APP下载

二维相关谱技术的研究进展及应用

2019-01-16连增艳杨仁杰董桂梅杨延荣吴楠杨帆

天津农学院学报 2018年4期
关键词:杂化投影组分

连增艳,杨仁杰,董桂梅,杨延荣,吴楠,杨帆



二维相关谱技术的研究进展及应用

连增艳,杨仁杰通信作者,董桂梅,杨延荣,吴楠,杨帆

(天津农学院 工程技术学院,天津 300384)

二维相关谱技术以高光谱分辨率、高选择性和高图谱解析能力等优势在分析科学领域备受关注。本文综述了该技术近些年的最新发展,详细介绍了杂化二维相关谱技术、投影二维相关谱技术、Double二维相关谱技术、二维组分相关谱技术和修正二维相关谱技术,并给出了这些技术的具体算法和应用实例。最后,对该技术的应用前景进行了展望。

二维相关谱;研究进展;应用

二维相关谱技术由Noda在1986年研究聚合物薄膜在小振幅正弦压力下线性二色红外谱特性时提出[1],并在1993年破除外扰波形的局限,将其应用到红外光谱研究领域,随后又逐渐扩展到拉曼、荧光、紫外、X射线等其他光谱技术中,建立了“广义二维相关谱”理论[2]。

二维相关谱技术是将传统的一维光谱信号扩展到两维平面上,通过同步和异步谱交叉峰正负或有无可提供复杂分析体系中各分子官能团吸收峰之间的关系,不仅可以对其来源进行确认,而且也可明确各官能团振动变化先后次序。同时,二维相关谱技术表征的是随特定外扰变化的信息,消除了强背景信号对待测组分弱信号的干扰,有助于提取复杂体系中随外扰变化微弱的特征信息。因此,相对于传统一维光谱技术,二维相关谱技术具有高的光谱分辨率、高选择性和高图谱解析能力,是一种强大灵活的光谱技术[2]。正是由于二维相关谱的上述优势,再加上外扰选择方式的多样性,如温度,浓度、压力、偏振角等,因此,自广义二维相关谱理论提出以来,该技术就被广泛应用于聚合物[3-4]、蛋白质[5]、肽[6]和核酸等其他生物分子,以及纳米材料[7]、复合材料[8]、医药[9]、食品和环境科学[10]等领域。特别是近年来,我国学者也对该技术的理论和应用进行了广泛、深入地研究,在国内外发表多篇相关研究论文,取得较好的研究结果[11-20]。随着二维相关谱技术应用领域的不断扩展,该技术的相关理论和算法也得到了进一步发展。为使读者在研究中更好地应用二维相关谱技术,并推动该技术的发展,本文在论述广义二维相关谱基本理论的基础上,总结了近些年的最新发展,包括杂化二维相关谱技术、投影二维相关谱技术、Double二维相关谱技术、二维组分相关谱技术和修正二维相关谱技术,对其算法进行了详细介绍,并对二维相关谱技术的发展前景进行了展望。

1 二维相关谱技术的基本原理

式中为动态光谱数,为光谱变量数,T表示转置,为Hilbert-Noda矩阵。

2 二维相关谱的发展

2.1 杂化二维相关谱技术

常用的杂化相关分析有:

此时,样品杂化二维相关谱表征的是温度和压力两个外扰对组分影响变化的相似性。

Wu等[23]采用杂化二维相关谱技术对两种条件下(A体系无催化剂反应,B体系二甲基亚砜作用下反应)的硝基苯催化加氢化学反应进行研究指出:相对于传统的样品二维相关谱,杂化样品和波数二维相关能揭示和确认在B体系化学反应过程中,116 min时存在中间产物浓度最大的突变点。Zhang等[24]采用杂化二维相关谱技术研究了纯水在温度和葡萄糖浓度两种外扰共同作用下所引起光谱信息的变化,指出两种外扰所引起的光谱变化之间不存在偶然相关性。

2.2 投影二维相关谱技术

虽然二维相关谱具有较强的特征信息提取能力,但对于不同组分的重叠峰有时也显得无能为力。为了提取复杂体系中被覆盖的某一组份特征信息,实现其图谱解析[25-30],Noda发展了投影二维相关谱技术(Projection 2D correlation analysis)。

对于给定矢量y,定义矢量投影矩阵R为:

p表征的是将投影到单一矢量所张空间的矩阵,该矩阵仅包含了与矢量(某一波数下吸光度)同步相关的信息。

定义VA的载荷矩阵:

投影矩阵AP可表示为:

Noda在采集混合溶液[25](聚苯乙烯PS质量浓度为1%,甲基乙基酮MEK和全氘代甲苯D-toluenehe质量浓度比1∶1)蒸发过程随时间变化动态光谱的基础上,将其零空间正投影到MEK特征峰所张空间,指出投影后所得的新动态光谱矩阵,表征的主要 PS和D-toluene的特征信息,不包含MEK特性信息,并对其进行同步和异步二维相关谱计算,结果表明:在相关谱中D-toluene的特征信息不再被强的MEK信息所干扰。

2.3 Double二维相关谱技术

为了解决上述同步谱分辨率低的问题,Noda在2010年提出了Double二维相关谱技术,以提高同步谱的光谱分辨率[31-32]。

Double二维相关计算式可表示为:

Noda对苯乙烯和丁二烯的乳液聚合生产丁苯橡胶(SBR)胶乳随时间变化的同步和同步Double二维拉曼相关谱进行了研究[31],研究结果表明:在原始光谱的同步相关谱中,相互重叠的苯乙烯和丁二烯吸收峰在Double同步二维相关谱得到分辨,并指出:相对于原始光谱的同步相关谱,Double二维相关谱技术提高了光谱分辨率,可实现复杂体系中重叠峰特征信息的提取。

2.4 二维组分相关谱技术

虽然广义二维相关谱能提供光谱强度变化的次序,但无法提供研究体系在动力学过程中各组分变化的次序。为了解决这个问题,2014年Noda发展了二维组分相关谱(2D codistribution spectroscopy,2DCDS)技术,其可直接提供待分析体系动力学过程中各组分的分布及浓度变化次序。该技术可以作为补充工具,以弥补传统二维相关的谱在判别体系中组分变化的不足[33-35]。

Noda以时间为外扰,对聚苯乙烯PS、甲基乙基酮MEK和全氘代甲苯D-toluenehe混合溶液蒸发过程的动态红外光谱进行2DCDS异谱相关计算[20],根据PS与MEK和D-toluenehe之间存在负交叉峰,指出了PS组分在溶液蒸发最后阶段占主要部分;MEK与D-toluenehe之间存在正交叉峰,指出了在整个蒸发过程中,与溶剂MEK组分相比,D-toluenehe占主要部分,即MEK蒸发的速度快于D-toluenehe,并推断混合溶液蒸发过程中组分发生的顺序为MEK→D-toluenehe→PS。

2.5 修正二维相关谱技术

众所周知,将同步和异步二维相关谱相结合,根据Noda理论,可以简单地推断出研究体系中各官能团振动变化的顺序。但在实际操作中,特别是对于存在大量交叉峰的研究体系,采用该方法分析不仅效率低下,而且容易出错。为了解决上述问题,提高分析效率,人们提出了各种改进方法,其中包括2DCDS技术、全相角图谱技术、修正异步二维相关谱技术和融合二维相关谱技术等方法[36]。

全相角图谱方法是通过异步谱与同步谱之间的比值进行定义的:

3 结论与展望

二维相关谱技术以其独特的优势使其具有广阔的应用领域和发展前景。由于二维相关谱技术具有高光谱分辨率,容易受到噪声、虚假信息的干扰,因此,对其进行合适的数据预处理为进一步发展和应用起到重要的推动作用。目前的数据处理方法,如标准化、小波变换、正交信号校正法(OSC)、净信号等方法基本都是对原始动态谱进行预处理,可能会滤去一些弱的待测组分信息,因此研究直接对二维相关谱的多维数据预处理方法是其发展的重要方向[40]。二维相关谱与化学计量学结合已被用于掺伪食品检测中,随着多维化学计量学的发展,直接将二维相关谱与计量学结合也将进一步拓展其应用范围。总之,随着二维相关谱技术应用领域的不断扩大,会不断出现新理论和相关算法,以及与其他分析技术、光谱预处理技术和化学计量学技术更紧密地结合,使得该技术不断发展和完善。二维相关谱技术必将在光谱特征提取、结构表征、化学反应和分子间相互作用等研究领域发挥更大的作用。

[1] Noda I,Dowrey A E,Marcott C. Dynamic infrared linear dichroism of polymer films under oscillatory deformation[J]. Journal of Polymer Science Part C: Polymer Letters,1983,21(2):99-103.

[2] Noda I,Ozaki Y. Two-dimensional correlation spectroscopy: applications in vibrational and optical spectroscopy[M]. Wiley:Chichester,2004.

[3] Noda I. Advances in two-dimensional correlation spectroscopy[J]. Vib Spectrosc,2004,36(2):143-165.

[4] Noda I. Progress in two-dimensional(2D)correlation spectroscopy[J]. J Mol Struct,2006,799:2-15.

[5] Noda I. Recent advancement in the field of two- dimensional correlation spectroscopy[J]. J Mol Struct,2008,883/884:2-26.

[6] Noda I. Two-dimensional correlation spectroscopy- biannual survey 2007-2009[J]. J Mol Struct,2010,974:3-24.

[7] Noda I. Frontiers of two-dimensional correlation spectroscopy. Part 1. New concepts and noteworthy developments[J]. J Mol Struct,2014,1069:3-22.

[8] Noda I. Frontiers of two-dimensional correlation spectroscopy. Part 2. Perturbation methods,fields of applications,and types of analytical probes[J]. J Mol Struct,2014,1069:23-49.

[9] Park Y,Noda I,Jung Y M. Novel developments and applications of two dimensional correlation spectroscopy[J]. J Mol Struct,2016,1124:11-28.

[10] Park Y,Jin S,Noda I,et al. Recent progress in two-dimensional correlation spectroscopy(2D-COS)[J]. J Mol Struct,2018,1168:1-21.

[11] Sun F S,Polizzotto M L,Guan D X,et al. Exploring the interactions and binding sites between Cd and functional groups in soil using two-dimensional correlation spectroscopy and synchrotron radiation based spectromicroscopies[J]. Journal of Hazardous Materials,2017,326:18-25.

[12] Chen B,Tian P,Lu D L,et al. Feasibility study of discriminating edible vegetable oils by 2D-NIR[J]. Anal Methods,2012,4(12):4310-4315.

[13] Yang R,Dong G,Sun X,et al. Feasibility of the simultaneous determination of polycyclic aromatic hydrocarbons based on two-dimensional fluorescence correlation spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2018,190:342-346.

[14] Jin P,Song J,Wang X C,et al. Two-dimensional correlation spectroscopic analysis on the interaction between humic acids and aluminum coagulant[J]. Journal of Environmental Sciences,2018,64:181-189.

[15] He A,Zeng Y,Kang X,et al. A novel method of constructing two-dimensional correlation spectroscopy without subtractinga reference spectrum[J]. The Journal of Physical Chemistry A,2018,122(3):788-797.

[16] Yang R,Dong G,Sun X,et al. Synchronous-asynchronous two-dimensional correlation spectroscopy for the discrimination of adulterated milk[J]. Anal Methods,2015,7(10):4302-4307.

[17] Chen W,Habibul N,Liu X Y,et al. FTIR and synchronous fluorescence heterospectral two-dimensional correlation analyses on the binding characteristics of copper onto dissolved organic matter[J]. Environ Sci Technol,2015,49(4):2052-2058.

[18] Wu Y,Zhang L,Jung Y M,et al. Two-dimensional correlation spectroscopy in protein science, a summary for past 20 years[J]. Spectrochim Acta Part A:Mol Biomol Spectrosc,2018,189:291-299.

[19] Chen W,Qian C,Liu X Y,et al. Two-dimensional correlation spectroscopic analysis on the interaction between humic acids and TiO2nanoparticles[J]. Environ Sci Technol,2014,48(19):11119-11126.

[20] Yang R,Liu R,Dong G,et al. Two-dimensional hetero-spectral mid-infrared and near-infrared correlation spectroscopy for discrimination adulterated milk[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2016,157:50-54.

[21] Wu Y,Jiang J H,Ozaki Y. A new possibility of generalized two-dimensional correlation spectroscopy: hybrid two- dimensional correlation spectroscopy[J]. The Journal of Physical Chemistry A,2002,106(11):2422-2429.

[22] Wu Y,Meersman F,Ozaki Y. A novel application of hybrid two-dimensional correlation infrared spectroscopy: exploration of the reversibility of the pressure-and temperature-induced phase separation of poly(N-isopro pylacrylamide)and poly(N-isopropylmethacrylamide)in aqueous solution[J]. Macromolecules,2006,39(3):1182-1188.

[23] Wu Y,Yuan B,Zhao J G,et al. Hybrid two-dimensional correlation and parallel factor studies on the switching dynamics of a surface-stabilized ferroelectric liquid crystal[J]. The Journal of Physical Chemistry B,2003,107(31):7706-7715.

[24] Zhang W,Liu R,Zhang W,et al. Discussion on the validity of NIR spectral data in non-invasive blood glucose sensing[J]. Biomedical Optics Express,2013,4(6):789-802.

[25] Noda I. Projection two-dimensional correlation analysis[J]. J Mol Struct,2010,974:116-126.

[26] Shinzawa H,Kanematsu W,Noda I. Rheo-optical near-infrared(NIR)spectroscopy study of low-density polyethylene(LDPE)in conjunction with projection two-dimensional(2D)correlation analysis[J]. Vib Spectrosc,2014,70:53-57.

[27] Zhou T,Zhou T,Zhang A. Separation of the molecular motion from different components or phases using projection moving-window 2D correlation FTIR spectroscopy for multiphase and multicomponent polymers[J]. RSC Advances,2015,5(19):14832-14842.

[28] Shinzawa H,Awa K,Noda I,et al. Pressure-induced variation of cellulose tablet studied by two-dimensional(2D)near-infrared(NIR)correlation spectroscopy in conjunction with projection pretreatment[J]. Vib Spectrosc,2013,65:28-35.

[29] Kim M K,Ryu S R,Noda I,et al. Projection 2D correlation analysis of spin-coated film of biodegradable P(HB-co- HHx)/PEG blend[J]. Vib Spectrosc,2012,60:163-167.

[30] Shinzawa H,Mizukado J. Near-infrared(NIR)monitoring of Nylon 6 during quenching studied by projection two-dimensional(2D)correlation spectroscopy[J]. Journal of Molecular Structure,2016,1124:188-191.

[31] Noda I. Double two-dimensional correlation analysis–2D correlation of 2D spectra[J]. J Mol Struct,2010,974(1/2/3):108-115.

[32] Spegazzini N,Siesler H W,Ozaki Y. Sequential identification of model parameters by derivative double two-dimensional correlation spectroscopy and calibration- free approach for chemical reaction systems[J]. Analytical Chemistry,2012,84(19):8330-8339.

[33] Noda I. Two-dimensional codistribution spectroscopy to determine the sequential order of distributed presence of species[J]. J Mol Struct,2014,1069:50-59.

[34] Noda I. Techniques useful in two-dimensional correlation and codistribution spectroscopy(2DCOS and 2DCDS)analyses[J]. J Mol Struct,2016,1124:29-41.

[35] Noda I. Two-dimensional correlation and codistribution spectroscopy(2DCOS and 2DCDS)analyses of time- dependent ATR IR spectra of d-glucose anomers undergoing mutarotation process in water[J]. Spectrochim Acta Part A:Mol Biomol Spectrosc,2017,197:4-9.

[36] Noda I. Modified two-dimensional correlation spectra for streamlined determination of sequential order of intensity variations[J]. J Mol Struct,2016,1124:197-206.

[37] Czarnecki M A. Two-dimensional correlation analysis of hydrogen-bonded systems: basic molecules[J]. Applied

Spectroscopy Review,2011,46(1):67-103.

[38] Kwasniewicz M,Czarnecki M S. MIR and NIR group spectra of n-alkanes and1-chloroalkanes[J]. Spectrochim Acta Part A:Mol Biomol Spectrosc,2015,143:165-171.

[39] Czarnecki M A,Morisawa Y,Futami Y,et al. Advances in molecular structure and interaction studies using near infrared spectroscopy[J]. Chem Rev,2015,115:9707- 9744.

[40] 杨仁杰,杨延荣,刘海学,等. 二维相关谱在食品品质检测中的研究进展[J]. 光谱学与光谱分析,2015,35(8):2124-2129.

责任编辑:杨霞

Research progress and application of two-dimensional correlation spectroscopy

LIAN Zeng-yan, YANG Ren-jieCorresponding Author, DONG Gui-mei, YANG Yan-rong, WU Nan, YANG Fan

(College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300384, China)

Two-dimensional(2D)correlation spectroscopy has attracted much attention in the field of analytical science for its advantages of high spectral resolution, high selectivity and high resolution. In this paper, the latest development of the 2D correlation spectroscopy in recent years was reviewed. The technologies of hybrid 2D correlation spectroscopy, the projection 2D correlation spectroscopy, the Double 2D correlation spectroscopy, the 2D codistribution spectroscopy and the modified 2D correlation spectroscopy were introduced in detail. Specific algorithms and application examples of the above-mentioned new technologies of 2D correlation spectroscopy were also discussed. Finally, the application prospect of the technology is forecasted.

two-dimensional correlation spectroscopy; research progress; application

1008-5394(2018)04-0077-06

10.19640/j.cnki.jtau.2018.04.017

O657.3

A

2018-09-25

国家自然科学基金项目(41771357,21607114,81471698);天津市自然科学基金项目(14JCYBJC30400,16JCQNJC08200);天津农学院科学研究基金项目(2017-D-03)

连增艳(1995-),女,硕士在读,研究方向:光谱检测。E-mail:920768405@qq.com。

杨仁杰(1978-),男,副教授,博士,研究方向:光谱检测技术及其应用。E-mail:rjyang1978@163.com。

猜你喜欢

杂化投影组分
杂化化合物(C7H11N2)2[CdCl4]·0.5H2O的晶体结构、光谱表征和光学性质
全息? 全息投影? 傻傻分不清楚
基于Dawson型磷钨酸杂化材料[Co(2,2´-bipy)3]3(P2W18O62)的吸附性能的研究
组分分发管理系统在天然气计量的应用
污泥好氧堆肥中反硝化作用与腐植酸组分稳定化关系研究
基于最大相关熵的簇稀疏仿射投影算法
找投影
找投影
金雀花中黄酮苷类组分鉴定及2种成分测定
化学教学中的分子杂化轨道学习