APP下载

稀有气体同位素地球化学在矿床学研究中的应用进展*

2019-02-18武丽艳

岩石学报 2019年1期
关键词:同位素矿床矿物

武丽艳

中国科学院地球化学研究所,矿床地球化学国家重点实验室,贵阳 550081

稀有气体(主要包括 He、Ne、Ar、Kr和 Xe)因其在地球中含量稀少和化学性质不活泼,在太阳系起源、行星演化、地球形成、地幔演化及其动力学、矿床成因、流体来源及演化等方面被广泛应用。目前,稀有气体同位素在矿床学中的应用主要集中在成矿流体的示踪和年代学两个方面。由于人们对大气、地壳、上、下地幔等不同来源物质的He、Ar同位素组成有了较为清晰的认识,因此,在矿床学研究中,作为灵敏示踪剂的稀有气体同位素大多用于判别成矿流体的来源,特别是幔源物质的贡献大小及壳幔相互作用与成矿的关系(Huet al.,1998a,c,2012;胡瑞忠等,1999;Burnardetal.,1999;Burnard and Polya,2004;Kendricketal.,2001a;Manning and Hofstra,2017;Xieetal.,2016;Desanoisetal.,2018;Wuetal.,2018a),用于揭示矿床在成矿各阶段(期)中的物质和流体源区差异,以及追踪和揭示成矿流体的演化、反演成矿过程(Irwin and Roedder,1995;Kendricketal.,2011a,b;Richardetal.,2014)。另外,由于4He、40Ar具有年代积累效应,因此,它们常被用于同位素测年。尤其是近年来人们对矿床形成后的改造-保存过程的关注,低温热年代学比如裂变径迹、(U-Th)/He、含钾矿物 K-Ar、40Ar-39Ar等定年方法被用于厘定表生矿物年龄、探讨矿床的隆升、剥蚀速率和剥蚀量等,揭示矿床的保存条件及预测隐伏矿床(Vasconcelosetal.,1992,1994a;Vasconcelos and Conroy,2003;Reinerset al.,2003;Harrisetal.,2008;许英霞等,2008;何为等,2009;Chen and Li,2014;Bonnetetal.,2016;Yangetal.,2016;喻顺等,2016;Ershovaetal.,2018)。为进一步推动稀有气体同位素研究工作在我国的发展,本文回顾了近年来稀有气体同位素在矿床成矿流体示踪和年代学研究方面取得的重要进展,供感兴趣的专家、学者参考和借鉴。

1 样品选择及注意事项

保存在矿物中的原生流体包裹体的成分近似于矿床形成时的成矿流体的组成,因而,通过对矿物原生包裹体稀有气体同位素组成的研究,可以进行流体来源的示踪。但是,从矿物形成到被开采出来,样品经历了一系列的地质作用。因此,样品流体包裹体中的稀有气体除了来自当时的成矿流体外,还可能受后期扩散丢失、后生叠加和同位素分馏的影响(Stuartetal.,1994a)。

1.1 扩散丢失的影响

稀有气体在矿物中扩散丢失的量与寄主矿物扩散系数的大小成正比。研究表明,硫酸盐和硫化物对稀有气体具有较好的保存能力(Trulletal.,1991;Jean-Baptiste and Fouquet,1996)。尤其是硫化物中的黄铁矿具有很低的He扩散系数(Jean-Baptiste and Fouquet,1996),即使是最容易扩散的He,在封闭后的100Ma时间内,也不会发生明显的扩散丢失(Stuartetal.,1994a),而且即使有稀有气体的扩散,其扩散所产生的同位素分馏效应极小且基本可以忽略不计(胡瑞忠等,1999;Ballentine and Burnard,2002;Huetal.,2004)。而石英等透明矿物虽然对于Ar具有很好的保存能力(Trulletal.,1991;胡瑞忠等,1999),但流体包裹体中的He则很容易发生扩散丢失(Turneretal.,1993;Stuartet al.,1994a;胡瑞忠等,1999),如图1所示,与硫化物相比,石英中He、Ar组成具有明显的He丢失趋势,但3He/4He比值基本没受影响(胡瑞忠等,1999)。因此,石英等透明矿物中流体包裹体的浓度不能代表其捕获时的浓度。但是,He扩散所产生的同位素分馏效应极小且基本可以忽略不计,对应用He同位素比值讨论成矿流体来源和演化不会产生根本影响。另外,Kendricketal.(2005)的研究发现硫酸钡和方铅矿有时具有漏He特征。因此,在做流体包裹体中稀有气体同位素分析时,应避免选择对稀有气体保存能力不好的矿物。

1.2 原位放射成因和宇宙成因He的影响

图1 He在石英流体包裹体中的扩散丢失(据胡瑞忠等,1999)Fig.1 Diffusion loss of He in quartz fluid inclusion(after Hu et al.,1999)

238U、235U和232Th的衰变会产生4He,K的衰变可产生40Ar。因此,寄主矿物或流体包裹体中的U、Th、K等放射性元素的存在会对包裹体中稀有气体同位素的组成产生影响。但一般情况下,除了钾和含钾矿物,铀和含铀矿物外,其他矿物流体包裹体中U、Th、K含量很低(Th在热液中几乎是不溶的),且由于α粒子停止距离的影响,放射成因4He对于直径小于20μm的流体包裹体中4He也不会产生影响(Stuartet al.,1994a);即便如此,放射成因4He和40Ar的影响也可根据成矿年龄、流体包裹体中或全岩或围岩的U、Th、K含量,做定量的模拟计算(Craig and Lupton,1976;Ballentine and Burnard,2002),以评估捕获后放射性成因4He和40Ar累积的影响。宇宙射线产生3He主要受反应6Li(n,α)3H(β)3He和重核裂变的控制(Kurz,1986),但一般只在地表范围(约1.5m)影响比较大(Kurz,1986;Stuartetal.,1995)。因此,采自地表1.5m以下的样品中宇宙成因He的影响可忽略不计。

1.3 同位素分馏及其他因素的影响

研究表明,稀有气体同位素在包裹体捕获及提取过程中都不会产生明显的同位素分馏(Podoseketal.,1981;Turner and Wang,1992;Jean-Baptiste and Fouquet,1996)。矿物形成后,后期改造形成的次生包裹体中的稀有气体丰度和同位素组成也会影响原始成矿流体的稀有气体同位素组成。研究表明,用逐步压碎技术首先释放的是次生包裹体,最后释放原生包裹体,中间为两者混合,但当样品粉末粒度小于0.5μm时,继续破碎可能会释放出矿物晶格内的气体(Qiu and Wijbrans,2008;Jiangetal.,2012;Baietal.,2013,2018)。因此,在进行测试时,应选择晶形完好、未受后期改造的矿物。另外,由于大气中He的含量极低,因此,不足以对地壳流体中氦的丰度和同位素组成产生明显影响(Stuartetal.,1994b)。虽然严格的分析程序可以最大限度地减少大气中Ar在样品和破碎装置表面的吸附,但大气Ar的影响不能完全清除。

1.4 分析方法的选择

固体样品中稀有气体的提取方式主要有三种:压碎法、加热熔融法和激光熔蚀法。压碎法是矿床学研究中获取矿物包裹体中稀有气体的主要方式,一般不会释放矿物晶格中的气体,可以将后期放射性成因稀有气体和大气的影响降至最低(Stuartetal.,1995),且分阶段压碎可能会获取不同包裹体群组的成分信息(Qiu and Wijbrans,2008;Jiangetal.,2012;Baietal.,2013,2018)。而加热熔融法不仅释放包裹体和岩矿石裂隙中的气体,而且晶格中的气体也会被释放出来。分阶段加热熔融可以通过设定温度来获取前期捕获和后期放射性成因的气体(Stuartetal.,1995;Pettkeetal.,1997),而要获得流体包裹体中卤素的成分又通常需要对矿物采用阶段加热法(Kendricketal.,2001b);但是,对于硫化物和硫酸盐通常不用加热法以免加热过程产生的SO2污染系统。激光熔蚀法可以有针对性地精确释放所选微区的气体。叶先仁等(2003)认为,在现有技术和应用中压碎法较高效,但受到提取率不高的影响(<80%)需要进行多次压碎;分段加热取样容易受到杂质气体的干扰,对样品纯净度要求高;激光熔蚀法每次提取的样品量很有限,要求纯化和测试系统具有较高灵敏度,比较适合丰度较高的Ar同位素的测量。

2 稀有气体同位素在成矿流体示踪中的应用进展

由于稀有气体同位素在不同来源地质体的组成差异很大,因此,稀有气体同位素特别是He和Ar同位素在研究成矿流体来源、演化和壳-幔相互作用过程中具有非常重要的意义。He、Ar同位素组成在大气降水、地幔和地壳中极不相同,尤其是3He/4He比值在地壳(0.01~0.05Ra,O’Nions and Oxburgh,1983)和地幔(6~9Ra,Gautheron and Moreira,2002;Graham,2002)具有高达近1000倍的差异,即使地壳流体中有少量幔源氦的加入,氦同位素也很容易判别出来,因此,稀有气体同位素被作为幔源组分最灵敏的示踪剂,在研究成矿流体来源及壳-幔相互作用中发挥了重要作用。地质流体的He、Ar同位素、卤素组成不仅与流体源区相关,还与所经历的地质演化过程有关,因此,地质流体的3He/4He、40Ar/36Ar、Br/Cl和 I/Cl比值可以用来指示流体和盐度源区、水-岩反应的程度和温度、流体在含水岩层中滞留的时间以及有机组分的参与等(Kendrick and Burnard,2013)。3He/热的研究可以追溯流体的热源及其运移方式等。

2.1 示踪成矿流体来源及演化

稀有气体同位素地球化学研究中最令人瞩目的进展之一,是示踪现代地热流体、天然气和成矿古流体的来源、运移机制、演化历史等,特别是壳-幔相互作用与成矿的关系方面起着越来越重要的作用。由于He、Ar同位素组成在地壳与地幔中极不相同,因而是壳-幔相互作用过程极灵敏的示踪剂。20世纪末这一示踪手段引入到成矿古流体的研究中(Simmonsetal.,1987;Stuart and Turner,1992;Stuartetal.,1995;Burnardetal.,1999;胡瑞忠等,1999;Huetal.,1998a,c,2012)。迄今为止已对多种矿床类型进行了稀有气体同位素研究,包括洋中脊热液硫化物、斑岩矿床、岩浆热液矿床、矽卡岩矿床、造山带型金矿、MVT型Pb-Zn矿床等。研究结果发现,除了金顶Pb-Zn矿(Huetal.,1998b;Tanget al.,2017)以外,其他沉积岩容矿的Pb-Zn矿床(Kendricket al.,2002,2005;Sánchezetal.,2010;Davidheiser-Krollet al.,2014)和部分造山带或热液金矿(Pettketal.,1997;Graupneretal.,2006;Morellietal.,2007)具有 <0.3Ra但高于地壳的3He/4He比值,其他类型矿床成矿流体中都具有明显的幔源流体信息(图2,Wuetal.,2018a)。

图2 不同类型矿床成矿流体3 He/4 He组成(据Wu et al.,2018)Fig.2 3 He/4 He ratio of different types of ore deposits(after Wu et al.,2018)

2.1.1 洋中脊热液硫化物

自从Turner and Stuart(1992)对东太平洋21°N沉积硫化物的He、Ar及Kr同位素组成进行了研究,得出与喷口流体极其相似的同位素组成后,Turner等就认为可以通过古代洋底沉积物来代替喷口流体样品进行3He/4He及He/热比值的研究,这对解决洋中脊热液流体的来源、演化和热液通量等问题有着重要的意义。后来Stuartetal.(1994b)分别对中大西洋的 TAG(26°N),Snake Pit(23°N)、东太平洋 21°N和Juan de Fuca洋脊热水沉积物样品,Jean-Baptiste and FouquET(1996)对东太平洋13°N热水沉积物样品,Zenget al.(2001)对大西洋中脊TAG热液区硫化物以及李小虎等(2014)对西南印度洋中脊热液硫化物的 He、Ne、Ar同位素组成进行了研究,结果显示洋中脊热液体系样品包裹体中的稀有气体是地幔和海水端元混合的产物,He主要来自上地幔,而Juan de Fu-ca和西南印度洋中脊热液硫化物中有放射成因He的混入(Stuartetal.,1994b;李小虎等,2014)。

2.1.2 W-Sn矿床

华南是我国乃至全球重要的钨、锡成矿带,分布有一系列大型、超大型的矿床,如江西的西华山钨矿、大吉山钨矿、漂塘钨矿,广东的锯坂坑钨矿、瑶岭-梅子窝钨矿,湖南的芙蓉锡矿、荷花坪锡多金属矿、瑶岗仙钨矿、柿竹园钨锡多金属矿等。自20世纪80年代以来大量研究认为这些矿床大多与燕山期的陆壳重熔型或S型花岗岩密切相关(徐克勤等,1984;卢焕章,1986;Huaetal.,2003;陈俊等,2008),即与成矿作用密切相关的成矿流体来自壳源。然而,近年来的研究发现这些矿床成矿流体中都有不同程度幔源流体参与(Lietal.,2006,2007;单强等,2014;Wangetal.,2010;Wuet al.,2011;Huetal.,2012;Zhaietal.,2012;蔡明海等,2012,2013;Weietal.,2018),如图3所示。研究认为,华南中生代(约150~160Ma)大规模的W、Sn成矿作用是壳-幔相互作用的结果。无独有偶,葡萄牙Panasqueira W-Cu(Ag)-Sn矿床同样也是与S型花岗岩有关,然而其成矿流体却具有>5Ra的3He/4He比值,显示成矿流体中90%以上的He来自地幔(Burnard and Polya,2004)。幔源流体如何参与到与S型花岗岩有关的W、Sn成矿作用过程?Huetal.(2012)认为与成矿有关的幔源稀有气体来自岩浆,且该岩浆由幔源岩浆底侵引起地壳物质重熔,从而使幔源He受到地壳放射成因4He的影响,使得岩浆流体具有比地幔低的3He/4He值;而Burnard and Polya(2004)认为与花岗岩相伴的热液矿床中存在的幔源稀有气体并非来自花岗岩浆,而可能是受构造控制直接来自地幔。

2.1.3 U矿床

图3 W矿和斑岩矿床成矿流体的壳-幔混合特征(据Wei et al.,2018)Fig.3 The crust and mantle mixing characteristics of oreforming fluid in Wdeposits and porphyry deposits(after Wei et al.,2018)

图4 相山铀矿床成矿流体的壳-幔混合特征(据Hu et al.,2009)Fig.4 The crust and mantle mixing characteristics of oreforming fluid in Xiangshan U deposit(after Hu et al.,2009)

华南是我国重要的铀矿资源产地,且铀矿石主要呈脉型(陈肇博,1985)。以往研究认为这些铀矿成矿流体主要为大气降水,且铀主要来自富U的地壳岩石,但成矿流体中气体组分的来源及与成矿的关系尚不清楚。Huetal.(2009)对华南相山铀矿成矿流体的He、Ar和C同位素进行了研究,结果表明成矿流体是富3He和CO2的幔源流体与不含CO2的大气水的混合(图4)。这些流体很有可能是白垩纪伸展和镁铁质岩墙侵入有关,地幔富CO2的流体活化酸性火山岩围岩中的U,导致U矿沉淀。并结合其他十几个华南代表性铀矿的C同位素组成和流体包裹体特征提出了华南铀矿成矿模型(Huetal.,2008),认为铀成矿与白垩纪到第三纪的地壳伸展与丰富的镁铁质岩脉的侵入和地幔源CO2的向上迁移有关。在断层系统中,幔源CO2进入大气成因地下水形成了富二氧化碳的热液流体。镁铁质岩浆侵入带来的热引起富CO2流体在断层系统循环,并从富U的围岩中活化U,以 UO2(CO3)22-和 UO2(CO3)34-的形式迁移。虽然温度、压力、pH值和Eh值的改变可能诱发了U的沉淀,但流体减压和CO2沸腾导致碳酸铀酰络合物的分解却是很多矿床U沉淀的一个关键因素在。在该模型中,地壳的幕式伸展、地幔岩浆作用和CO2的释放控制着U的幕式成矿。

2.1.4 沉积岩容矿矿床

以沉积岩为容矿围岩的Pb、Zn、Ag、Sb等矿床种类繁多,储量巨大,是世界上Pb、Zn、Ag、Sb等资源的主要来源。传统的盆地卤水成因模型认为,成矿流体的3He/4He比值应该具有壳源特征。如我国规模最大的金顶Pb-Zn矿床,其成矿流体主要为壳源流体通过水岩反应从盆地地层中获取S和Cl,以及放射成因He和Ar,并从盆地底部幔源火成岩中浸取Pb和 Zn(Huetal.,1998b;Tangetal.,2017)。然而,更多的矿床成矿流体中显示了地幔He的信息,如美国South Pennine MVT型矿床(Kendricketal.,2002),Scandinavian Pb-Zn矿床(Kendricketal.,2005),西班牙北部Asturias MVT型F-Ba(Zn-Pb)矿 床 (Sánchezetal.,2010)和 Irish Pb-Zn矿(Davidheiser-Krolletal.,2014)。另外,对我国华南低温成矿域中晴隆锑矿成矿流体的He、Ar同位素研究,结果也显示成矿流体中含有地幔流体,而含地幔He的流体,很可能来自右江盆地深部侏罗纪壳-幔混合成因的花岗岩浆,与华夏地块侏罗纪与钨锡成矿有关的花岗岩形成机制类似(陈娴等,2016)。

2.1.5 斑岩及其浅成热液矿床

斑岩-浅成低温热液成矿系统的研究发现,斑岩矿床及其相关的高硫型、中硫型、低硫型浅成热液矿床成矿流体的He、Ar同位素组成都具有壳-幔混合的特征。Huetal.(1998a,c,2004)对马厂箐 Cu矿和红河-金沙江断裂带的Cu-Au矿床、Kendricketal.(2001a)对 6个斑岩铜矿、Camprubíetal.(2006)对墨西哥La Guitarra中-低硫型Ag-Au矿床以及Desanoisetal.(2018)对阿根廷西北部的Pirquitas浅成热液Sn-Ag-(Zn)矿床的稀有气体同位素研究结果显示,成矿流体均具有岩浆流体、地壳流体与大气降水混合特征。Manning and Hofstra(2017)对美国西南内达华州Goldfield和Tonopah浅成热液Au-Ag矿床以及Wuetal.(2018a)对紫金山高硫型Cu-Au矿床稀有气体同位素研究结果显示,这些矿床的成矿流体均具有很高的3He/4He比值,分别为0.05~35.8Ra和0.41~5.67Ra,均指示了幔源镁铁质岩浆对成矿的重要贡献,与Hattori andKeith(2001)提出的镁铁质岩浆在斑岩矿床的形成中起着重要作用的假设是一致的。

2.1.6 华北克拉通内部金矿

华北克拉通是我国最重要的金成矿省,也是世界上重要的黄金产地之一,探明储量为 2500吨 Au(Yangetal.,2003),主要分布在华北克拉通的东缘、南缘和北缘,包括辽东-吉南、胶东、小秦岭-熊耳山、太行山中段、冀北-冀东和赤峰-朝阳等数个金矿集区(Yangetal.,2003)。虽然前人已做过大量研究,但对其成因和构造背景尚存争议(Hartetal.,2002;Maoetal.,2002;Yangetal.,2003;翟明国等,2004;Goldfarbetal.,2007;Chenetal.,2008;蒋少勇等,2009)。近年来随着人们对不同矿床稀有气体同位素的研究(张连昌等,2002;Maoetal.,2003;王宝德等,2003;Zhangetal.,2008;Lietal.,2012;Zhuetal.,2013;Tanetal.,2018),发现这些矿床成矿流体中都有不同程度幔源流体参与,是伸展背景下与岩石圈减薄、地幔物质上涌引起的壳-幔源长英质和镁铁质岩浆有关(Zhangetal.,2008;Lietal.,2012;Zhuetal.,2013;Tanetal.,2018);认为华北克拉通早白垩世金矿床不属于“造山型”,而是“克拉通破坏型”,与古西太平洋板块俯冲、回转与后撤、在地幔过渡带的滞留引起的克拉通破坏有关(Zhuetal.,2015)。

2.2 稀有气体同位素与卤素示踪成矿流体

卤素(Cl、Br、I)与惰性气体一样为不相容元素,其比值在不同储库中具有数量级的差异(Kendrick and Burnard,2013)。研究表明,沉积建造水中Cl的含量最高,Br次之,而且Cl、Br、F可能受同样的地质因素制约,而I的制约因素则不同,I的富集与有机质有关(Worden,1996)。Br/Cl和 I/Cl的比值可以有效地区分原始岩浆水、海水和沉积建造水的成分(Kendricketal.,2001a)。因此,同时测量卤素与惰性气体不仅可以示踪流体来源,而且可以示踪流体盐度的来源和有机组分的参与(Böhlke and Irwin,1992b;Graupneretal.,2006;Kendricketal.,2011b;Richardetal.,2014)。

目前已开展过稀有气体和卤素研究的矿床类型主要有斑岩Cu/Cu-Mo矿(Irwin and Roedder,1995;Kendricketal.,2001a)、密西西比河谷型矿床(Böhlke and Irwin,1992a;Kendricketal.,2002)、Pb-Zn矿(Kendricketal.,2005,2011b)、金 矿 (Graupneretal.,2006;Kendricketal.,2011a)、Fe氧化物 Cu-Au矿(Kendricketal.,2007)、不整合面型U矿(Richardetal.,2014)等。研究表明大多数斑岩铜矿床含有Br/Cl和I/Cl的变化范围都不大,与地幔金刚石流体包裹体的比值一致,反映了斑岩铜矿中的盐度具有初生水的来源(Irwin and Roedder,1995;Kendricketal.,2001a),Silverbell矿床高的 I/Cl比值表明沉积建造水的参与,而Bingham Canyon矿床钾化带低36Ar含量,高 Cl/36Ar,低40ArE/Cl和高分异的84Kr/36Ar,129Xe/36Ar暗示流体发生了沸腾作用,这得到了流体包裹体数据的证实(Kendricketal.,2001a)。斑岩铜矿成矿流体是低盐度,与围岩进行水-岩反应并获得放射成因40Ar和卤素的饱和空气大气降水与高盐度、具有地幔流体和地壳流体混合特征的岩浆流体混合作用的结果(Irwin and Roedder,1995;Kendricketal.,2001a)。大多数的MVT矿床具有比海水高的Br/Cl比值,其卤素和稀有气体同位素组成表明,MVT矿床成矿流体具有海水蒸发与沉积孔隙水混合的特征,而且不同阶段成矿流体变化具有系统性 (Böhlke and Irwin,1992a;Kendricketal.,2002)。Kendricketal.(2011b)对澳大利亚Lennard Shelf Zn-Pb矿床的卤素和稀有气体同位素研究结果显示,与矿化有关的流体包裹体的盐度和烃类含量不同,结合卤素和稀有气体同位素数据显示成矿流体为三种流体的混合。此外,根据Br/Cl,I/Cl和40Ar/36Ar比值的变化认为烃类和卤素分别来自沉积盆地的不同部位,证实了卤素和惰性气体示踪体系的互补性。Kendricketal.(2011a)对澳大利亚西部St Ives金矿研究表明,稀有气体和卤素在富含CH4和H2O-CO2的流体包裹体中组成不同,含H2O-CO2的流体包裹体具有高的 Br/Cl、I/Cl值和低的放射成因稀有气体同位素,而富含CH4的流体包裹体含有最高的40Ar/36Ar和21Ne/22Ne值。他们认为高的放射性成因稀有气体同位素可能由古老的基底岩石生成。稀有气体和卤素联合运用得出富含CH4和H2O-CO2的流体混合引起的氧化还原反应是引起金成矿的主要原因。Richardet al.(2014)对加拿大Athabasca盆地的不整合面型U矿床的研究表明,Br/Cl和 I/Cl比值显示具有海水蒸发特征,低的I/Cl比值表明成矿流体未经历与有机质相互作用的过程,而40Ar/36Ar为上地壳沉积建造水特征,结合84Kr/36Ar及129Xe/36Ar组成,指出该矿床成矿流体主要为与沉积岩进行了水-岩反应的大气降水,并获得了大量放射成因40Ar。因此认为成矿作用主要受蒸发和水-岩相互作用的控制。

总之,稀有气体同位素和卤素分析已被认为是示踪矿床流体来源的有力工具,为成矿流体来源、演化、矿化过程提供了新的约束,也为沉积、岩浆和变质等不同环境下矿床的形成提供了重要新认识。这些技术有望为更多其它环境下的地质过程研究提供新的视角。

2.3 3 He/热的应用

幔源岩浆会以恒定的比例同时传输He和热到洋壳(Baker and Lupton,1990;Luptonetal.,1995;Jean-Baptisteetal.,1998),因此,大洋中脊流体具有3He/热值为 0.1×10-12~0.2×10-12cm3STP J-1(Baker and Lupton,1990;Luptonetal.,1989)。另外,3He/热记录了热如何从地幔运输到地壳的重要信息(Baker and Lupton,1990),高3He/热值倾向于对流传递,而低3He/热值倾向于传导传递(Baker and Lupton,1990;Turner and Stuart,1992)。因此,稀有气体同位素及3He/热对研究成矿流体来源及热与物质传输方式具有重要意义。

Turner and Stuart(1992)首先对东太平洋隆21°N硫化物流体包裹体中的稀有气体同位素和3He/热进行了研究,结果显示,3He/热比值(1.5×10-13cm3STP J-1)与现代喷口流体的3He/热比值(1×10-13cm3STP J-1,Luptonetal.,1980)基本一致。因此,认为流体包裹体中的3He/热比值可用于地壳成矿古流体系统的研究。

图5 不同矿床成矿流体及喷口流体的3He/Q-4 He/36 Ar图Fig.5 3 He/Q vs.4 He/36 Ar from deposits and vent fluids

Burnardetal.(1999)研究发现中国云南哀牢山金成矿带大坪金矿的3He/热比值(0.7×10-12~37×10-12cm3STP J-1)远远大于墨江金矿和镇沅金矿的3He/热比值(0.1×10-12~0.8×10-12cm3STP J-1),指出大坪金矿的形成与岩浆流体的直接注人有关,而墨江金矿和镇沅金矿的形成可能是岩浆流体与其他流体混合作用的结果。Burnard and Polay(2004)对葡萄牙中部的Panasqueira W-Cu(Ag)-Sn矿床的研究结果表明,成矿流体的3He/4He(>5Ra)和3He/热值非常高(1×10-12~10×10-12cm3STPJ-1),由侵入体的逐渐冷却为成矿系统提供热似乎不太可能,He和热可能都来自地幔,而且He和热是通过对流方式进入成矿流体。我国福建紫金山Cu-Au-Mo-Ag矿田成矿流体的也具有高的3He/热值(0.07×10-12~8.35×10-12cm3STP J-1),与 Panasqueira W-Cu(Ag)-Sn矿床值相近(图 5),这种高的3He/4He和3He/热值暗示成矿流体的挥发分和热可能直接来自底侵的镁铁质岩浆,而且挥发分和热以对流方式进入成矿系统(Wuetal.,2018a)。

以上研究3He/热值都是基于3He/36Ar值计算,而Zenget al.(2015)用3He/22Ne和4He/20Ne值计算了东太平洋隆、中大西洋脊、中印度洋脊、西南印度洋脊、北斐济后弧形盆地的硫化物矿床成矿流体的3He/热和4He/热值,结果表明,3He/热值为0.22×10-14~3.44×10-14cm3STP J-1,4He/热比值为0.17×10-9~3.13×10-9cm3STPJ-1,与东太平洋隆13°N,1~2°S的3He/热(0.36×10-14~3.44×10-14cm3STP J-1)和4He/热(0.32×10-9~3.13×10-9cm3STP J-1)值一致,并根据全球高温热液喷气口He和热流值推算大概3%的大洋热由洋底高温热液活动提供。

3He/热在矿床中的研究还处于起步阶段,已研究的矿床类型和数量都有限,尚需开展更多的工作,以促进成岩、成矿过程中热机制研究。

3 年代学研究

同位素测年是地质测年的主要手段,稀有气体同位素测年为其重要分支,其放射性纪年被记录在 He、Ne、Ar、Kr、Xe等同位素中。近年来,流体包裹体40Ar-39Ar、表生含钾矿物的40K-40Ar、40Ar-39Ar定年和(U-Th)/He热年代学在矿床年代学研究中取得重要进展。高精度的40Ar-39Ar计时技术的建立,使流体包裹体40Ar-39Ar定年成为可能;由于激光加热技术的发展,Ar-Ar法用于表生含钾矿物、年轻样品的直接定年;而基于不同矿物对He的不同封闭温度(U-Th)/He测年技术主要用于揭示矿床的隆升、剥露历史以及原生、次生赤铁矿定年等。含钾矿物的40K-40Ar、40Ar-39Ar定年以及(UTh)/He定年为矿床及氧化带的形成时间、构造隆升、古气候演化等重大地质问题的讨论提供了大量有意义的信息。

3.1 流体包裹体Ar-Ar定年技术在矿床成矿年龄中的应用

近年来对金属矿床直接定年的方法取得了很大进展,然而,对大多数矿床来说,要准确测定其成矿年龄还存在一定的困难。对于许多金属矿床,由于难以找到既能够代表成矿时代、同时又适合于常规同位素定年方法的测定对象,难以对其进行直接定年。Re-Os和La-Ce法适用面很窄,只有少数的特殊矿物可作为测定对象,Rb-Sr、Sm-Nd和Pb-Pb等时线法常因一组样品同位素组成相近而不能构成等时线(邱华宁等,1997)。热液矿床中矿物通常含有较丰富的流体包裹体,其中存在着一定量的钾,因此,流体包裹体40Ar/39Ar测年方法便应运而生了。

Kelleyetal.(1986)首先利用真空压碎技术对石英流体包裹体40Ar-39Ar法定年进行了尝试,但因样品中含大量的过剩40Ar,且放射成因40Ar比例太低而未获得满意的年龄数据。Turner and Wang(1992)采用40Ar-39Ar真空击碎技术和阶段加热技术分析了河北省蓟县中元古长城系大红峪组燧石(JX04)和山西省五台地区滹沱群东冶亚群纹山组燧石叠层石(WT03),获得了有意义的年龄结果。Qiu ang Dai(1989)特别设计了全金属超高真空碎样装置,该装置与MM-1200质谱计的纯化系统直接相连,以真空破碎方法提取流体包裹体,成功测定了滇西泸水钨锡矿床石英的年龄(邱华宁等,1994)。其后又测定了滇西腾冲上芒岗金矿(Qiu,1996)、东川铜矿(邱华宁等,1997,2000,2001,2002;Qiuetal.,2002)、大兴安岭北部砂宝斯金矿床(刘军等,2013)、柿竹园多金属矿(王敏等,2016)等矿床的石英流体包裹体的年龄,获得了与地质事实相吻合的成矿年龄数据。随后又开展了石榴石(邱华宁等,2004;Qiu and Wijbrans,2006,2008)、闪石(邱华宁和Wijbrans,2006;邱华宁等,2009;Qiuetal.,2010a;胡荣国等,2013;Huetal.,2015,2016)、锡石(白秀娟等,2011,Baietal.,2013;王敏等,2015)和黑钨矿(Baietal.,2013)等矿物的流体包裹体40Ar-39Ar定年,均获得很好的实验结果,获得了与地质事实相吻合的成矿年龄数据。

由于硫化物经中子活化后具有高放射性、而且硫化物加热熔化后会产生含硫的气体,对质谱系统有害及实验后样品粉末难于处理等原因,使得对其流体包裹体40Ar-39Ar定年研究工作较少。直到20世纪80年代初,人们才开始对硫化物40Ar/39Ar定年的探索。首先,Yorketal.(1982)对黄铁矿作了全熔40Ar/39Ar定年研究,指出尽管黄铁矿的钾含量很低,但仍不失为硫化物矿床直接定年的合适对象。范才云等(1986)采用阶段加热法做了黄铁矿的40Ar-39Ar年代学的研究,表明黄铁矿可以作为该方法的分析对象,并指出开展其它硫化物的40Ar-39Ar定年研究具有重要的意义。后来,Smithetal.(2001,2005)及Phillips and Miller(2006)分别采用激光探针技术对单颗粒的黄铁矿进行了40Ar-39Ar定年研究,获得了有意义的年龄数据,研究表明具有一定钾含量的硫化物可能进行40Ar-39Ar定年,同时指出该方法是一种有效的直接测定黄铁矿年龄的方法。随后,邱华宁的团队(Qiu and Jiang,2007;Jiangetal.,2012;蒋映德等,2007)开展了闪锌矿真空压碎和阶段加热40Ar-39Ar定年,获得一致的原生包裹体年龄和闪锌矿中钾矿物微晶年龄,为硫化物矿床直接定年提供了新的技术手段。

3.2 表生环境中含K矿物K-Ar和激光40 Ar/39Ar定年

由于风化作用一般都在较为开放的体系中进行,同时在风化剖面中很难获得适合常规定年方法的次生矿物,因此,风化剖面的直接定年一直是该领域的科学难题之一。这主要是,长期以来,风化壳测年的研究一般都基于风化壳与其上、下地质体(年龄已知)的相对层序来间接确定(Bird,1989),这在多数情况下不能给出准确的风化壳年龄。尽管如此,各国科学家一直在寻找直接对风化剖面测年的方法,较成功的有古地磁法、风化速率法和同位素法。近年来利用放射性同位素定年的一个重要进展是含钾矿物K-Ar和激光40Ar/39Ar定年。

早在20世纪60年代,苏联学者Chukhrovetal.(1969)就利用表生过程中形成的明矾石族矿物进行了风化壳测年,尝试解决风化壳及与其相关的年代学问题。但由于K-Ar定年方法本身的局限性,如所需样品量大、不能有效识别样品中可能存在的过剩氩、原生矿物及多期矿物共存的现象,以及风化产物中复杂的矿物组成及共生次序、矿物晶体细小等原因,难以获得大量纯净的、完全不受原生矿物影响的定年矿物,使得该方法研究没有取得实质性进展。直到20世纪90年代,Vasconcelosetal.(1992,1994a,b)的研究小组开始使用激光40Ar/39Ar技术对明矾石和黄钾铁矾矿物进行定年,才使得风化年代学研究获得突破性进展。激光熔样方法引入40Ar/39Ar定年,不仅减少了样品的用量,同时也降低了系统的空白本底水平;利用阶段加热法得到的年龄谱图,不仅可以有效识别原生矿物的混染和多世代矿物的存在,还可以检测样品中的过剩/继承Ar(杨静等,2013)。激光40Ar/39Ar定年法一个很重要的应用就是可以对单个晶体进行40Ar/39Ar定年,这种单晶定年方法使风化壳中少量存在的明矾石、黄钾铁矾和含钾锰矿物等含钾矿物定年成为可能(Vasconcelosetal., 1994a, b; Ruffetetal., 1996;Vasconcelos,1999),随之开启了表生年代学研究的新热潮。

Vasconcelosetal.(1994a)首次对美国内达华州Goldfield矿表生明矾石和黄钾铁矾进行了40Ar/39Ar定年,表明美国西部普遍深入的风化作用发生于晚中新世(大约10Ma),这个结果与 Ashley and Silberman(1976)报道的表生明矾石K-Ar年龄的研究结果一致。Vasconcelos and Conroy(2003)将同一个黄钾铁矾样品的3个颗粒,分别进行了40Ar/39Ar年龄测定,结果得到非常一致的坪年龄(分别为0.92±0.03Ma、0.96±0.02Ma、0.89±0.06Ma)和反等时线年龄(0.99±0.03Ma)。他对明矾石样品进行了类似的研究也得到了一致的坪年龄和反等时线年龄。这表明表生黄钾铁矾和明矾石可以很好的保存Ar,适合表生年龄定年。而且,Vasconcelos and Conroy(2003)对同一个黄钾铁矾样品中细晶质颗粒(粒径<10μm)和粗晶质颗粒(粒径>100μm)分别进行了年龄测定,得到了几乎相同的坪年龄,表明无论粒度大小,黄钾铁矾都可以很好地保存Ar,适合表生年龄定年。Vasconcelosetal.(1992)对巴西Minas Gerais地区一个风化成因的隐钾锰矿进行了激光40Ar/39Ar年代学研究,获得9.94±0.05Ma和5.59±0.10Ma的年龄,认为这个年龄体现了风化过程发生的时间,指示该区甚至整个南美大陆在晚中新世时为温暖潮湿的气候。Vasconcelosetal.(1994b)和Ruffetet al.(1996)分别对巴西Carajàs地区风化壳中锰的氧化物进行了激光40Ar/39Ar定年,结果表明K-Mn氧化物可以很好的保存Ar,而且认为K-Mn氧化物的生长是一个连续的过程(Ruffetetal.,1996)而非幕式生长(Vasconcelosetal.,1994b)。De Putteretal.(2015)对非洲刚果的 Kisenge锰矿次生富集产生的隐钾锰矿进行了40Ar/39Ar定年,结果显示风化年龄随着深度降低而变年轻,并推断这可能与东非地台的抬升和随后东非大裂谷的形成有关。Bonnetetal.(2016)对印度半岛西部沿海的低地和东部高原的高地的含锰红土剖面进行了钾锰氧化物的40Ar/39Ar定年,分别获得了53~50Ma、37~23Ma(高地)和 47~45Ma、24~19Ma、9Ma、2.5Ma(低地)不同的风化年龄,发现53~45Ma时高地和低地都出现了红土风化,强烈的风化作用记录了气候变化和季风的影响,同时记录了始新世之后低地和高地的不同侵蚀和风化历史。对南美洲的Atacama沙漠和秘鲁地区不同矿床中的风化矿物的K-Ar和40Ar/39Ar定年研究表明南美 Atacama沙漠地区大量明矾石族矿物的年龄主要集中在早中新世至中中新世(距今9~24Ma),中中新世后明矾石族矿物生成逐渐减少,这些结果表明Atacama沙漠地区早中新世到中中新世的干旱-半干旱气候逐渐被晚中新世极干旱气候所取代(Sillitoe and McKee,1996;Moteetal.,2001;Bouzari and Clark,2002;Quangetal.,2003,2005;Arancibiaetal.,2006)。

在国内,风化壳含钾矿物的K-Ar和40Ar-39Ar定年研究虽然才刚刚起步,但已经取得很好的研究成果。如许英霞等(2008)和何为等(2009)分别尝试用K-Ar法对氧化带中的绿钾铁矾、高铁叶绿矾、绿钾铁矾和黄钾铁矾等含钾硫酸盐进行了定年,获得东天山红山高硫型铜金矿床60~3.7Ma的表生年龄。Lietal.(2002)和李建威等(2004)对钾锰矿物激光40Ar-39Ar方法和意义进行了综述;杨静等(2013,2015)分别对明矾石组矿物和黄钾铁矾的激光40Ar-39Ar定年方法及样品采集、制备等进行了详细的介绍。Chen and Li(2014)对青藏高原东北缘祁连山地区白银矿田折腰山块状硫化物矿床风化壳中两种产状的表生黄钾铁矾进行了40Ar/39Ar和HO同位素地球化学研究,分别获得41.2±0.4Ma与37.1±0.3Ma和3.3±0.1Ma与3.2±0.1Ma的40Ar/39Ar年龄,对应的δD值分别为156‰和133‰,及160‰和158‰,表明白银矿田折腰山矿床至少在始新世中期就已隆升到地表,并接受了长期的化学风化和矿床的次生富集,其中,晚始新世和晚上新世的2次风化事件记录了白银地区干旱半干旱气候条件下2次相对湿润的气候,年代学为该区硫化物矿床的化学风化和次生富集提供了直接的年龄限定。Dengetal.(2014)对云南巴夜锰矿风化剖面的钾锰氧化物进行了激光40Ar/39Ar定年,限定了风化作用的时间以及古气候和地貌演化。Yangetal.(2016)对吐哈盆地中红山、硫磺山、彩华沟三个矿床风化剖面中的表生黄钾铁矾和斜钾铁矾进行了40Ar/39Ar定年,限定了其风化和表生富集作用发生的时间为33.3±0.5Ma到 3.3±0.4Ma,持续了 30Myr。Dengetal.(2016)对贵州遵义锰矿的22个氧化锰颗粒进行了40Ar/39Ar定年,得到从13.1±0.3Ma到0.1±0.4Ma的年龄,而且具有从上到下逐渐变年轻的趋势,并获得风化前锋拓展速率为3.3m/Myr,相应的化学剥蚀速率为 4.6±0.2t/km2/yr。

风化壳和矿床次生富集带的含钾矿物的K-Ar和激光40Ar/39Ar定年,不仅为查明大陆化学风化和矿床次生富集的时间和过程提供了可能,而且为地貌演化、区域古气候古环境的反演提供了新的思路和手段。

3.3 (U-Th)/He热年代学

早在二十世纪初,随着放射性的发现,人们就意识到可以用放射性成因He对矿物进行定年(Strutt,1908,1910)。在1950年代以前,(U-Th)/He定年是最重要的定年方法(Hurley and Goodman,1943)。但是由于该方法所获得年龄一般要比实际年龄偏轻,后来被K-Ar法(Wasserburg and Hayden,1955)、40Ar-39Ar法(Merrihue and Turner,1966)和Rb-Sr、Sm-Nd法取代。近年来,随着分析手段和实验设备的进一步提高,以及人们对矿物He封闭温度的研究和认识的深入,(U-Th)/He方法又重新得到学术界的关注。

可用于(U-Th)/He定年的矿物主要有锆石(Farleyet al.,2002;Reinersetal.,2002;Dobsonetal.,2008;Horneetal.,2016)、磷灰石(Wolfetal.,1996;Farleyetal.,2002;Flowersetal.,2009)、石榴石(Aciegoetal.,2003)、橄榄石(Aciegoetal.,2007)、榍石(Reiners and Farley,1999;Stockli and Farley,2004;Horneetal.,2016)、磁铁矿(Blackburnet al.,2007)、针铁矿(Shusteretal.,2005;Monteiroetal.,2014;Riffeletal.,2015;Dengetal.,2017)、赤 铁 矿(Wernicke and Lippolt,1997a,b;Farley and Flowers,2012;Danišíketal.,2013)、萤石(Evansetal.,2005)和自然金(Shukolyukovetal.,2010)等。不同矿物(U-Th)/He体系的封闭温度差别较大,如果矿物的封闭温度较高并接近矿物的形成温度,则测得的年龄可代表矿物的形成年龄;如果矿物的封闭温度较低,则测定的年龄只代表达到同位素体系封闭温度时的时间。因此,(U-Th)/He定年不仅可以用于地质体定年、年轻火山岩的喷发年龄和年轻断层活动年龄研究,还可以联合使用不同矿物和同位素测年方法用于造山带演化重建,盆地热历史恢复、岩浆冷却历史、古地貌研究以及矿床隆升剥蚀等方面的研究。近年来U、Th含量较高的锆石和磷灰石研究较多,成为(U-Th)/He定年技术常用的矿物。而风化矿物赤铁矿、针铁矿和褐铁矿等铁氧化物(U-Th)/He年龄代表了矿物开始沉淀至今的时间,是风化地质年代学研究的重要手段,以下将着重对这两方面进行论述。

3.3.1 锆石、磷灰石(U-Th)/He定年

锆石以副矿物的形式广泛存在于各类岩石中,而且锆石中富含放射性元素U、Th,具有良好的抗风化能力,在岩浆作用和变质作用等热动力过程中具有基本不受影响的耐久性,使其成为用于地质年代学和热年代学研究的理想定年矿物。研究表明,对于火山岩等快速冷却的样品,锆石(U-Th)/He年龄值具有结晶年龄意义。磷灰石He封闭温度是目前已知定年体系中最低的,其可以反映其他方法难以涉及的低温范围的热事件年龄,这使人们对于该方法产生了浓厚的兴趣。研究表明磷灰石的He封闭温度为75±5℃(图6),He的部分保存区间为85~40℃(Wolfetal.,1996),锆石的He封闭温度为170~190℃,而遭受了辐射损伤的锆石的封闭温度则较低为140~160℃(Reinersetal.,2002)。自从Zeitleretal.(1987)对磷灰石进行(U-Th)/He定年时发现磷灰 He年龄是通过较低温度时的冷却年龄,并指出(U-Th)/He定年有可能作为一种低温温度计之后,这项研究引起了研究人员的极大关注,从而为(U-Th)/He定年的快速发展奠定了基础。

图6 不同矿物不同同位素定年体系的封闭温度Fig.6 Temperature range of thermochronometers

目前国内外的研究均采用将(U-Th)/He方法与裂变径迹甚至 K/Ar,Ar/Ar、U-Pb等其它同位素定年方法结合起来使用,以便利用不同矿物、不同测年方法封闭温度的不同(图6),综合起来对复杂热史轨迹进行恢复。Reinersetal.(2003)利用锆石、磷灰石(U-Th)/He和磷灰石裂变径迹年龄研究了中国东部大别山约115Myr的冷却、剥露历史。Qiuetal.(2010b)利用塔里木盆地钻井样品的磷灰石与锆石(UTh)/He年龄数据,结合磷灰石裂变径迹和有机质镜质体反射率等古温标模拟了塔里木盆地不同井区古生代的热历史,并计算了古生代不同时期的古地温梯度,为缺乏常规古温标的塔里木盆地下古生界碳酸盐层系所经受热史的恢复提供了新方法。许长海等(2010)在对大巴山弧形构造带形成与两侧隆起关系的研究中,利用磷灰石裂变径迹和(U-Th)/He低温热年代学方法分别分析了南大巴山弧形带的热历史,以及汉南-米仓山隆起和黄陵隆起的热历史。Harrisetal.(2008)对阿根廷的Bajo de la Alumbrera斑岩 Cu-Au矿床的斑岩侵入体进行了U-Pb和40Ar/39Ar年代学和锆石、磷灰石(U-Th)/He定年,揭示了多期岩浆活动和热事件的时间,及其冷却历史。Lietal.(2014)利用锆石U-Pb,黑云母40Ar/39Ar和锆石、磷灰石(U-Th)/He方法研究了包古图斑岩铜矿床的热-构造演化历史,认为大气降水的影响导致了(U-Th)/He年龄偏老,并识别出五个阶段的冷却历史:晚石炭-早二叠世的快速冷却阶段(320~290Ma),早二叠世-晚三叠世缓慢冷却(290~200Ma),早侏罗世到早白垩世的极缓慢冷却阶段(200~136Ma),早白垩世到晚白垩世(136~100Ma)的快速冷却阶段以及晚白垩世以来的十分缓慢的冷却(100Ma);不同的冷却阶段主要是受制于欧亚大陆-羌塘地块以及羌塘地块与拉萨地块的碰撞拼合。喻顺等(2016)利用磷灰石(U-Th)/He方法重建了中天山南缘科克苏河地区中-新生代构造热演化及隆升剥蚀过程,表明中天山南缘隆升剥蚀存在不均一性,分别在晚白垩世、早中新世、晚中新世发生了快速隆升剥蚀事件。Ershovaetal.(2018)对俄罗斯High Arctic卡拉岩层的古地理进行了研究,(U-Th)/He年龄显示样品在沉积后没有被重置,暗示碎屑锆石携带着源区物质剥露历史信息,利用锆石(U-Th)/He和U-Pb年龄反演了源区物质的剥露抬升历史。

利用矿床中常见的磷灰石、锆石矿物进行成矿后的剥蚀历史的研究已经成为矿床学的重要研究内容。但是,数据解释一定要与地质事实相结合,不然会得到错误的结论。如Weisbergetal.(2018)在对科罗拉多西部山区的麦克卢尔山正长岩进行研究时就发现如果仅根据锆石、榍石和磷灰石(U-Th)/He年龄数据,以及 U-Pb和40Ar/39Ar年龄可得出岩体经过简单的缓慢单调冷却历史,然而,此结果却与地质事实不相符;年龄数据与地质现象结合后得出岩体曾3次经过不同程度的埋藏和剥蚀而到达地表。

3.3.2 铁氧化物的(U-Th)/He定年

赤铁矿、褐铁矿等形成于低温条件下,而且含有适量的U-Th含量,几乎不存在继承He,为赤铁矿和镜铁矿等含铁氧化物(U-Th)/He定年提供了可能。此技术应用的关键是赤铁矿等含铁矿物对He的封闭温度。Lippoltetal.(1993)、Bähretal.(1994)开展了一些不同粒度、不同冷却速率和不同晶型的赤铁矿He保存能力的实验,研究发现表生赤铁矿(10μm)在300Myr内4He的丢失不会超过0.9%(Lippoltet al.,1993),冷却速率为 10K/Myr和 103K/Myr,粒度为 10~500μm时的封闭温度分别是200℃和300℃,冷却速率为10K/106年时镜铁矿封闭温度为219℃,葡萄状赤铁矿封闭温度为122℃,而且在地壳表面的热条件下针铁矿的He丢失不可测量,而葡萄状赤铁矿的He丢失可以忽略不计(<2%)(Bähretal.,1994)。Evensonetal.(2014)研究了多晶集合体赤铁矿和单个赤铁矿晶体中4He的扩散行为,并结合前人的实验数据,用动力学数据计算了大多数样品的封闭温度为140~240℃。Baloutetal.(2017)计算了赤铁矿中4He的显微尺度三维扩散系数,结果显示赤铁矿粒度为0.1μm和10μm时的封闭温度分别为83℃和154℃。最近,Farley(2018)对不同粒度的单个赤铁矿晶体的He扩散行为进行了研究,结果显示赤铁矿可以很好的保存He,即便一个20nm的赤铁矿晶体在30℃下1Myr时间里可以保存99%的He,在100Myr里可以保存90%的He;在一个冷却速率为10℃/Myr的系统中,20nm的赤铁矿封闭温度为约70℃度,跟100μm磷灰石相当。可见,这种技术用于风化铁矿石定年的潜力是显而易见的。

Fe的氧化物(U-Th)/He定年最早在1908年由Strutt报道(Strutt,1908)。后来 Fanale andKulp(1962)给出了Pennsylvania Cornwall磁铁矿矿床 He等时线年龄(194±4Ma)与共生白云母的K-Ar年龄一致。近年来,Wernicke和Lippolt成功地用针铁矿、赤铁矿和褐铁矿(U-Th)/He方法给出了欧洲一些矿脉年龄(Wernicke and Lippolt,1993,1994a,b,1997a,b;Lippoltetal.,1995,1998),获得的年龄变化从0.8Ma到180Ma。Reineretal.(2015)对前寒武纪基底基岩中次生赤铁矿进行(U-Th)/He定年获得老至1.6Ga的年龄,表明在地质时间内He可以保存。Wuetal.(2018b)利用赤铁矿(U-Th)/He方法测定了意大利Elba岛热液铁矿床的成矿年龄。另外,(U-Th)/He定年还用于研究美国 Grand Canyon地区的热演化历史(Farley and Flowers,2012)、三叠纪古河道沉积的铁豆年龄(Danišíketal.,2013)、断层活动年龄 (Aultetal.,2015a,b;Garcia and Reiners,2015;McDermottetal.,2015;Reinersetal.,2015),甚至试图用于限定火星上水活动的时间(Kula and Baldwin,2012)。此外,(U-Th)/He和40Ar-39Ar定年联合应用还可以对风化剖面和相关的矿化提供强有力的风化年龄和冷却历史(Riffelet al.,2015)。Dengetal.(2017)以玉龙斑岩型铜矿床的铁帽为研究对象,对上百米厚铁帽中的针铁矿开展了系统的(UTh)/He年代学研究。指出风化壳年代学不仅可以揭示矿床次生氧化富集过程,而且可以作为一个重要的古气候指标。由于针铁矿、赤铁矿和褐铁矿在风化壳中广泛存在,因此,(U-Th)/He定年在风化壳年代学研究中具有广泛的应用前景(Shusteretal.,2005;Heimetal.,2006)。

国内(U-Th)/He定年技术方法刚刚起步,主要应用于磷灰石和锆石的热年代学研究,很少用于铁氧化物定年分析。但我们已经有了较好的理论基础和硬件条件。自2007年开始,中国科学院广州地球化学研究所、中国地质科学院地质研究所(陈文和张彦,2010;张彦等,2011;张彦和陈文,2011;孙敬博等,2017)、成都地质调查中心、中国石化无锡石油地质研究所(王杰和马亮帮,2014)、中国科学院地质与地球物理研究所(吴林等,2016)、中国地震局地质研究所(王英等,2017)等单位也相继建立起(U-Th)/He实验室并逐步进行实验方法和流程的探索。这些硬件设施都为我国开展锆石、磷灰石、榍石、铁氧化物等矿物的(U-Th)/He定年提供了条件。

4 结语与展望

随着测试水平及分析手段的发展,人们对稀有气体同位素的认识不断深入,而稀有气体同位素在矿床学研究中的应用也取得了许多重要进展。不仅揭示了不同类型矿床成矿流体的来源、演化过程、矿床沉淀机制,探讨了壳-幔相互作用在不同类型矿床成矿过程中的作用,尤其是地幔物质、挥发份与热在超大型矿床形成中的重要贡献,而且对矿床形成时间、发生表生氧化、次生富集时间的厘定、以及矿床形成后的抬升、剥露历史有了更深入的认识。然而由于稀有气体同位素本身的局限性,需要与其他同位素示踪体系联合运用才能更好地解决成矿流体来源、演化、成矿模式等方面的问题。另外,只有更好的理解稀有气体在不同矿物、不同温度下的扩散行为,才能更好地解释其年代学意义。随着人们对稀有气体同位素在岩浆-流体演化过程中的行为以及不同矿物中的扩散行为的深入认识,将大大促进稀有气体同位素在矿床学中的应用。

致谢 评审专家贺怀宇研究员和邱华宁教授对论文提出了建设性修改意见,在此深表感谢!

猜你喜欢

同位素矿床矿物
构造叠加晕找矿方法在青海哈西哇金矿床深部找矿预测中的应用
构造叠加晕法在深部找矿中的应用——以河南小秦岭杨砦峪金矿床S60号矿脉为例
黑龙江省林口县三合村探明超大型石墨矿床
煤泥水中煤与不同矿物相互作用的模拟研究
我国首列106节重载列车抵达济矿物流
基于NAIRS和PCA-SVM算法快速鉴别4种含铁矿物药
《同位素》变更为双月刊暨创刊30周年征文通知
西昆仑新发现盐湖型卤水硼锂矿床
《同位素》(季刊)2015年征订通知
硼同位素分离工艺与生产技术