改进灰色模式识别模型评价洱海雨季灌排沟渠水质
2019-02-20冯弋洋王贵云张克强沈仕洲
谢 坤,罗 元,冯弋洋,吴 凡,王贵云,张克强,沈仕洲,王 风
改进灰色模式识别模型评价洱海雨季灌排沟渠水质
谢 坤1,3,罗 元1,2,3,冯弋洋1,2,3,吴 凡1,3,王贵云1,张克强1,3,沈仕洲1,3,王 风1,3※
(1. 农业农村部环境保护科研监测所,天津 300191;2. 云南农业大学资源与环境学院,昆明 650201;3. 农业农村部大理农业环境科学观测实验站,大理 671004)
为揭示洱海流域农田生产与农村生活单元交替分布对灌排沟渠水质的综合影响及污染物贡献率,选取流域典型灌排沟渠不同断面进行连续取样观测,在分析化学需氧量(chemical oxygen demand,COD)、总氮(total nitrogen,TN)、总磷(total phosphorus,TP)及铵态氮(ammonium nitrogen,NH4+-N)浓度变化特征基础上,采用“中心化”灰色模式识别模型和综合平均污染指数对沟渠农田入口-农田出口-村落出口-农田出口-村落出口-农田出口断面水质进行综合评价。结果表明:沟渠断面TP和总可溶磷(total dissolved phosphate,TDP)浓度沿水流方向持续增加,TN和硝态氮(nitrate nitrogen,NO3--N)浓度先增加随后稳定,沟渠农田出口段NH4+-N和COD浓度分别削减13.43%~57.88%和2.88%~19.33%,而流经村落段浓度相应增加。灰色模式识别模型分析发现沿水流方向沟渠断面水质类别分别为Ⅲ类、Ⅱ类、Ⅳ类、Ⅳ类、Ⅴ类和Ⅴ类,综合平均污染指数法表明沟渠中TN和COD是水体主要污染因子,而NO3--N是水体TN的最主要形态。该研究可揭示洱海流域氮磷污染来源与贡献,为明确面源污染防治的主要污染因子提供科技支撑。
氮;磷;洱海流域;农业面源污染;灌排沟渠;灰色模式识别模型;综合平均污染指数
0 引 言
水体富营养化已成为中国最严重的水污染问题之一[1],湖泊和河流等地表水体生态环境受到严重破坏[2]。洱海作为云贵高原第二大淡水湖泊[3],在整个洱海流域农田灌溉、水产养殖、气候调节和城市用水[4]等方面起着至关重要的作用。随着流域农业、旅游等多功能效益的综合开发利用和城镇化发展,农业生产和农村生活排水中氮、磷含量快速增加,导致洱海水体向富营养化发展,水质不断下降[5]。目前洱海总体水质已渡过中营养化向富营养化转变阶段[6],正处于早期富营养化[7],且近20 a来洱海生态系统健康状态呈逐渐恶化趋势[8]。造成洱海富营养化的主要因素为农业面源污染[9],而流域农田耕地N、P流失和农村排污已成为农业面源污染主要来源[10],约占污染总量的70%[11]。近年来,学者们从土地利用、种植类型、季节变化及时间尺度变化上对洱海流域农业面源污染变化特征进行了深入研究[12-15],发现流域土地利用类型组成与入湖河流氮、磷相关,流域旱季入湖河流水质对土地利用响应关系强于雨季,雨旱季水质相应指标分别为总磷(total phosphorus,TP)和铵态氮(ammonium nitrogen,NH4+-N),且不同种植类型影响下流域入湖河流氮、磷差异较大,同时在前期研究基础上以流域灌排沟渠为载体对流域农业面源污染变化特征进行了探讨[16-18]。
洱海流域现存有大量灌排沟渠,用来满足农业生产区农田地表水灌排以及村庄排水需求。流域雨季降雨量较大,且农业耕作活动主要集中于雨季,降雨冲刷农田地表形成径流将肥料和土壤残留N、P等营养物质带入沟渠水体中,同时集中降雨影响着村庄废水对沟渠的排放[19],流域灌排沟渠成为了连接农业排水、村庄生活废水与洱海的重要通道,以及农业面源污染变化特征的主要监测源之一。研究洱海流域灌排沟渠对明确流域农业面源污染导致的氮、磷流失特征具有重要意义。目前,对流域灌排沟渠研究主要集中在通过沟渠氮、磷流失特征反映土地利用、种植类型下氮、磷污染流失变化特征[16-18],但结合水质评价模型进行沟渠雨季氮磷流失的研究鲜有报道。
水质评价中指标与水条件之间的复杂关系为水质评价结果[20]带来了灰度性。灰度是指从指标系统中获得的信息不完全。也就是说,样本在时间和空间上都是不连续的,因此指标的集中是不完善的,也是不连续的。此外,氮和磷是用于实地监测的主要指标,缺乏关于其他指标的资料。为了解决水质评价中灰色问题,在灰色系统理论的基础上,采用灰色聚类分析[21]、灰色关联分析[22]和改进的灰色系统模型[23]对水质进行评价,其中灰色关联分析较多应用在水质评价中。灰色关联水质评价方法在评价中对水质分级界限区分存在不确定性,因分级临界值附近的实测浓度的微小变化可能导致评价结果级别归属的改变,且存在确定水质级别中评价值趋于均化,以及同一水质级别的不同样本污染程度的高低难以精确比较的问题[22],灰色模式识别模型在传统灰色关联评价的基础上引入了加权关联差异度的概念,采用模糊识别的思想得出最优权系数-灰色从属度,然后利用综合指数法得到水质综合指数[24]。改进的灰色模式识别模型充分考虑了以区间形式存在的水质评价标准,相比通过临界值直接判断水质级别归属更加客观。本文在已经开展的流域雨季日变化和短期尺度污染变化特征基础上[16],通过对流域农区典型灌排沟渠进行雨季长期监测,基于综合平均污染指数对农业面源污染中污染物进行污染排序,明确主要污染物贡献率。以改进灰色模式识别模型为基础,现有农区沟渠水质监测数据为依据,探讨水质评价模型在洱海灌排沟渠水质综合分析评价方面的应用可能,以期为流域农业面源污染防治提供参考。
1 材料与方法
1.1 研究区域概况
研究的生产/生活交替分布景观区特征如图1所示,区域地形与气候特征沟渠植物等信息见文献[16],不同单元沟渠类型、特征及汇水面积见表1。监测区农田土壤类型主要为潴育型水稻土(俗称鸡粪土),土壤肥沃[25],种植作物主要为露地蔬菜,轮作模式为大葱、白菜、青笋和芹菜等蔬菜品种交替种植。露地蔬菜1 a种植3季,基肥期移栽时以有机肥或者农家肥作为底肥施入,单季作物基肥施肥量在800~1 600 kg/hm2之间,蔬菜生长期内通常不同追肥1~2次,施肥方式为表层撒施和单株穴施,追肥以复合肥为主,不同蔬菜作物每次追施中以N、P计折纯分别为112~150和52~76 kg/hm2。
图1 研究区域和取样位点布置图
表1 沟渠采样位置、特征及覆盖汇水面积
1.2 样品采集
水质监测及分析数据来源于流域典型灌排沟渠2018年6-10月水质指标的实测数据,按照《水质-采样技术指导》(HJ 494-2009)和《地表水和污水监测技术规范》(HJ/T 91-2002)进行水样布点采集,研究区域农灌沟渠全长共布设6个采样断面,将沟渠流经的农田和村庄划分为5个单元,其中村庄段采样点3个,农田段采样点3个,分别作为5个单元入水和出水。采样频率为1次/周,如遇下雨则相应增加取样频率,采样时间在14:00—16:00之间,总共取样24批次。用250 L聚乙烯瓶在沟渠水深1/2处进行取样,水样于低温保温箱中储存,24 h内进行实验室指标测定。水质指标选取溶解氧(dissolved oxygen, DO)、化学需氧量(chemical oxygen demand,COD)、总氮(total nitrogen,TN)、TP及NH4+-N。DO浓度每次采样时通过便携式溶氧仪(YSI 550A,美国赛莱默(Yylem)公司)进行现场测定,TN浓度采用碱性过硫酸钾紫外分光光度法测定,NH4+-N浓度采用纳氏试剂紫外分光光度法测定,TP采用钼锑抗紫外分光光度法测定,COD浓度采用密封催化消解—酸性重铬酸盐滴定法测定[26]。
1.3 综合平均污染指数法
综合平均污染指数法可以获得灌排沟渠水质污染因子综合权重,以此可确定沟渠水质中主要污染因子及其污染权重,便于针对性分析水质污染状况[27]。计算公式如下
式中P为评价因子的综合指数;P为断面项污染因子的污染指数;C为断面项污染因子的实测值;C0为项污染因子评价标准的算术平均值,通过地表水环境质量标准(CB3838—2002)计算;W()为断面项污染物的权重值,同时为断面项污染物贡献率%,W()越大表明该污染因子的贡献率越大,=1,2,…,。
1.4 基于灰色模式识别模型
传统的灰色模式识别模型对水质进行评价分为5个步骤[24]:1)确定比较数列和参考数列,通常将所有断面监测值表示为参考数列,水质分级标准浓度数列为比较数列;2)数据无量纲化处理;3)利用基本灰色关联分析模型计算出参考数列与比较数列的关联系数;4)通过监测断面水体污染指标关联系数与指标权重求得水质关联度,按数值从大到小排列得出灰色关联序列;5)通过水质关联度求得隶属度,进而算出灰色综合指数(grey composite index, GC),以及对应水质类别。
1.4.1 数据无量纲化的优化
以往在灰色关联分析中对无量纲化处理多用“分段线性变换”方法[28]。对于COD、TN浓度越大,污染程度越严重的指标,采用式(2)和式(3)进行归一化
对于像DO一样浓度越大,污染程度越轻的指标,采用式(4)和式(5)进行归一化
李炳军等[29]采用“中心化”改进方法进行数据的量纲归一处理,相比于“分段线性变换”的方法,使计算结果的差异性体现的更加明显,同时具有明确的物理意义。为准确表征农田灌排沟渠地表水水质类别的灰色性,本文构建的灰色模式识别模型引入“中心化”无量纲概念,其计算公式如下:
式中σ()为x(0)()的样本均方差,σ()为x(0)()的样本均方差。
1.4.2 绝对差的新定义
由于评价标准并非1个数值,而是1个区间。因此,采用基于点到区间距离的关联系数公式,绝对差[22]为
2 结果与分析
2.1 雨季沟渠水质指标动态变化特征
沟渠N、P和COD浓度指标沿断面动态特征见图2。
注:图中TN、TP、COD、TDP和PP分别为总氮、总磷、化学需氧量、可溶性总磷和颗粒态磷。下同。
沟渠水质TN和NO3--N浓度表现为从断面1到断面4快速增加,从断面4到断面6缓慢增长,NO3--N浓度占TN的55.82%~88.20%。沟渠水质TP和TDP浓度从断面1到断面6同步稳定增长各段面TDP浓度对TP贡献占55.50%~71.00%。PP浓度存在出田浓度增加和出村浓度降低的特征。沟渠水体中NH4+-N与COD均具有出农田浓度降低和出村庄浓度增加的特征,水体NH4+-N和COD浓度分别为0.32~0.77 mg/L和63.38~116.93 mg/L,NH4+-N变化相对平稳,农田段沟渠对水体中NH4+-N与COD起到了一定的削减作用,NH4+-N和COD浓度分别削减13.43%~57.88%和2.88%~19.33%,且村庄排放仍是沟渠水体NH4+-N与COD重要来源。
2.2 沟渠水质污染物综合权重及污染贡献率
据2018年6-10月洱海流域典型灌排沟渠水质COD、TN、TP、NH4+-N和DO监测数据,利用式(1)综合平均污染指数法求得各污染因子的权重及污染贡献率见表2。沟渠不同断面水体污染物污染贡献率排序为TN>COD>TP>DO>NH4+-N,在所有断面中TN和COD均是农灌沟渠最重要污染物,其在水质中污染贡献率分别为29.44%~66.39%和18.68%~40.11%。TN污染贡献率随沟渠流向增加并成为主导的趋势,COD污染贡献率随沟渠流向降低,NH4+-N污染贡献率特征与COD相似。
表2 水质污染物贡献率
2.3 “中心化”灰色模式识别模型水质综合分析
2.3.1 原始数据的无量纲化处理
为方便后期计算,依据式(6)和式(7),对沟渠各监测断面水质污染物实际测量均值浓度和地表水环境质量标准限值进行处理,参考数列和比较数列见表3。
表3 沟渠断面及地表水质量标准中各指标无量纲化结果
2.3.2 评价等级的确定及水质综合评价
以农灌沟渠监测断面1为例,式(8)对比较数列及参考数列进行绝对差Δ()计算;根据式(1)计算评价指标权重;根据模型计算断面水质关联度、隶属度和灰色综合指数,结果见表4。从表4中数据得出,沟渠监测断面1水质GC=2.53,采用GC对水质状况进行评价时,GC最大值为5,最小值为1,当各指标均达到Ⅰ类水要求时,GC=1;当所有指标都超过或等于Ⅴ类水要求时,GC=5[24],即沟渠断面1水质与地表水Ⅲ类水质类别相符。
按上述计算过程分别对其他5个断面进行水质分析,得出所有沟渠段面关联度分析结果及水质对应等级,见表5。洱海流域雨季典型灌排沟渠沿水流方向水质类别变化明显,各取样断面水质灰色识别模式综合指数分别为2.53、2.01、3.98、4.06、4.99和4.93,同时6个监测相对应的水质类别为Ⅲ、Ⅱ、Ⅳ、Ⅳ、Ⅴ、Ⅴ,沟渠最终出水质类别处于较高水平,水体受污染程度严重。
表4 沟渠断面1水质评价结果
表5 基于不同方法的沟渠断面水质评价结果比较
为验证改进评价方法可行性及实用性,同时采用传统灰色关联评价[28]、单因子评价、综合污染指数评价和内梅罗污染指数评价[30]对沟渠水质进行评价。通过表5可知,改进评价方法与单因子评价结果相差最大,沟渠6个断面水质单因子评价结果均为劣Ⅴ类;与传统灰色关联评价结果相比,改进方法对不同断面评价结果同其较为接近,但断面2到断面4(Ⅱ、Ⅳ和Ⅳ)水质评价结果与传统灰色关联(Ⅲ、Ⅴ和Ⅴ)相比,均提高一个等级;同综合污染指数和内梅罗污染指数评价结果相比,3种评价方法水质污染指数变化趋势基本一致。
3 讨 论
3.1 洱海流域农灌沟渠雨季水质动态变化特征
通过图2中沟渠N、P和COD的雨季动态变化特征可知,同沟渠水质日变化等短期内变化规律基本一致[16],说明雨季沟渠水质污染源特征变化较小,污染物类型较稳定。研究区农田主要农作物为常绿蔬菜,且为露天种植,与温室种植相比,露天种植完全依靠自然(阳光、温度和降水)进行蔬菜生产,生产率和利润相对低[31],为提高蔬菜产量,种植中后期大量高频率追施化肥,因此造成大量N、P残留在土壤中,甚至大量残留至后茬作物,加剧土壤N、P流失风险。研究区域蔬菜种植年限较长,随着农田种植年限的不断增加,土壤N的积累量会越来越多以NO3--N为主,TN和NH4+-N含量也会相应提高[18]。除化肥外,农田蔬菜作物收获后,作物秸秆多留在土壤中,未进行合理回收以及科学还田,农田大量残留作物秸秆也成为蔬菜种植系统N、P的高潜在来源[32]。有研究表明,农田土壤中N、P流失受降雨强度、植被覆盖度和土壤含水率影响较大[33-34],同时研究区内农田种植多无覆膜处理,相比于农田露地种植,土壤表面覆膜种植可以减少N、P流失[35],且蔬菜种植复种率较高[36],生长周期较短,频繁耕种导致土壤容重降低,使得雨季土壤侵蚀现象相比于其他种植类型更为严重[37-38]。结合沟渠农田段和村庄段水体中NH4+-N与COD动态变化规律可知,村庄是其主要来源。主要是村庄污水收集管网完善度较差,污水收集率较低,使得NH4+-N和COD含量较高的村庄废水排入沟渠中。
3.2 沟渠水质污染物综合权重及污染贡献率
通过表2可知,在所有污染物中TN和COD是水质主要影响因数。因在洱海流域现有农田种植模式下大量N残留在土壤中,这一现象的主要原因可能在于研究区农田蔬菜种植均以氮肥施用为主,施用过量大,施肥次数较多,造成土壤中大量肥料残留,经流域雨季大量降雨冲刷形成的地表径流以及淋溶侧渗作用将土壤中N、P等污染物从土壤输送进入沟渠水体中[39],同时含N量较高的村庄生活粪污废水排入沟渠水体中,使得沿沟渠方向水体TN浓度逐渐增大,污染贡献率沿沟渠流向也随之增强。由于村庄污水管网存在错接、漏接、破损和渗漏等问题,特别是在雨季暴雨期,大量村庄汇集雨水混入污水管网[18],导致较高COD浓度生活污水溢流或渗漏进入沟渠,成为沟渠水体中COD最主要来源。农田段自然生态沟渠依靠沟渠中植物拦截吸收、底泥吸附及微生物分解[40]对水体中COD也起到一定消纳作用,这一过程在一定程度上减缓水体中COD浓度增长,相应降低了农田段沟渠水体污染贡献率。
3.3 “中心化”灰色模式识别模型水质综合分析
由表5可知,单因子评价法在水质评价中有效性较差且评价结果片面,综合考虑各项指标,改进方法结果更加全面、客观。采用改进评价方法与传统灰色关联评价相比,克服了传统灰色关联评价中对水质类别评价分辨率较低问题,使得水质评价结果更加接近水质真实情况;改进评价方法相对综合污染指数和内梅罗污染指数这2种方法上,在确保水质详细变化的基础上有着直观的水质类别表现[30],通过计算以相应的表水质类别和灰色综合指数相结合对沟渠水质污染程度进行评价,直观和精确地表现出农业生产生活对水质变化的影响,同时改进评价方法通过新定义的绝对差克服了评价结果的绝对化[22],体现了水质变化中的相对性。
通过表5可知,沿沟渠水流方向水质类别最大出现在断面5和断面6(Ⅴ类)最小则出现在断面2(Ⅱ类),水质GC指数在2.01~4.99之间变化,最大ΔGC=2.99,沟渠出水断面(Ⅴ类)相比于进水断面(Ⅲ类)水质类别降低,且增加幅度较大,主要在于研究区沟渠沿程农田N、P流失和村庄排污对沟渠水体影响。在沟渠中断面1到断面3相邻断面之间水质类别发生明显变化,变化幅度最大为断面2到断面3,由Ⅱ类水质上升为Ⅳ类水质,水质降低2个等级,ΔGC=1.97为相邻断面之间最大,说明在断面2到断面3之间外源污染物相对输入量相比于其他相邻断面之间大的多,其中TN和COD分别增长48.12%和42.01%,同时断面4到断面5村庄段沟渠水质类别由Ⅳ类降低为Ⅴ类,主要由于村庄排污管道的老化破损以使得生活污水存在“跑、冒、滴、漏”现象,加之生活污水直接倾倒入沟,使得水质污染情况增加,加之沟渠流速较缓,沟渠水质含氧降低,使得N、P以及COD无法消纳[41],水质逐渐变差;农田段沟渠水质类别断面2相比断面1从Ⅲ类提升为Ⅱ类,两断面之间沟渠坡度较大,有利于沟渠径流通畅,易形成有氧条件,利于生态沟渠对NH4+-N以及COD消纳[42],且水质类别前期COD起主导,COD的削减有利于水质类别的提升;断面3和断面4水质类别同为Ⅳ类,断面5和断面6水质类别同为Ⅴ类,但断面之间GC值却存在差异,通过断面之间GC数值大小比对可知断面3和断面4水质类别虽同为Ⅳ类,但断面4比断面3污染程度高,GC差值为0.08,可能因为断面之间农田以大葱和大蒜等高需肥量作物种植为主,同理断面6与断面5之间GC差值为−0.07,说明断面6出水相比于断面5有一定改善。
4 结 论
1)沿水流方向沟渠断面水质总氮(total nitrogen,TN)和NO3--N浓度先快速增加后缓慢变化,总磷(total phosphorus,TP)和可溶性总磷(total dissolved phosphorus,TDP)浓度呈现持续快速增加态势。NH4+-N和化学需氧量(chemical oxygen demand,COD)浓度呈现农田段沟渠浓度降低和村庄段沟渠浓度增加的特征。流域蔬菜种植区氮磷主要以NO3--N和可溶性总磷(total dissolved phosphorus,TDP)形态进入沟渠水体中。
2)综合平均污染指数分析显示沟渠不同断面水体污染物污染贡献率排序为TN>COD>TP>DO>NH4+-N,水体中TN和COD是污染贡献率主要来源污染物,TN贡献率随沟渠流向增加并成为主导的趋势,COD污染贡献率随沟渠流向降低。
3)运用“中心化”灰色模式识别模型对洱海流域典型灌排沟渠水质进行评价,表明沟渠沿水流方向水质类型在Ⅱ~Ⅴ之间,水流方向水质灰色综合指数在2.01~4.99之间变化,受沿程农田与村庄排污影响沟渠水质污染程度逐渐加深。
[1]Zhang W, Jin X, Liu D, et al. Temporal and spatial variation of nitrogen and phosphorus and eutrophication assessment for a typical arid river: Fuyang River in northern China[J]. Journal of Environmental Sciences, 2017, 55: 41-48.
[2]Qin B Q, Gao G, Zhu G W, et al. Lake eutrophication and its ecosystem response[J]. Chinese Science Bulletin, 2013, 58(9): 961-970.
[3]Lin Q, Liu E, Zhang E, et al. Spatial distribution, contamination and ecological risk assessment of heavy metals in surface sediments of Erhai Lake, a large eutrophic plateau lake in southwest China[J]. Catena, 2016, 145: 193-203.
[4]王哲,谢杰,方达,等. 洱海北部2种典型种植制度下农田氮污染负荷研究[J]. 生态与农村环境学报,2013,29(5):625-629.
Wang Zhe, Xie Jie, Fang Da, et al. Nitrogen pollution load in farmlands under two typical farming systems in the north of Lake Erhai region[J]. Journal of Ecology and Rural Environment, 2013, 29(5): 625-629. (in Chinese with English abstract)
[5]Wang R, Dearing J A, Langdon P G, et al. Flickering gives early warning signals of a critical transition to a eutrophic lake state[J]. Nature, 2012, 492(7429): 419-422.
[6]Liu W, Wang S, Zhang L, et al. Phosphorus release characteristics of sediments in Erhai Lake and their impact on water quality[J]. Environmental Earth Sciences, 2015, 74(5): 3753-3766.
[7]Wang S, Zhang L, Ni L, et al. Ecological degeneration of the Erhai Lake and prevention measures[J]. Environmental Earth Sciences, 2015, 74(5): 3839-3847.
[8]高蓉,韩焕豪,崔远来,等. 降雨量对洱海流域稻季氮磷湿沉降通量及浓度的影响[J]. 农业工程学报,2018,34(22):191-198.
Gao Rong, Han Huanhao, Cui Yuanlai, et al. Effect of precipitation on wet deposition flux and content of nitrogen and phosphorus in Erhai lake basin in rice season[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(22): 191-198. (in Chinese with English abstract)
[9]Zhang L, Wang S, Wu Z. Coupling effect of pH and dissolved oxygen in water column on nitrogen release at water-sediment interface of Erhai Lake, China[J]. Estuarine, Coastal and Shelf Science, 2014, 149: 178-186.
[10]Xu Quanli, Yang Kun, Wang Guilin, et al. Agent-based modeling and simulations of land-use and land-cover change according to ant colony optimization: A case study of the Erhai Lake Basin, China[J]. Natural Hazards, 2015, 75(1): 95-118.
[11]卢中辉,余斌,张辉,等. 洱海流域农业面源污染与水环境变化的关联分析[J]. 华中师范大学学报:自然科学版,2017,51(2):215-223.
Lu Zhonghui, Yu Bin, Zhang Hui, et al. Correlation analysis of agricultural non-point source pollution and water environment change in Erhai Lake watershed[J]. Journal of Central China Normal University: Natural Sciences, 2017, 51(2): 215-223. (in Chinese with English abstract)
[12]唐佳,李德品,姜旭. 洱海北部典型小流域农业氮磷流失特征的初步研究[J]. 大理学院学报,2014,13(6):60-63.
Tang Jia, Li Depin, Jiang Xu. Primary study on characteristics of nitrogen and phosphorus losses in the typical small watershed of the northern area of Erhai Lake[J]. Journal of Dali University, 2014, 13(6): 60-63. (in Chinese with English abstract)
[13]Li W, Liu H, Zhai L, et al. Evaluation of concentration- discharge dynamics and nitrogen export on anthropogenic inputs and stormflow across alternative time-scales[J]. Ecological Indicators, 2019, 98: 879-887.
[14]Tong X X, Cui Y L, Chen M Y, et al. Simulation on change law of runoff, sediment and non-point source nitrogen and phosphorus discharge under different land uses based on SWAT model: A case study of er hai lake small watershed[C]//IOP Conference Series: Earth and Environmental Science. Guilin, China: IOP Publishing, 2018, 153(6): 062062.
[15]项颂,庞燕,储昭升,等. 入湖河流水质对土地利用时空格局的响应研究:以洱海北部流域为例[J]. 环境科学,2016,37(8):2947-2956.
Xiang Song, Pang Yan, Chu Zhaosheng, et al. Response of Inflow water quality to land use pattern in northern watershed of Lake Erhai[J]. Environmental Science, 2016, 37(8): 2947-2956. (in Chinese with English abstract)
[16]谢坤,吴凡,罗元,等. 洱海农田生产/生活景观区交替分布及昼夜节律对丰水期沟渠水质影响[J]. 农业环境科学学报,2018,37(11):2427-2433.
Xie Kun, Wu Fan, Luo Yuan, et al. Alternating distribution of farmland and inhabited landscapes in Erhai Lake and the influence of circadian rhythm on the water quality of a ditch during flood[J]. Journal of Agro-Environment Science, 2018, 37(11): 2427-2433. (in Chinese with English abstract)
[17]陈安强,雷宝坤,刘宏斌,等. 洱海近岸不同种植类型农田沟渠径流氮磷流失特征[J]. 生态与农村环境学报,2017,33(8):697-705.
Chen Anqiang, Lei Baokun, Liu Hongbin, et al. Characteristics of N and P losses from ditch runoff in farmlands different in planting patterns offshore of Lake Erhai[J]. Journal of Ecology and Rural Environment, 2017, 33(8): 697-705. (in Chinese with English abstract)
[18]金春玲,高思佳,叶碧碧,等. 洱海西部雨季地表径流氮磷污染特征及受土地利用类型的影响[J]. 环境科学研究,2018,31(11):1891-1899.
Jin Chunling, Gao Sijia, Ye Bibi, et al. Nitrogen and phosphorus pollution characteristics of surface runoff and the impacts of land use on runoff water quality in rainy season in the western Erhai Lake Basin[J]. Research of Environmental Sciences, 2018, 31(11): 1891-1899. (in Chinese with English abstract)
[19]何宗健,蔡静静,倪兆奎,等. 洱海不同途径氮来源季节性特征及对水体氮贡献[J]. 环境科学学报,2018,38(5):1939-1948.
He Zongjian, Cai Jingjing, Ni Zhaokui, et al. Seasonal characteristics of nitrogen sources from different ways and its contribution to water nitrogen in Lake Erhai[J]. Acta Scientiae Circumstantiae, 2018, 38(5): 1939-1948. (in Chinese with English abstract)
[20]薛莲,金卫斌,艾天成,等. 湖北四湖流域农田排水沟渠水质评价[J]. 长江流域资源与环境,2010,19(S1):79-84.
Xue Lian, Jin Weibin, Ai Tiancheng, et al. Water quality evaluation of agriculture drainage ditches in four lake region of Hubei province[J]. Resources and Environment in the Yangtze Basin, 2010, 19(S1): 79-84. (in Chinese with English abstract)
[21]Chen J, Zhao S, Weng Y. Research on river water quality assessment of eastern route of south-to-north water transfers based on grey cluster evaluation model[C]//2009 IEEE International Conference on Grey Systems and Intelligent Services (GSIS 2009). IEEE, 2009: 882-887.
[22]申剑,史淑娟,周扬,等. 基于改进灰色关联分析法的丹江口流域地表水环境质量评价[J]. 中国环境监测,2014,30(5):41-46.
Shen Jian, Shi Shujuan, Zhou Yang, et al. Surface water environmental quality assessment of Danjiangkou Valley based on improved grey correlation analysis[J]. Environmental Monitoring in China, 2014, 30(5): 41-46. (in Chinese with English abstract)
[23]Yang T, Liu J, Chen Q. Assessment of plain river ecosystem function based on improved gray system model and analytic hierarchy process for the Fuyang River, Haihe River Basin, China[J]. Ecological Modelling, 2013, 268: 37-47.
[24]田伟东,贾克力,史小红,等. 2005-2014年乌梁素海湖泊水质变化特征[J]. 湖泊科学,2016,28(6):1226-1234.
Tian Weidong, Jia Keli, Shi Xiaohong, et al. Water quality variation in Lake Wuliangsuhai, 2005-2014[J]. Journal of Lake Sciences, 2016, 28(6): 1226-1234. (in Chinese with English abstract)
[25]陈兴位,闫辉,倪明,等. 长期施用有机肥对洱海流域蔬菜地生产力的影响[J]. 西南农业学报,2014,27(4):1577-1581.
Chen Xingwei, Yan Hui, Ni Ming, et al. Effect of long-term applying organic matter on vegetable field productivity in Erhai Lake basin[J]. Southwest China Journal of Agricultural Sciences, 2014, 27(4): 1577-1581. (in Chinese with English abstract)
[26]国家环境保护总局. 水和废水监测分析方法[M]. 四版. 北京:中国环境科学出版社,2002:701-705.
[27]Ban X, Yu C, Pan B, et al. Application of the CWQII method and a 2D water quality model to assess diversion schemes for East Lake (Donghu), Wuhan, China[J]. Lake and Reservoir Management, 2014, 30(4): 358-370.
[28]陈玲,张晟,夏世斌,等. 灰色关联度分析方法在水质评价中的应用:以常州市北市河为例[J]. 环境科学与管理,2012,37(2):162-166.
Chen Ling, Zhang Sheng, Xia Shibin, et al. Application of gray relational analysis method in water quality evaluation-a case study of Beishi river in Changzhou city[J]. Environmental Science and Management, 2012, 37(2): 162-166. (in Chinese with English abstract)
[29]李炳军,朱春阳,周杰. 原始数据无量纲化处理对灰色关联序的影响[J]. 河南农业大学学报,2002(2):199-202.
Li Bingjun, Zhu Chunyang, Zhou Jie. Effects of non-dimensional quantities of original data on grey incidence order[J]. Journal of Henan Agricultural University, 2002(2): 199-202. (in Chinese with English abstract)
[30]李名升,张建辉,梁念,等. 常用水环境质量评价方法分析与比较[J]. 地理科学进展,2012,31(5):617-624.
Li Mingsheng, Zhang Jianhui, Liang Nian, et al. Comparisons of some common methods for water environmental quality assessment[J]. Progress in Geography, 2012, 31(5): 617-624. (in Chinese with English abstract)
[31]Yan Z, Liu P, Li Y, et al. Phosphorus in China’s intensive vegetable production systems: Over fertilization, soil enrichment, and environmental implications[J]. Journal of Environmental Quality, 2013, 42(4): 982-989.
[32]Agostini F, Tei F, Silgram M, et al. Decreasing nitrate leaching in vegetable crops with better N management[M]//Genetic Engineering, Biofertilisation, Soil Quality and Organic Farming. Dordrecht: Springer, 2010: 147-200.
[33]Zhang G H, Liu G B, Wang G L, et al. Effects of vegetation cover and rainfall intensity on sediment-bound nutrient loss, size composition and volume fractal dimension of sediment particles[J]. Pedosphere, 2011, 21(5): 676-684.
[34]Liu R, Wang J, Shi J, et al. Runoff characteristics and nutrient loss mechanism from plain farmland under simulated rainfall conditions[J]. Science of the Total Environment, 2014, 468: 1069-1077.
[35]Shan L, He Y, Chen J, et al. Nitrogen surface runoff losses from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin, China[J]. Agricultural Water Management, 2015, 159: 255-263.
[36]Dodd R J, McDowell R W, Condron L M. Is tillage an effective method to decrease phosphorus loss from phosphorus enriched pastoral soils?[J]. Soil and Tillage Research, 2014, 135: 1-8.
[37]单立楠. 不同施肥模式下菜地氨素面源污染特征及生态拦截控制研究[D]. 杭州:浙江大学,2015.
Shan Linan. Nitrogen Non-point Source Pollution of Vegetable Field Under Different Fertilizer Treatments and Its Ecological Intercept Control[D]. Hangzhou: Zhejiang University, 2015. (in Chinese with English abstract)
[38]寇永珍,林陶,夏品华. 贵州草海湿地农田沟渠水质污染特征及其治理研究[J]. 广东农业科学,2015,42(14):120-125.
Kou Yongzhen, Lin Tao, Xia Pinhua. Pollution characteristics and treatment of water in farmland ditch of Caohai Wetland, Guizhou Province[J]. Guangdong Agricultural Sciences, 2015, 42(14): 120-125. (in Chinese with English abstract)
[39]单立楠,丁能飞,王洪才,等. 蔬菜地面源污染生态拦截系统与效果[J]. 农业工程学报,2013,29(20):168-178.
Shan Linan, Ding Nengfei, Wang Hongcai, et al. Effect of ecological interception system in reducing non-point source pollution from vegetable fields[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(20): 168-178. (in Chinese with English abstract)
[40]Kumwimba M N, Dzakpasu M, Zhu B, et al. Uptake and release of sequestered nutrient in subtropical monsoon ecological ditch plant species[J]. Water, Air, & Soil Pollution, 2016, 227(11): 405.
[41]Moeder M, Carranza-Diaz O, López-Angulo G, et al. Potential of vegetated ditches to manage organic pollutants derived from agricultural runoff and domestic sewage: A case study in Sinaloa (Mexico)[J]. Science of the Total Environment, 2017, 598: 1106-1115.
[42]Wang T, Zhu B, Zhou M. Ecological ditch system for nutrient removal of rural domestic sewage in the hilly area of the central Sichuan Basin, China[J]. Journal of Hydrology, 2019, 570: 839-849.
Water quality evaluation of Erhai drainage ditch based on improved grey-mode identification model
Xie Kun1,3, Luo Yuan1,2,3, Feng Yiyang1,2,3, Wu Fan1,3, Wang Guiyun1, Zhang Keqiang1,3, Shen Shizhou1,3, Wang Feng1,3※
(1.,300191,; 2.,,650201,; 3.,,671004,)
this study investigated the comprehensive impacts of alternate distribution of farmland production and rural living units on the water quality of irrigation and drainage channels and the contribution rate of pollutants in the Erhai Basin. Different sections of typical irrigation and drainage ditches in the farmland of the Erhai Basin were selected for continuous sampling observation. Chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP), NH4+-N, NO3--N, total dissolved phosphorus (TDP), and particle phosphorus (PP) concentrations of runoff in different sections of the ditch were measured for water quality evaluation. The “centralization” method was used as dimensionless treatment method of data in the gray pattern recognition model. At the same time, the correlation coefficient formula based on the point-to-interval distance was introduced into the model, and the absolute difference in the model calculation was newly defined as intervals. The comprehensive average pollution index was used to calculate the proportion and weight of pollutant pollution in the runoff water quality of the ditch, and it combined the 2 models to objectively and accurately comprehensively evaluate the changes in the water quality categories of different sections of the typical irrigation and drainage ditch in the farmland. The results showed that the TP and TDP concentrations in the runoff from different sections of the typical irrigation and drainage ditch in the farming area of the watershed were continuous increased along the direction of the ditch flow. The TN and NO3--N concentrations in the runoff form different sections of the ditch showed a pattern of increasing first and then stabilizing. The NH4+-N and COD concentrations in the runoff from the monitoring section of different farmland outlet sections in a typical irrigation and drainage ditch were reduced by 13.43%-57.88% and 2.88%-19.33%. The concentration in the runoff from irrigation and drainage ditches flowing through the monitoring sections of different village sections was increased. The water quality of runoff from the different sections of the ditch along the direction of the water flow were classified as III, II, IV, IV, V and V. The calculation of water quality pollutants of the ditch by the comprehensive average pollution index method showed that TN and COD in the ditch of the basin were the main factors causing water pollution. The NO3--N was a main form of TN in water body. This study can reveal the sources and contributions of nitrogen and phosphorus pollution in the Erhai Basin. By comparing 4 water quality evaluation methods of traditional gray correlation evaluation method, single factor evaluation method, comprehensive pollution index method and Nemerow pollution index method, we foud that improved water quality evaluation methods could objectively and accurately evaluate water quality. The improved water quality evaluation method is suitable for water quality evaluation of farmland irrigation and drainage ditches, and provides technological support for clarifying the main pollution factors of non-point source pollution control.
nitrogen; phosphorus; Erhai Basin; agricultural non-point source pollution; drainage ditch; Gray-mode identification model; comprehensive mean pollution index
谢 坤,罗 元,冯弋洋,吴 凡,王贵云,张克强,沈仕洲,王 风. 改进灰色模式识别模型评价洱海雨季灌排沟渠水质[J]. 农业工程学报,2019,35(23):234-241.doi:10.11975/j.issn.1002-6819.2019.23.029 http://www.tcsae.org
Xie Kun, Luo Yuan, Feng Yiyang, Wu Fan, Wang Guiyun, Zhang Keqiang, Shen Shizhou, Wang Feng. Water quality evaluation of Erhai drainage ditch based on improved grey-mode identification model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(23): 234-241. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.23.029 http://www.tcsae.org
2019-02-19
2019-09-10
国家重点研发计划项目(2017YFD0800103);948项目(2016-X53);农业部财政项目(22110402001006);云南省农业环境污染控制与修复工程实验室开放基金资助(2017HC015)
谢 坤,主要从事农业面源污染防治研究。Email:1839793331@qq.com
王 风,副研究员,从事农业面源污染防治研究。Email:wangfeng_530@163.com
10.11975/j.issn.1002-6819.2019.23.029
TE991.2; X52
A
1002-6819(2019)-23-0234-08