鄂尔多斯盆地下寺湾—云岩地区长7段页岩气测井评价与分布规律研究
2019-04-03张金川
王 龙 张金川 唐 玄
( 1中海油研究总院有限责任公司;2中国地质大学(北京) )
0 引言
随着国民经济的迅速发展,现代社会对能源的需求日益增加,以页岩气为代表的非常规能源作为常规油气类型的重要补充和接替,越来越得到重视和关注[1-3]。目前,美国和加拿大已实现页岩气的商业开发。而根据前期资源评价,中国页岩气资源潜力巨大,可采资源量为(11.5~36.1)×1012m3[4-5]。实现中国页岩气的高效勘探开发必将从整体上改变中国的能源格局,缓解中国能源供应不足的局面,优化资源结构,保证能源安全,推动经济发展[6-11]。
与常规油气资源不同,页岩气赋存于泥页岩中,要评价页岩气的资源潜力,需要精细刻画其空间展布,获取总有机碳含量、成熟度等关键地球化学指标和储集物性参数。现场采样进行实验分析耗时长、费用高,且无法得到整个泥页岩层段的连续地质信息。通过测井资料分析获得页岩气富集层段的参数,可以为泥页岩地质特征研究提供更加快捷、方便、合理的评价参数值。
本文在研究国内外多种页岩气测井方法的基础上,结合研究区地质背景和实际资料,对有机碳含量、有机质成熟度和孔隙度等页岩气评价关键指标进行定量计算,并以此为基础对研究区页岩气地质特征进行分析和评价,以期对该区页岩气勘探起到一定的指导作用。
1 研究区地质背景
鄂尔多斯盆地位于华北地台西部,为一大型多旋回克拉通叠合盆地,整体为南北翘起、东翼宽缓、西翼高陡的不对称向斜[12]。全盆可以划分为伊盟隆起、西缘逆冲带、天环坳陷、伊陕斜坡、晋西挠褶带、渭北隆起6个一级构造单元,下寺湾—云岩地区位于伊陕斜坡东南部(图1)。
图1 研究区位置图Fig.1 Location map of the study area
晚三叠世,鄂尔多斯盆地处于坳陷期,形成内陆湖盆,沉积延长组长10段至长1段[13-16]。长7段沉积时期,盆地坳陷最为强烈,加之气候湿润,湖盆面积广,水量充沛。研究区仅在北缘发育小规模三角洲,大部分区域发育湖相沉积环境,南部处于半深湖—深湖还原环境,暗色泥页岩非常发育,沉积厚度大、有机质丰富,具备形成页岩气富集优质层段的条件(图2)。
图2 下寺湾—云岩地区长7段沉积相图Fig.2 Sedimentary facies of Chang 7 Member in the Xiasiwan-Yunyan area
2 页岩气测井评价参数及方法
2.1 有机碳含量测井评价方法
有机碳含量(TOC)是评价页岩气地质特征最基础的参数之一,可以定量表示烃源岩中有机质的富集程度[17]。岩石中有机质的存在会引起测井曲线的明显响应,包括高自然伽马、高电阻率、高声波时差、低密度等。因此,利用不同测井曲线的差异特征可以估算泥页岩地层中有机碳含量(表1)。
表1 有机碳含量测井评价方法及其优缺点Table 1 Logging evaluation method of organic carbon content and its advantages and disadvantages
寻找与有机碳含量相关的单一曲线,通过拟合经验公式建立关系的方法称为直接关系法[18]。对有机碳含量能够产生响应的测井曲线包括自然伽马、声波时差、中子密度和电阻率等。由于泥页岩非均质性强,不同层段及不同地区均存在差异,加之测井曲线响应特征的多解性,导致有机碳含量与单一测井曲线之间并不总能建立相关性较好的线性或非线性关系。这使得直接关系法的准确性及适用范围均较为有限。
神经网络法是在相互独立的测井曲线中建立非线性关系的数学运算方法,可用于估算有机碳含量。通过输入已知的相关测井曲线,对研究区域分层段进行统计分析,建立并修正测井曲线与有机碳含量的数据模型和经验公式。该方法针对具有一定研究基础的地区或局部层段预测效果较好,但对研究程度较低或非均质性较强的复杂地区泥页岩层段,预测较为困难。另外,不同研究者通过实际工作会得到不同的经验公式,方法的普适性相对较差[19-20]。
脉冲中子—伽马能谱及密度—核磁共振法,均是依据特殊测井方法的不同原理,更加精细地测量地层中的元素或流体信息,构建更为完备的岩石物理模型并推算泥页岩层段中有机碳含量的方法。通过这些方法估算有机碳含量准确率较高,但均需要进行特殊测井以获得必要参数,价格昂贵,在国内并未普及[21]。本文研究区内的各井均未进行过相关测井,因此无法应用类似方法。
利用不同测井曲线之间的组合关系可以估算有机碳含量,其中以声波时差—电阻率组合估算有机碳含量的ΔlgR法应用最为广泛[22](图3)。
通常,有机质相对于围岩密度偏低,它对能量吸收强,导致能量衰减快、传播速度降低,因此具有声波时差大的特点;泥页岩层段的电阻率曲线并不会随着泥质含量的增高发生显著变化,但当泥页岩孔缝中存在大量烃类时,则会出现电阻率增大的变化特征[13]。据此,本文提出有机碳含量经验计算公式:
图3 声波时差—电阻率曲线关系Fig.3 AC vs. resistivity curves
式中 Rt——实测电阻率,Ω·m;
Δt——实测声波时差,μs/m;
A、B、C——分别为不同地区的经验参数。
通过对研究区内30口标准井进行相关性分析,ΔlgR法计算有机碳含量与岩心实测有机碳含量相关性最好,且方法中所需要的声波时差和电阻率曲线是常规的测井序列,区内各井曲线较全、品质较好,是理想的有机碳含量预测方法。但是研究区长7段上部为一套连续沉积的砂岩,下部为含有粉砂质的泥页岩,该套泥页岩声波时差基线不稳定且难以确定,故对理论公式进行了一定的修正。利用多元统计分析,求出适合研究区的有机碳含量经验公式为:
2.2 孔隙度测井评价方法
孔隙度是评价储层储集性能的最重要指标,尽管泥页岩储层相对致密,但其微孔隙十分发育,同样具备一定的储集性能。准确确定泥页岩储层物性参数的难度很大,前人研究成果较少,适合特殊岩性地层孔隙度测量的测井方法并未普及[23-25]。本文仍采用常规的储层孔隙度计算方法,以密度、中子、声波时差等常规测井方法为基础,对泥页岩储层孔隙度进行评价。
研究区已有个别井在长7段底部泥页岩压裂试气,理论上可认为地层中所含流体为天然气。结合实验室测试的岩石骨架密度,利用声波时差方法,对研究区30口标准井进行孔隙度计算。计算公式如下:
式中 φ——纯泥页岩地层孔隙度,%;
Δtf——甲烷声波时差,μs/m;
Δtma——地层骨架密度声波时差,μs/m;
Δtsand——砂质声波时差,μs/m;
Vsand——泥页岩地层中砂质含量。
2.3 有机质成熟度测井评价方法
有机质成熟度是表征有机质热演化阶段的指标,可以判断泥页岩生烃有效性和产物性质,因此也是评价页岩气潜力的重要地球化学参数之一[26]。有机质成熟度通常通过测定镜质组反射率(Ro)获得。
前人对于有机质成熟度的测井评价方法研究较少,且多结合实际生产数据,研究区缺乏生产相关数据,无法直接应用。研究认为孔隙度和有机质成熟度均与作用时间呈线性关系,二者的不同体现在:孔隙度受上覆地层应力等多重因素控制,有机质成熟度则主要受地温影响,而地温与埋深大致呈线性关系[27-28]。因此,理论上孔隙度和有机质成熟度都是埋深与所经历的地质时间的函数,只是函数形式有差别。研究区内多口单井泥页岩样品实测孔隙度与实测成熟度指标(Ro)拟合关系良好(图4)。
图4 下寺湾—云岩地区长7段孔隙度与Ro关系图Fig.4 Porosity vs. Ro of Chang 7 Member in Xiasiwan-Yunyan area
通过拟合关系确定地层孔隙度与成熟度具有相关关系,计算公式如下:
3 页岩气地质特征测井评价
3.1 下寺湾地区典型井测井综合评价
为了验证测井计算得到的有机碳含量、有机质成熟度及孔隙度模型的准确性及适用性,选取LP177井作为验证井,对长7段进行综合评价。整体上看,LP177井测井计算有机碳含量与实验室实测有机碳含量相关性较好,仅在个别砂质含量相对较高的层段具有一定偏差;测井计算孔隙度及有机质成熟度与岩心测试数据相关性较好。综合测井解释认为,LP177井长7段自然伽马曲线均值明显增高,自然电位值整体降低;录井显示该套地层岩性主要为黑色泥页岩,测井解释泥质含量高;电阻率值增大,感应测井曲线变化明显,可以作为辅助判断含油气性的依据;声波时差曲线较其他层段明显增大。根据测井曲线计算结果,LP177井长7段泥页岩孔隙度介于2%~4%,TOC均值介于6%~8%,Ro主体介于0.5%~1%之间,与实测值匹配关系良好(图5)。长7段底部发育的厚层泥页岩各项指标显示良好,可作为重点研究层段。
图5 LP177井长7段下部泥页岩段综合测井解释剖面Fig.5 Comprehensive logging interpretation of the lower Chang 7 shale in Well LP177
3.2 泥页岩地质特征
通过对研究区多口单井进行测井评价,得到长7段有机碳含量、孔隙度以及有机质成熟度的平面分布规律。研究区长7段TOC变化范围较大,介于0.5%~6.5%之间,主体大于2%,达到好烃源岩的标准;平面上呈东北低西南高的展布特征,高值位于研究区西南部,其中L79井、L81井附近长7段TOC可达6.5%左右(图6)。Ro值偏低,变化范围较大,主体介于0.65%~1.25%,处于生油—湿气阶段;平面上看,Ro的分布呈现中部低东西两端较高的趋势,其中高值区同样位于西南部L81井附近,最高值约为1.25%(图7)。孔隙度相对偏低,介于2%~6.7%,大部分地区孔隙度大于4.5%,平面上呈现北高南低的展布特点,研究区北部靠近物源地区孔隙度达6%以上,靠近南部半深湖—深湖区域长7段孔隙度逐渐减小,最小为2.1%(图8)。
图6 下寺湾—云岩地区长7段测井评价TOC平面图Fig.6 TOC plan of Chang 7 Member in Xiasiwan-Yunyan area calculated by logging data
图7 下寺湾—云岩地区长7段测井评价Ro平面图Fig.7 Ro plan of Chang 7 Member in Xiasiwan-Yunyan area calculated by logging data
图8 下寺湾—云岩地区长7段测井评价孔隙度平面图Fig.8 Porosity plan of Chang 7 Member in Xiasiwan-Yunyan area calculated by logging data
4 结论
在实验室岩心测试数据修正的基础上,通过测井手段进行页岩气地质评价是切实可行的。根据下寺湾—云岩地区延长组的地质特点,选择相应的测井模型计算的研究区长7段泥页岩有机碳含量分布于0.5%~6.5%,Ro分布于0.65%~1.25%,孔隙度分布于2%~6.7%。基于以上参数对长7段泥页岩地质条件进行了定量评估,证实长7段是页岩气地质条件较好的层系之一。
利用多口钻井的测井曲线计算的长7段泥页岩有机碳含量、孔隙度和Ro,预测了研究区长7段泥页岩这3个地质参数的平面分布特征和展布规律。研究认为研究区西南侧为优质泥页岩的发育区,该区域泥页岩地质条件优越,是页岩气勘探开发的重要区域。