花管注浆加固松散碎石土层试验与效果参数预测模型
2019-01-15杨志全
杨 溢,卢 杰,杨志全,丁 一
花管注浆加固松散碎石土层试验与效果参数预测模型
杨 溢,卢 杰,杨志全※,丁 一
(昆明理工大学公共安全与应急管理学院,昆明 650093)
注浆技术可用来加固松散碎石土层,以提高其防渗与承载能力。该文以渗透注浆工作原理与注浆花管技术为基础,开展了加固松散碎石土层注浆试验研究;并依据数值分析方法与Minitab 16软件,探讨了注浆加固松散碎石土层注浆量、扩散半径、扩散高度及结石体抗压强度等效果参数预测模型;同时设计试验进行了验证。研究结果表明:1)相邻注浆孔流出的浆液在松散碎石土层中相容,且侧边与底部注浆孔流出的水泥浆液在松散碎石土层渗透扩散时产生了明显的群效应,从而形成一个整体近似呈圆柱形的注浆结石体;2)由这些模型计算得到的注浆量实测值大于预测值,而扩散半径、扩散高度及结石体抗压强度的实测值都小于预测值,但均相差不大,其相对误差分别在9%、7%、6%与6%左右变动。因此,该文构建模型可作为采用注浆技术加固松散碎石土层的注浆量、扩散半径、扩散高度及结石体抗压强度等效果参数的设计基础。研究成果可为碎石土地质灾害的防灾减灾提供一定的理论参考。
水泥;抗压强度;模型;松散碎石土层;注浆花管技术;效果参数;预测模型
0 引 言
碎石土是由残坡积、风化卸荷及冲洪积等形成的第四纪土与石块的二重介质非均质土石混合体,是一种特殊的地质体[1-2]。在中国,碎石土地层在每个省份均有分布,尤其在西南及西北山区更为广泛[2],目前较多的自然灾害在碎石土地层中诱发,如滑坡、崩塌与泥石流等;尤其在地震与人为活动作用下更易发生,不仅损毁大量的农田,而且造成非常惨痛的事故,严重影响着人民群众的生命财产安全。如2010年8月8日甘肃舟曲诱发的泥石流灾害造成了300余间碎石土地基房屋倒塌、1 824人受伤、208人失踪及1 557人遇难的惨剧[3-5]。
目前,学者在碎石土的物理力学性质、碎石土边坡稳定性及防治措施等领域开展了较深入的探索,并取得了较多的研究成果。李泯蒂等[2,6-8]研究了碎石土的渗透特性;王生新等[9]与董辉等[10]分别研究了碎石土湿陷性与三轴剪切特性。吴锐等[11]分析了碎石尺寸对碎石土强度的影响;王春得等[12-16]研究了含石量对碎石土工程力学特性的影响。Fourie等[17-21]探索了渗透特性对碎石土边坡稳定性的影响;郑开欢等[22]分析了暴雨作用下碎石土边坡稳定性的变化特征。陈志超等[23-25]探索了碎石土滑坡的工程防治对策。雷进生等[26-28]在利用注浆技术加固碎石土方面取得了一定的研究成果;但它们存在研究对象与碎石土具有一定差异、选取因素不合理或研究不全面等方面的不足。
当前,注浆技术,尤其是花管注浆技术,在国内外众多的注浆工程实践中具有较广泛的应用,已遍及边坡、地铁、矿山、建筑、公路、隧道、铁路及水电等较多工程领域[1,29-31]。然而,在采用花管注浆技术加固岩土体的理论研究方面目前还处于探索阶段,导致其理论滞后于工程应用,难以满足注浆实践的需要。为此,本文以渗透注浆工作原理与花管注浆技术为基础开展加固松散碎石土层注浆试验研究;并依据数值分析方法与Minitab 16软件探讨注浆量、扩散半径、扩散高度及结石体抗压强度等效果参数与注浆压力、水灰比、注浆花管侧边注浆孔间平均孔距、注浆时间与碎石土孔隙率等影响因素间的相互关系,以期为松散碎石土灾害的防治减灾提供一定的理论支撑。
1 材料与方法
1.1 试验材料
试验材料来源于云南省昆明市某建筑基地。根据野外实践调查可知:大多碎石土地层灾害发生在孔隙率为0.35~0.50区间,尤其在0.40~0.50的范围更广泛。因此,本文设计9种松散碎石土层作为被注材料,其粒径特征与基本性质见表1。表1中,粒径范围、平均粒径、比重、含水量、密度、渗透系数与抗压强度等性质指标能直接测试获得,而孔隙率可依据土力学基础知识由比重、含水量与密度联合计算得到。
注浆材料选用昆明水泥厂生产的#32.5普通硅酸盐水泥,该标号水泥在目前的注浆实践工程中被广泛使用。
表1 注浆试验采用的松散碎石土粒径特征与基本性质
1.2 试验设备与工作原理
1.2.1 试验设备
注浆试验设备自行设计与加工,由试验箱、供压装置与储浆容器3部分组成[27],见图1。
1.氮气减压器与注浆控制开关 2.试验箱 3.供压装置 4.储浆容器 5.注浆花管 6.电子称
在图1中,试验箱的三维尺寸为600 mm×600 mm× 600 mm,由有机玻璃板与钢支架构成,用来放置松散碎石土层;供压装置装有的氮气可为注浆试验提供所需的注浆压力,联合氮气减压器与注浆控制开关可实现对每组试验所设计的注浆压力值与注浆时间的精确定量控制;储浆容器用来盛注浆流体,由电子称、密闭钢制圆筒及圆形铁架组成,电子称可对试验过程注入的浆液量较精确地测量与控制;密闭钢制圆筒设计能承受的最大压力为2.5 MPa,高与底面直径分别为40、15 cm;底部与顶部分别开口,开展注浆试验时,有压氮气由顶部开口进入储浆容器,对注浆浆液提供所需的压力,在注浆压力的推动下,浆液由底部开口注入放置在试验箱的松散砾石土层中。
1.2.2工作原理
本文开展的注浆试验采用渗透注浆,其工作原理见图2,注浆具体步骤如下:
1)配置不同性质特征的松散碎石土层,并测量它们各自的性质特征参数。如,比重、含水量、密度、渗透系数及孔隙率等;
2)按设计要求拼装试验箱体,铺设塑料薄膜(防止注浆过程中漏浆),将步骤1)中配置好的松散碎石土层装入试验箱体,同时预埋注浆花管;
3)按照设计的水灰比配置注浆流体—水泥浆液;
4)将配置好的水泥浆液灌入储浆容器中,并安装注浆导管;
5)开始注浆。打开注浆控制开关,并缓慢开启氮气减压器,不断调节注浆压力直到压力表达到设计的注浆压力值,观察并记录浆液流动情况;
6)停止注浆。当储浆容器中水泥浆液注完或大幅度增大注浆压力浆液仍不再进入,则停止注浆;
7)拆模。待浆液凝固后拆模,观察并记录容器内部浆液的分布和扩散情况;
8)整理试验数据,测量、测试与分析在松散碎石土层中形成的注浆结石体扩散效果参数。
1.供压设备 2.储浆容器 3.试验箱 4.氮气减压器(装有压力表)与注浆控制开关 5.注浆流体(本文采用水泥浆液) 6.电子称 7.注浆导管 8.注浆花管 9.松散碎石土层
1.3 试验设计
依据实际调查结果及注浆理论,本研究选取注浆压力、水泥浆液水灰比、注浆花管侧边注浆孔间平均孔距与碎石土层孔隙率等4个因素作为开展注浆试验的影响因素,由此设计的注浆试验方案见表2。注浆花管上设计的注浆孔与浆液注入孔分布见图3。
表2 注浆试验设计方案
注:编号为S1~S9的试验设计分别采用表1中编号为G1~G9所代表的松散碎石土层作为被注材料。
Note: Experiments numbered S1-S9 are designed to adopt respectively loose gravel soil-layer represented by number G1-G9 in the table 1 as injected materials.
图3 注浆花管上的注浆孔与浆液注入孔分布示意图
2 试验结果与分析
2.1 试验结果
依据表2的试验方案开展注浆试验,可观察得到水泥浆液在松散碎石土层中具有如下的扩散规律:
1)水泥浆液从顶部注入孔注入注浆花管后,由侧边注浆孔从上到下依次流出进入松散碎石土层渗透扩散,而底部注浆孔最后流出少量的水泥浆液;
2)相邻注浆孔流出的浆液在松散碎石土层中相容, 侧边与底部注浆孔流出的水泥浆液在松散碎石土层渗透扩散时产生了明显的群效应,进而形成一个整体近似呈圆柱形的注浆结石体。
测量获得的水泥浆液在松散碎石土层中的扩散注浆量、结石体扩散半径、结石体扩散高度及结石体抗压强度cu等效果参数结果见表3;其扩散形态与形成的结石体见图4。
表3 注浆效果参数
Table 3 Parameters of grouting effect
图4 水泥浆液在松散碎石土层中的扩散形态与形成的结石体
2.2 抗压强度增长分析
由表3和表1可知,加固松散碎石土层形成的注浆结石体抗压强度较未加固的松散碎石土层抗压强度具有明显地提升,其提升幅度为1 030%~1 342%。这表明采用花管注浆技术加固松散碎石土层具有较好的效果。
2.3 效果参数与影响因素间的相互关系分析
参考文献[1],注浆加固效果参数与影响因素符合如下的相互变化关系
式中为注浆加固效果参数;1、2、3、4与5为注浆影响因素;、、、、与为拟合参数。
采用Minitab 16软件分别对注浆量、扩散半径、扩散高度及结石体抗压强度cu等效果参数与注浆压力、水灰比、注浆花管侧边注浆孔间平均孔距、注浆时间及碎石土孔隙率等影响因素间的试验结果(表3)进行数值分析,可得到它们间分别符合式(3)~(6)的相互变化关系,拟合方差分析结果见表4。
表4 注浆加固松散碎石土层效果参数与影响因素间的拟合方差分析结果
注:为试验数据与回归线间的标准偏离距离,mm。
Note:represents standard deviation distance between experimental data and regression line, mm.
由表4可知,各参数拟合相关系数2与调整的2(adj) 均大于84.30%,则表明拟合得到的式(3)~(6)与试验结果间的回归分析效果较好;同时,在方差分析结果中,值都小于0.05,表明回归拟合式(3)~(6)在0.05水平下具有显著的统计意义。因此,式(3)~(6)可分别作为注浆加固松散碎石土层注浆量、扩散半径、扩散高度及结石体抗压强度cu等效果参数预测模型。
3 效果参数预测模型试验验证
为验证上文得到的注浆加固松散碎石土层注浆量、扩散半径、扩散高度及结石体抗压强度cu等效果参数预测模型(式(3)~(6))在工程实践中的适用性,笔者设计试验对其进行验证。
3.1 验证试验设计
采用的试验设备与工作原理分别见图1~2。本部分拟设计4组验证试验,其分别选用粒径范围为1~3、3~5、5~8与8~10 mm的松散碎石土层,对应的平均粒径分别为1.96、4.03、6.62与8.74 mm;比重、含水量、密度、孔隙率、渗透系数与抗压强度等指标的获取方法同上文。设计的验证试验方案如表5所示。
表5 注浆验证试验设计方案
3.2 结果与分析
采用注浆加固松散碎石土层注浆量、扩散半径、扩散高度及结石体抗压强度cu等效果参数预测模型(式(3)~(6))得到的注浆量、扩散半径、扩散高度及结石体抗压强度的预测值与实测值及二者间的相对误差分析结果见表6。
由表6可看出,采用注浆加固松散碎石土层注浆量、扩散半径、扩散高度及结石体抗压强度cu等效果参数预测模型(式(3)~(6))计算得到的注浆量预测值小于实测值,而扩散半径、扩散高度及结石体抗压强度的实测值均小于预测值,但均相差不大,其相对误差分别在9%、7%、6%与6%左右变动,均小于10%。这表明,本文构建的注浆量、扩散半径、扩散高度及结石体抗压强度cu等效果参数预测模型(式(3)~(6))能用来分别预测采用注浆加固松散碎石土层的注浆量、扩散半径、扩散高度及结石体抗压强度等效果参数指标。
表6 松散碎石土层注浆加固效果参数预测值与实测值及差异分析
4 结 论
以渗透注浆工作原理与注浆花管技术为基础,开展了加固松散碎石土层注浆试验研究,依据数值分析方法与Minitab 16软件,构建了注浆加固松散碎石土层注浆量、扩散半径、扩散高度及结石体抗压强度等效果参数预测模型,并对其进行了验证,得到以下结论:
1)水泥浆液通过花管注浆在松散碎石土层中的扩散规律:相邻注浆孔流出的浆液在松散碎石土层中相容,且侧边与底部注浆孔流出的浆液在松散碎石土层渗透扩散时产生了明显的群效应,从而形成一个整体近似呈圆柱形的注浆结石体;
2)由模型计算得到的注浆量实测值大于预测值,而扩散半径、扩散高度及结石体抗压强度的实测值都小于预测值,但均相差不大,其相对误差分别在9%、7%、6%与6%左右变动,模型较准确。
本文的研究成果不仅能为松散碎石土层的注浆加固工程实践提供技术支撑,而且还可为碎石土地质灾害的防灾减灾提供理论参考。
[1] 岩土注浆理论与工程实例》协作组. 岩土注浆理论与工程实例[M]. 北京:科学出版社,2001.
[2] 李泯蒂. 三峡库区滑坡碎石土渗透特性研究[D]. 宜昌:三峡大学,2014.
Li Mindi. Gravel Soil Infiltration Characteristics Research of the Three Gorges Area Landslides[D]. Yichang: China Three Gorges University, 2014. (in Chinese with English abstract)
[3] 邱敏,陈行,田明杰,等. 斜入射地震作用下坡面形态对碎石土边坡稳定性影响研究[J]. 震灾防御技术,2015,10(2):324-334.
Qiu Min, Chen Hang, Tian Mingjie, et al. Effect of slope shape on gravel-soil slope stability in obliquely incident seismic wave[J]. Technology for Earthquake Disaster Prevention, 2015, 10(2): 324-334. (in Chinese with English abstract)
[4] 李晓莲. 降雨和地震影响下碎石土边坡的稳定性分析[D].兰州:兰州大学,2013.
Li Xiaolian. Analysis of Gravel Slope Stability Under Rainfall and Earthquake[D]. Lanzhou: Lanzhou University, 2013. (in Chinese with English abstract)
[5] 南如卓玛. 甘肃舟曲泥石流五周年:浴火重生重振家园[EB/OL].(2015-08-08)[2018-03-02].http://www.Chinanews.com/sh/2015/08-08/7455355.shtml
[6] 王双,李小春,王少泉,等. 碎石土级配特征对渗透系数的影响研究[J]. 岩石力学与工程学报,2015:34(增刊2):4394-4402.
Wang Shuang, Li Xiaochun, Wang Shaoquan, et al. Study on gravel-soil gradation characteristics influence on the permeability coefficient[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(Supp.2): 4394-4402. (in Chinese with English abstract)
[7] Wang Z, Feyen J, Nielsen D R, et al. Two-phase flow infiltration equations accounting for air entrapment effects[J]. Water Resources Research, 1997, 33(12): 2759-2767.
[8] Hammecker C, Antonino A C D, Maeght J L, et al. Experimental and numerical study of water flow in soil under irrigation in northern Senegal: evidence of air entrapment[J]. European Journal of Soil Science, 2003, 54(3): 491-503.
[9] 王生新,陆勇翔,尹亚雄,等. 碎石土湿陷性试验研究[J].岩土力学,2010,31(8):2373-2377.
Wang Shengxin, Lu Yongxiang, Yin Yaxiong, et al. Experimental study of collapsibility of gravel soil[J]. Rock and Soil Mechanics, 2010, 31(8): 2373-2377. (in Chinese with English abstract)
[10] 董辉,陈玺文,傅鹤林,等. 堆积碎石土剪切特性的三轴试验[J]. 长安大学学报:自然科学版,2015,35(2):59-66.
Dong Hui, Chen Xiwen, Fu Helin,et al. Triaxial test of shear properties of eluvial gravel soil[J]. Journal of Changan University: Natural Science Edition, 2015,35(2):59-66. (in Chinese with English abstract)
[11] 吴锐,邓清禄,付敏,等. 碎石尺寸对碎石土强度影响的大型直剪试验研究[J]. 长江科学院院报,2016,33(8):80-85.
Wu Rui, Deng Qinglu, Fu Min,et al. Large direct shear test on the influence of stone size on the strength of gravel soil[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(8): 80-85. (in Chinese with English abstract)
[12] 王春得,沈秋武,吴锐,等. 含石量对碎石土工程特性的影响试验研究[J]. 铁道建筑,2016,56(2):97-101.
Wang Chunde, Shen Qiuwu, Wu Rui, et al. Experimental study on effect of stone content on engineering performance of crushed stone soil[J]. Railway Engineering, 2016, 56(2): 97-101. (in Chinese with English abstract)
[13] Lindquist E S, Goodman R E. Strength and deformation properties of a physical model[C]/ / Proceedings of the 1st North American Rock Mechanics Conference. Rotterdam: Balkema A A, 1994: 843-850.
[14] Medley E E, Lindquist E S. The engineering significance of the scale-independence of some franciscan melanges in California, USA[C]// Proceedings of the 35th US rock Mechanics Symposium. Rotterdam: Balkema A A, 1995: 907-914.
[15] Simoni A, Houlsby G T. The direct shear strength and dilatancy of sand-gravel mixtures[J]. Geotechnical and Geological Engineering, 2006, 24(3): 523-549.
[16] Ghasemi A, Rothenbur G L, Matysel. Influence of particle shape on engineering properties of assemblies of two-dimensional polygon-shaped particles[J]. Geotechnique, 2002, 52(3): 209-217.
[17] Fourie A B, Rowe D, Blight G E. The effect of infiltration on the stability of the slopes of a dry ash dump[J]. Geotechnique, 1999, 49(1): 15-23.
[18] Gavin K, Xue J F. A simple method to analyze infiltration into unsaturated soil slopes[J]. Computers & Geotechnics, 2008, 35(2): 223-231.
[19] Egeli I, Pulat H F. Mechanism and modeling of shallow soil slope stability during high intensity and short duration rainfall[J]. Scientia Iranica, 2011, 18(6): 1179-1193.
[20] Gasmo J M, Rahardjo H, Leong E C. Infiltration effects on stability of a residual soil slope[J]. Computers & Geotechnics, 2000, 26(2): 145-165.
[21] Yang C, Sheng D C, Carter J P. Effect of hydraulic hysteresis on seepage analysis for unsaturated soils[J]. Computers & Geotechnics, 2012, 41(5): 36-46.
[22] 郑开欢,罗周全,罗成彦,等. 持续暴雨作用下排土场层状碎石土边坡稳定性[J]. 工程科学学报,2016,38(9):1204-1211.
Zheng Kaihuan, Luo Zhouquan, Luo Chengyan, et al. Layered gravel soil slope stability of a waste dump considering long-term hard rain[J]. Chinese Journal of Engineering, 2016, 38(9): 1204-1211. (in Chinese with English abstract)
[23] 陈志超,罗旋,柳侃,等. 碎石土滑坡渗流系统特征及防治措施研究[J]. 岩土力学,2016,37(3):813-819.
Chen Zhichao, Luo Xuan, Liu Kan, et al. Seepage characteristics and mitigation measures of a gravel soil landslide[J]. Rock and Soil Mechanics, 2016, 37(3): 813-819. (in Chinese with English abstract)
[24] 孔纪名,蔡强,张引,等.单排微型桩加固碎石土滑坡物理模型试验[J]. 山地学报,2013,31(4):399-405.
Kong Jiming, Cai Qiang, Zhang Yin, et al. Physical model test of debris landslide reinforcement with single row micro-pile[J]. Journal of Mountain Science, 2013, 31(4): 399-405. (in Chinese with English abstract)
[25] 姚晓阳,杨小永,曾钱帮. 碎石土滑坡工程地质特性及防治方案研究[J]. 工程地质学报,2012,20(3):369-376.
Yao Xiaoyang, Yang Xiaoyong, Zeng Qianbang. Engineering geology characteristics and prevention measure of landslide in soil and rock debris slopes[J]. Journal of Engineering Geology, 2012, 20(3): 369-376. (in Chinese with English abstract)
[26] 雷进生. 碎石土地基注浆加固力学行为研究[D]. 武汉:中国地质大学,2013.
Lei Jinsheng. Research on Mechanical Behavior of Grout in Gravelly Soil Foundations[D]. Wuhan: China University of Geosciences, 2013. (in Chinese with English abstract)
[27] 杨志全. 水泥浆液在小粒径砂石体中注浆理论及模拟实验研究[D]. 昆明:昆明理工大学,2008.
Yang Zhiquan. Research on Grouting Theory and Simulation Experiments of Small-size Gravel Injected by Cement Grouting[D]. Kunming: Kunming University of Science and Technology, 2008. (in Chinese with English abstract)
[28] Yang Zhiquan, Qian Shanguang, Hou Kepeng, et al. Technological parameters of reinforced coarse-grained soil by grouting technology[J]. Electronic Journal of Geotechnical Engineering, 2015, 20(27): 13347-13356.
[29] 黄博. 钢花管注浆型挡墙加固边坡研究[D]. 成都:西南交通大学,2010.
Huang Bo. Research of Steel Pipe Type of Retaining Wall Reinforced Slope[D]. Chengdu: Southwest Jiaotong University, 2010. (in Chinese with English abstract)
[30] 杨康. 花管注浆补强加固软基施工技术[J]. 中国管理信息化,2017,20(12):105-106.
Yang Kang. Construction technology for reinforcing soft foundation with flower pipe grouting[J]. China Management Informationization, 2017, 20(12): 105-106. (in Chinese with English abstract)
[31] 王继坤,张方方. 花管注浆在基坑边坡加固工程中的应用[J]. 资源环境与工程,2011,25(1):65-70.
Wang Jikun, Zhang Fangfang. Application of flower pipe grouting in foundation pit slope reinforcement[J]. Resources Environment Engineering, 2011, 25(1): 65-70. (in Chinese with English abstract)
Experiments and effect parameters prediction model of reinforcement loose gravel soil-layers by flower pipe grouting
Yang Yi, Lu Jie, Yang Zhiquan※, Ding Yi
(,650093,)
Grouting technology with very strong practicality and wide application can be used to reinforce loose gravel soil layers and improve its anti-seepage and carrying capacity. In China, loose gravel soil layers are distributed in every province, especially in the southwest and northwest mountainous areas. At present, due to their typical dual medium heterogeneity, lots of natural disasters are easily induced in loose gravel soil layers under the actions of rainfall, earthquake and human activities, such as debris flows, dammed lakes, collapses and landslides, which not only destroy a large amount of farmland, but also cause very painful accidents, and then seriously affect safety of people's lives and property. Firstly, based on penetration grouting operational principle and grouting flower pipe technologies in this research, some grouting experiments of reinforcing loose gravel soil layers had been carried out by analyzing and selecting four important influencing factors (grouting pressure, water cement ratio of cement grouting, mean hole distance of side grouting holes in grouting flower pipe and porosity of loose gravel soil layers). After that, according to numerical analysis method and Minitab 16 software, interrelations among grouting reinforcement effect parameters (such as grouting amount, diffusion radius, diffusion height, compressive strength of grouting stone body, et al) of loose gravel soil layers and influencing factors were researched, and then corresponding prediction models of these effect parameters which contains grouting pressure, water cement ratio of cement grouting, mean hole distance of side grouting holes in grouting flower pipe and porosity of loose gravel soil layers also were discussed. What is more, these prediction models were validated by means of designing indoor grouting experiments. Research results show that: 1) cement grouting injected into grouting flower pipe from top injection hole flows into in turn loose gravel soil layers from top to bottom through side grouting holes, while a small amount of it finally flows out from bottom grouting hole; A whole grouting stone body with approximately cylindrical shape is formed as cement grouting from adjacent grouting holes is compatible in loose gravel soil layer. 2) Predicted values of grouting amount calculated by grouting amount prediction models are less than actual measured values from grouting verification experiments, while predicted values of diffusion radius, diffusion height and compressive strength of grouting stone body are all more than corresponding actual measured values. And then these predicted values of grouting reinforcement effect parameters calculated by prediction models have within 10% relative error with the actual measurement values by grouting verification experiments, but these differences values are admitted. Thus, these prediction models of grouting reinforcement effect parameters constructed in this paper may take grouting amount, diffusion radius, diffusion height and compressive strength of stone body of reinforced loose gravel soil-layers by grouting technologies as design basis. Therefore, these research achievements obtained in this research may not only provide theoretical reference for disaster prevention, reduction and mitigation of debris flow, dammed lake, landslide and collapse induced in the loose gravel soil layers, but also can provide technical support for actual grouting engineering of controlled loose gravel soil layers by grouting technology.
cements; compressive strength; models; loose gravel soil-layers; flower pipe grouting technologies; effect parameters; prediction model
杨 溢,卢 杰,杨志全,丁 一. 花管注浆加固松散碎石土层试验与效果参数预测模型[J]. 农业工程学报,2018,34(24):151-157. doi:10.11975/j.issn.1002-6819.2018.24.018 http://www.tcsae.org
Yang Yi, Lu Jie, Yang Zhiquan, Ding Yi. Experiments and effect parameters prediction model of reinforcement loose gravel soil-layers by flower pipe grouting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(24): 151-157. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.24.018 http://www.tcsae.org
2018-04-15
2018-10-22
国家自然科学基金联合基金重点项目(U1502232);国家自然科学基金项目(41402272);云南省基础研究计划(2015FB122)
杨 溢,教授,博士,主要从事灾害起动机理与水土保持方面研究。Email:2919847230@qq.com
杨志全,教授,博士,主要从事灾害起动机理与水土保持方面研究。Email:yzq1983816@163.com
10.11975/j.issn.1002-6819.2018.24.018
TU 443
A
1002-6819(2018)-24-0151-07