 µmol∙L-1Probe(序列)0.5 µL(Qiagen,Valencia,CA),ddH2O 5.5 µL[26]。反应程序:95℃ 15 min预变性;94℃ 15 s,60℃ 1 min,40个循环进行扩增。所有qRT-PCR反应在ABI PRISM 7500实时PCR仪中进行(Applied Biosystems,Foster City,CA)。通过质粒制作标准曲线来计算样品中的Las基因组拷贝数[26]。应用软件QuantStudioTMDesign&Analysis Softwarev1.4.1进行数据分析。
1.3 树干注射OTC处理及Las含量分析
选用Chemjet tree Injector注射器于2017年7月10日在发病程度不同的3组柑橘树上注射Agro-OTC 0.25 g/树(相当于盐酸土霉素活性成分0.1 g/树),每处理重复3次,每组处理均设清水对照。健康植株与患HLB植株的物候期不同[27-28],选择Valencia夏橙成熟叶片(1年叶),注射OTC后7、30、60及90 d使用直径0.9 cm打孔器在植株东西南北中5个方位各选取1片叶打孔取样,参考1.2应用qRT-PCR检测柑橘体内Las的含量,并做统计分析。
1.4 淀粉含量测定
注射后7、30、60及90 d,从同株树的3个不同方向各选1片成熟叶(1年叶),打孔得到3个直径0.6 cm的叶盘,重复3次,叶盘混合并用钢珠均质化后,沸水加热10 min,2 500 r/min离心2 min,上清液用于淀粉含量检测。淀粉检测参照I2/KI方法进行,以水稻淀粉(Sigma Aldrich,St. Louis,MO,USA)为标样,加入I2/KI 50 µL使淀粉显色,594 nm处监测淀粉含量[26,29]。
1.5 淀粉染色观察(light microscopy,LM)
OTC注射前及注射后90 d,分别采集HLB初感染及HLB严重患病两组植株的成熟叶(1年叶)、嫩叶及茎组织,用洁净刀片将茎和叶片主脉切2 mm×3 mm小块,置于组织固定液(3%戊二醛溶于0.1 mol∙L-1pH 7.2的磷酸钾缓冲液)固定,4℃过夜。经脱水、渗透、包埋及超薄切片后,用光学显微镜观察组织内部结构及淀粉粒分布[30]。
1.6 韧皮部PP2基因表达
应用轻度发病Valencia夏橙植株为供试植物,参照Rawat等[31]对DNA的微阵列(Microarray)差异表达基因的探针信息设计引物,分析Valencia夏橙植株在注射OTC后,韧皮部关键基因PP2的变化情况。探针ID为Cit_35955_1_S1_at_C,引物序列为23F(5′-TCGTTGCCATCAGAAGTATCAC),23R(5′-CCAACGCAAATAAACTGTCCC)。在Valencia植株树干注射OTC 0.1 g/树后的0、30、60及90 d分别取样,迅速带回实验室中于-80℃冰箱中保存,设置Las含量相当的Valencia清水对照,均3株树重复,每株取东西南北中5张叶片混样。采用试剂盒RNeasy Mini Kit(Qiagen,Valencia,CA)抽提叶片总RNA,TURBO DNA-free kit(Ambion,Austin,TX)去除其中的DNA,经ND-8000 Nanodrop分光光度计(NanoDrop Technologies,Wilmington,DE)测定RNA的浓度和纯度,A260/A280>2.0,浓度>100 µg∙µL-1为符合试验要求RNA。取RNA样品产物2 µL反转录为cDNA,用于qRT-PCR对cDNA样品进行基因表达水平检测。候选内参基因选择柑橘甜橙甘油醛-3-磷酸脱氢酶基因(glyceraldehyde-3-phosphate dehydrogenase,GAPDH)(5′-GGAAGGTCAAGATCGGAATCAA/5′- CGTCCCTCTGCAAGATGACTCT),按ΔCT法分析目标基因的相对表达量及其标准差[32]。运用SPSS 13.0进行单因素方差分析和Duncan检验,采用Prism 7.0进行数据分析及图表绘制。
1.7 营养阶段发育参数
不同发病程度的Valencia夏橙组树干注射OTC 0.1 g/树后80 d,即2017年9月30日调查植株新梢和叶片数,记录后用Prism7.0进行数据分析及图表绘制。每个不同发病程度组分别设置清水注射为对照,并且设置健康Valencia植株树干注射OTC 0.1 g/树与注射清水为对照,3次重复。
2 结果
2.1 供试材料Valencia植株分组
供试Valencia植株的Las含量差异较大,发病程度也不相同。本研究依据Valencia叶片中的Las含量,将植株分为初感染、轻度发病及重度发病3组,每组3个重复。3组发病程度不同植株各设注射清水对照,每组3个重复。具体为初感染HLB的Valencia植株的叶片Las含量为<9.00×105cells/g叶片,轻度发病植株的叶片Las含量为9.00×105—9.00×107cells/g叶片,重度发病植株的叶片Las含量为>9.00×107cells/g叶片(表1)。
2.2 树干注射OTC后叶片Las含量变化
注射OTC后病株中Las的含量显著下降,其中对初感染HLB的植株治疗作用最明显,药后7、30、60及90 d检测结果均为阴性(图1-A)。其他两组Valencia夏橙植株在注射后7 d,Las含量均明显减少,药后90 d,轻度发病组的叶片Las含量从(1.68×106±858884)cells/g叶片减至(7.21×104±30981)cells/g叶片,下降幅度极为明显,部分植株在注射药剂后60 d及90 d的检测结果为阴性,但轻度发病对照组Las含量从(1.15×107±8489766)cells/g叶片增至(5.62×107± 2.10×107)cells/g叶片(图1-B);重度发病组从(4.10× 108±3.04×108)cells/g叶片减至(2.80×107±2.70×107)cells/g叶片,而重度发病对照组从(4.70×108± 2.32×108)cells/g叶片增至(9.71×108±4.61×108)cells/g叶片(图1-C)。结果表明,注射OTC 0.1 g/株后,可有效降低Las在柑橘体内的含量,初感染HLB植株在3个月内基本可以治愈,轻度发病植株部分可表现为阴性,重度发病植株体内Las含量有效减少。
2.3 淀粉含量变化
注射OTC后,HLB发病程度不同的植株淀粉含量均有所下降,初感染HLB植株叶片的淀粉含量在注射后7 d、轻度发病植株在注射后60 d下降最明显。重度发病植株在注射后7 d与30 d下降且叶片内淀粉含量相当,在注射后60 d及90 d降至更低水平,且60 d与90 d时叶片内淀粉含量相当。初感染HLB植株在注射OTC 0.1 g/株后90 d内,叶片内淀粉含量均保持在<2 µg∙mm-2;轻度发病植株叶片注射后90 d比60 d略有升高;重度发病植株叶片注射后7 d,叶片内淀粉含量变化明显,但7—90 d淀粉含量变化较小(图2)。
不同小写字母表示差异显著(P<0.05)。下同
表1 基于植株叶片中Las含量的Valencia分组
显微观察表明,夏橙HLB重度发病组的老叶、嫩叶及茎中的淀粉含量及密度皆明显高于初感染HLB的柑橘组,在3种组织中茎观察的淀粉粒沉积量最大,也最密集。注射OTC后,HLB患病严重程度不同的各处理淀粉粒清除作用也不相同。注射OTC对夏橙各组织的影响不同,初感染HLB的嫩叶在注射前后均观察不到淀粉粒的存在;注射前的老叶上有少量淀粉粒沉积,注射后90 d,淀粉粒沉积有所减少但在老叶组织内仍有明显分布;茎中的淀粉粒在注射OTC前后均有较多分布;HLB重度发病植株的老叶、嫩叶及茎中在注射之前均有大量淀粉粒分布,注射OTC后90 d,老叶及茎中的淀粉粒含量有所减少,但是仍有较多淀粉粒分布(图3)。
图2 患HLB夏橙注射OTC后叶片中的淀粉含量变化
2.4 嫩梢(叶)抽发
2017年7月10日Valencia夏橙春梢叶片近成熟时注射0.1 g/株OTC,注射后80 d调查秋梢嫩梢和叶抽发情况。结果表明,Valencia夏橙注射OTC 0.1 g/树后,初感染HLB和轻度发病两组嫩梢抽发量显著高于未注射OTC的植株,HLB重度发病注射组的嫩梢抽发多于未注射组,但差异不显著。初感染HLB和轻度发病两组注射OTC后的嫩梢抽发量无显著差异,但显著高于HLB重度发病注射组。嫩叶抽发与嫩梢的分析结果较为相似,但发病重的Valencia夏橙的嫩叶抽发数量会减少。统计分析结果表明,OTC注射HLB轻度发病组的嫩叶抽发数显著少于HLB初感染的OTC注射组,而显著多于HLB重度发病的OTC注射组。值得注意的是,HLB感染程度不同的3组未注射OTC的Valencia夏橙的嫩梢抽发和嫩叶抽发均无显著差异(图4)。
1:初感染植株(处理)Newly infected plant (Treatment);2:初感染植株(对照)Newly infected plant (CK);3:轻度发病植株(处理)Mild infected plant (Treatment);4:轻度发病植株(对照)Mild infected plant (CK);5:重度发病植株(处理)Severely infected plant (Treatment);6:重度发病植株(对照)Severely infected plant (CK);7:健康植株(处理)Healthy plant (Treatment);8:健康植株(对照)Healthy plant (CK)
图4 Valencia夏橙注射OTC后嫩梢(叶)抽发变化
Fig. 4 The change of new shoot (leaf) of Valencia after OTC trunk injection
2.5 韧皮部PP2基因表达
注射OTC 0.1 g/树后30 d,供试Valencia夏橙的PP2基因表达量显著降低。注射后30、60及90 d处理株和健康对照株的PP2基因表达均无显著差异。Valencia夏橙植株注射OTC后,韧皮部关键诱导表达基因PP2的表达量大幅下降,推测注射OTC后显著降低了植株组织内Las的含量及淀粉沉积量,减少了柑橘韧皮部所受的胁迫,引起PP2的表达量减少(图5)。
3 讨论
柑橘黄龙病(HLB)因其病原菌不能培养,导致防控难度极大。目前,科研工作者已提出激素处理、肥力措施及抗病性育种等方法防控HLB,也尝试通过遗传措施改造其传播媒介亚洲柑橘木虱,这些方法虽然具有解决HLB问题的潜力,但离田间应用还有较大差距[10,26,33]。前人研究表明,单用或混用OTC皆可较好防控HLB[9,34-36],但一旦停止用药,HLB会再次发生。本研究将患有HLB Valencia植株通过qRT-PCR检测体内Las丰度后分为初感染、轻度发病及重度发病3组。3组不同患病程度的Valencia植株分别注射OTC 0.1 g/株后,应用qRT-PCR、淀粉染色观察、淀粉含量测定等技术检测注射后90 d内OTC对患病程度不同的3组夏橙的作用效果,并对韧皮部关键基因PP2表达进行了测定。结果表明,患有不同程度HLB的Valencia夏橙植株在注射OTC0.1g/株后,体内Las含量均下降明显,淀粉粒含量也有较大下降。初感染HLB的4年生Valencia植株,通过注射0.1 g/株OTC,可以在90 d内基本清除植株体内Las危害;HLB轻度发病植株在注射OTC后,开始时Las的清除作用不明显,60—90 d有显著下降,90 d个别植株基本恢复健康;重度患病的柑橘植株体内Las含量及淀粉粒含量仍保持较高水平,推测这是前期报道的树干注射OTC后HLB会复发的重要原因之一。增加OTC注射次数或注射量,或许可更有效防控HLB,但需监控OTC在植物组织尤其是果实内的残留量,应综合考虑OTC的剂量和靶标树的平衡关系,寻找最佳OTC注射量。
Las危害柑橘后,可造成淀粉累积及根系损坏,吸收能力下降,营养缺乏,从而抽梢困难。柑橘抽不出新梢即为生长受到阻挠,进而影响挂果。本研究表明,注射OTC 0.1 g/树于4年生Valencia上,可增加秋梢的发生量,初感染HLB植株在注射OTC 0.1 g/树后的嫩梢抽发量与健康植株相当。后续研究可聚焦于OTC树干注射后对HLB发病植株根系的影响。值得注意的是,通过人工或化学方法杀梢,可减少HLB传播媒介柑橘木虱的产卵场所,是目前国内防控HLB的有效方法之一,可大大减少木虱虫源,从而降低黄龙病的发生。如何来平衡促进新梢抽发及杀梢减少柑橘木虱虫源之间的关系,也是未来研究值得关注的问题。
韧皮部蛋白因Las在韧皮部危害和繁殖而成为研究的重点,存在于筛管分子中并具有ATPase活性,被认为与筛管中的物质运输有关[37]。研究表明,感染HLB的植株在筛板的筛孔中伴随有胼胝质和P蛋白沉积,导致韧皮部堵塞,光合产物运输受阻,叶肉中淀粉过度积累,叶绿素被破坏,最终失绿[38-39]。PP2基因沉默或胼胝质沉积相关基因沉默可能是减缓柑橘黄龙病症状的有效途径。本研究表明,注射OTC后,患HLB植株PP2基因表达量大大减少,而健康植株的表达量基本不变,推测注射OTC后减少了柑橘韧皮部所受的胁迫,该结果可为今后防控机理研究及防治方法改进提供一定的参考。
4 结论
树干注射0.1 g/株土霉素(OTC)可有效治疗4年生Valencia夏橙黄龙病(HLB)初感染植株及部分轻度发病植株,使其检测结果转为阴性;不能使重度发病柑橘植株恢复健康,但可有效减少其体内的Las含量及沉积的淀粉粒含量。树干注射OTC后,可促进患HLB植株嫩梢抽发,减少韧皮部关键基因PP2的表达量,并至少90 d可维持这一水平,表明OTC可有效减少韧皮部病菌等的胁迫压力。
[1] BOVÉ J M. Huanglongbing: A destructive, newly-emerging, century-old disease of citrus., 2006, 88(1): 7-37.
[2] WANG N, Trivedi P. Citrus Huanglongbing: A newly relevant disease presents unprecedented challenges., 2013, 103(7): 652-665.
[3] WANG X F, TAN J, BAI Z Q, DENG X L, LI Z A, ZHOU C Y, CHEN J C. Detection and characterization of miniature inverted- repeat transposable elements in “Liberibacter asiaticus”., 2013, 195(17): 3979-3986.
[4] TSAI C H, SU H J, LIAO Y C, HUNG T H. First report of the causal agent of Huanglongbing (“Liberibacter asiaticus”) infecting kumquat in Taiwan., 2006, 90(10): 1360.
[5] HAAPALAINEN M. Biology and epidemics ofLiberibacter species, psyllid-transmitted plant-pathogenic bacteria., 2014, 165(2): 172-198.
[6] DAVIS M J, MONDAL S N, CHEN H Q, ROGERS M E, Brlansky r h. Co-cultivation of ‘Liberibacter asiaticus’ with actinobacteria from citrus with Huanglongbing., 2008, 92(11): 1547-1550.
[7] GOTTWALD T R, GRAHAM J H, IREY M S, MCCOLLUM T G, WOOD B W. Inconsequential effect of nutritional treatments on huanglongbing control, fruit quality, bacterial titer and disease progress., 2012, 36: 73-82.
[8] COCUZZA G E M, ALBERTO U, HERNÁNDEZ-SUÁREZ E, SIVERIO F, SILVESTRO S D, TENA A, CARMELO R. A review on(African citrus psyllid), now in mainland Europe, and its potential risk as vector of huanglongbing (HLB) in citrus., 2017, 90(1): 1-17.
[9] HU J H, Wang N. Evaluation of the spatiotemporal dynamics of oxytetracycline and its control effect against citrus huanglongbing via trunk injection., 2016, 106(12): 1495-1503.
[10] MARUTANI-HERT M, HUNTER W B, HALL D G. Gene response to stress in the Asian citrus psyllid (Hemiptera: Psyllidae)., 2010, 93(4): 519-525.
[11] STOVE E D, STANGE R R, MCCOLLUM T G, JAYNES J, IREY M, MIRKOV E. Screening antimicrobial peptidesfor use in developing transgenic citrus resistant to Huanglongbing and citrus canker., 2013, 138(2): 142-148.
[12] ZHANG M Q, POWELL C A, GUO Y, DOUD M S, DUAN Y P. A graft-based chemotherapy method for screening effective molecules and rescuing Huanglongbing-affected citrus plants., 2012, 102(6): 567-574.
[13] ZHANG M Q, GUO Y, POWELL C A, DOUD M S, YANG C Y, DUAN Y P. Effective antibiotics against ‘Liberibacter asiaticus’ in HLB-affected citrus plants identified via the graft-based evaluation., 2014, 9(11): e111032.
[14] CHRISTIANO R S C, REILLY C C, MILLER W P, SCHERM H. Oxytetracycline dynamics on peach leaves in relation to temperature, sunlight and simulated rain., 2010, 94(10): 1213-1218.
[15] BERNSTEIN B. Persistence of oxytetracycline residues on peach ((L.) Batsch) leaves following irrigation, sunlight or dew[D]. Clemson, South Carolina: Clemson University, 1991.
[16] KEIL H L. Control of bacterial spot (caused by) in apricot trees by trunk infusion with oxytetracycline., 1979, 63(5): 407-409.
[17] ACIMOVIC S G, ZENG Q, MCGHEE G C, SUNDIN G W, WISE J C. Control of fire blight () on apple trees with trunk-injected plant resistance inducers and antibiotics and assessment of induction of pathogenesis-related protein genes., 2015, 6: Article 16.
[18] 陈仕钦, 卢小林, 陈玉龙, 吴东, 杨必赛, 王中康. 柑橘黄龙病防控药剂筛选试验初报. 植物保护, 2014, 40(2): 166-170.
CHEN S Q, LU X L, CHEN Y L, WU D, YANG B S, WANG Z K. Preliminary report on screening of chemical compounds against the citrus Huanglongbing bacteriumLiberibacter asiaticus in citrus plants., 2014, 40(2): 166-170. (in Chinese)
[19] ZHAO X Y. Citrus yellow shoot disease (Huanglongbing) in China-a review.,1982: 466-469.
[20] MIYATA L Y, HARAKAVA R, ATTILIO L B, MENDES B M J, SPOTTILOPES J R, COLETTA-FILHO H D, DE SOUZA A A, FILHO F A A M. Phloem promoters in transgenic sweet orange are differentially triggered byLiberibacter asiaticus., 2017,39(3): e-993.
[21] AOKI K, SUZUI N, FUJIMAKI S, DOHMAE N, YONEKURA- SAKAKIBARA K, FUJIWARA T, HAYASHI H, YAMAYA T, SAKAKIBARA H. Destination-selective long-distance movement of phloem proteins., 2005, 17(6): 1801-1814.
[22] JIANG S Y, MA Z G, RAMACHANDRAN S. Evolutionary history and stress regulation of the lectin superfamily in higher plants., 2010, 10: 79.
[23] FISHER D B, WU Y, KU M S B. Turnover of soluble proteins in the wheat sieve tube., 1992, 100(3): 1433-1441.
[24] BOSTWICK D E, SKAGGS M I, THOMPSON G A. Organization and characterization ofphloem lectin genes., 1994, 26(3): 887-897.
[25] Wang Z K, Yin Y P, Hu H, Yuan Q, Peng G, Xia Y X. Development and application of molecular-based diagnosis for ‘Liberibacter asiaticus’, the causal pathogen of citrus huanglongbing., 2006, 55(5): 630-638.
[26] TRIVEDI P, SAGARAM U S, KIM J S, BRLANSKY R H, ROGERS M E, STELINSKI L L, OSWALT C, WANG N. Quantification of viableLiberibacter asiaticus in hosts using quantitative PCR with the aid of ethidium monoazide (EMA)., 2009, 124(4): 553-563.
[27] VALIENTE J I, ALBRIGO L G . Flower bud induction of sweet orange trees [(L.) Osbeck]: Effect of low temperatures, crop load, and bud age., 2004, 129(2): 158-164.
[28] ZHENG Y Q, KUMAR N, GONZALEZ P, ETXEBERRIA E. Strigolactones restore vegetative and reproductive developments in Huanglongbing (HLB) affected, greenhouse-grown citrus trees by modulating carbohydrate distribution., 2018, 237: 89-95.
[29] VAN HANDEL E. Direct microdetermination of sucrose., 1968, 22(2): 280-283.
[30] ACHOR D S, Etxeberria E, WANG N, Folimonova S Y, CHUNG K R, Albrigo L G. Sequence of anatomical symptom observations in citrus affected with huanglongbing disease., 2010, 9(2): 56-64.
[31] RAWAT N, KIRAN S P, DU D L, GMITTER F G, DENG Z A. Comprehensive meta-analysis, co-expression, and miRNA nested network analysis identifies gene candidates in citrus against Huanglongbing disease., 2015, 15: 184.
[32] CHEN J B, WANG S M, JING R L, MAO X G. Cloning of PvP5CSgene from common bean () and its response to abiotic stresses., 2009, 166(1): 12-19.
[33] HAJERI S, EL-MONHTAR C, DAWSON W O, GOWDA S.-based RNA-interference (RNAi) vector and its potential in combating citrus Huanglongbing (HLB)., 2014, 1(1): 193.
[34] MCCOY R E. Uptake, translocation, and persistence of oxytetracycline in coconut palm., 1976, 66: 1038-1042.
[35] MCMANUS P S, STOCKWELL V O, SUNDIN G W, JONES A L. Antibiotic use in plant agriculture., 2002, 40: 443-465.
[36] KUMAR K, GUPTA S C, CHANDER Y, SINGH A K. Antibiotic use in agriculture and its impact on the terrestrial environment., 2005, 87: 1-54.
[37] LUCAS W J, LEE J Y. Plasmodesmata as a supracellular control network in plants., 2004, 5: 712-726.
[38] MASAOKA Y, PUSTIKA A, SUBANDIYAH S, OKADA A, HANUNDIN E, PURWANTO B, OKUDA M, OKADA Y, SAITO A, HOLFORD P, BEATTIE A, IWANAMI T. Lower concentrations of microelements in leaves of citrus infected with ‘Liberibacter asiaticus’., 2011, 45(3): 269-275.
[39] MAFRA V, MARTINS P K, FRANCISCO C S, RIBEIRO-ALVES M, FREITAS-ASTUA J, MACHADO M A.Liberibacter americanus induces significant reprogramming of the transcriptome of the susceptible citrus genotype., 2013, 14: 247.
effects of Oxytetracycline Treatment on the control of sweet orange Huanglongbing and the expression of PP2 gene
YAO TingShan1,2, ZHOU Yan1, Diann Achor3, WANG Nian3, ZHOU ChangYong1,2
(1Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China;2College of Plant Protection, Southwest University, Chongqing 400716, China;3Citrus Research and Education Center, University of Florida, Lake Alfred, Florida 33850, USA)
【Objective】The objective of this study is to evaluate the control efficacy of oxytetracycline (OTC) on sweet orange Huanglongbing (HLB), detect the expression of phloem protein 2 (PP2) gene, and to provide a scientific basis for the effective prevention and control of HLB as well as a reference for OTC mechanism research. 【Method】OTC, which can effectively inhibit and kill pathogenic bacteria, was injected with 0.1 g/tree of 4-year-old Valencia sweet orange with different severity of HLB (newly infected, mild infected and severely infected plants), and then the contents ofLiberibacter asiaticus (Las), starch and PP2 gene of leaves were evaluated at 7, 30, 60, 90 days post injection, respectively. Furthermore, 90 days after injection, the young and mature tissues of the plants were observed by using starch staining light microscopy (LM). The extraction of tender leaves was investigated 80 days after OTC injection. 【Result】Trunk injection of OTC 0.1 g/tree had the most obvious therapeutic effect on newly infected Valencia sweet orange. Seven days after injection, Las could not be detected and it maintained for 90 days. The starch content in mature leaves decreased obviously, but starch grains were still enriched in stems. The Las content of mild infected Valencia leaves decreased from (1.68×106±858884) cells/g leaf to (7.21×104±30981) cells/g leaf, the descending range was obvious, and the starch content in mature leaves showed a decreasing trend within 90 days. The Las content of severely infected Valencia leaves decreased from (4.10×108±3.04×108)cells/g leaf to (2.80×107±2.70×107)cells/g leaf, but the starch content in mature tissues of severely infected plants was still high, except the newly autumn shoots. The results indicated that 0.1 g/tree OTC was not enough to cure 4-year-old severely infected Valencia. The expression of PP2 gene in Valencia significantly decreased 30 days after OTC injection, and remained stable in the subsequent 90 days, which was consistent with the expression level at 30 days after injection.【Conclusion】OTC can be used in the prevention and control of HLB, and has better therapeutic effect on newly infected Valencia (Las content is less than 9.00×105cells/g leaf) and mild infected Valencia (Las content is 9.00×105-9.00×107cells/g leaf). It was not suitable for the treatment of severely infected plants (Las content is more than 9.00×107cells/g leaf). After injection of OTC, the expression of PP2 gene decreased obviously, suggesting that OTC can effectively reduce the stress of phloem pathogens.
Huanglongbing (HLB);Liberibacter asiaticus (Las); oxytetracycline (OTC); starch; PP2
10.3864/j.issn.0578-1752.2019.07.010
2018-11-23;
2019-01-23
国家重点研发计划(2018YFD0201500)、重庆市自然科学基金(cstc2016jcyjA0118)
姚廷山,Tel:023-68349005;E-mail:yts103xt@cric.cn。通信作者周常勇,E-mail:zhoucy@cric.cn
(责任编辑 岳梅)