具有n-4个悬挂点的三圈图补图的最小特征值
2019-01-14剧宏娟雷英杰
剧宏娟 雷英杰
摘 要:為了讨论给定阶数为n且具有n-4个悬挂点的三圈图补图图类中邻接矩阵的最小特征值,刻画其最小特征值达到极小的唯一图。在只考虑简单无向连通图的基础上,从补图的结构出发研究图的最小特征值,通过运用相关知识点分析论证了当值为λ(G((n-4)/2,(n-4)/2)C)时,给定阶数为n且具有n-4个悬挂点的三圈图补图图类中邻接矩阵的最小特征值达到极小的唯一图。结果表明:结合图邻接矩阵是表示顶点之间相邻关系的矩阵,它的最小特征值为图的最小特征值,较好地刻画图的本质性质。研究得出的具有n-4个悬挂点的三圈图补图的最小特征值达到极小的唯一图,为后续进一步研究补图图类中邻接矩阵的最小特征值提供了一定的借鉴价值。
关键词:图论;三圈图;邻接矩阵;最小特征值;悬挂点;补图
中图分类号:O157.5 文献标志码:A doi:10.7535/hbkd.2019yx06004
Abstract:In order to discuss the minimum eigenvalue of adjacency matrix in the class of complementary graphs of the tricyclic graph with a given order of n and n-4 pendent vertexes, the unique graph whose minimum eigenvalue reaches the minimum is characterized. Based on the simple undirected connected graph,the minimum eigenvalue of the graph is studied from the structure of the complement graph, and the minimum eigenvalue of the adjacency matrix in the complement graph class of the tricyclic graph with a given order of n and n-4 pendent vertexes reaches the minimum unique graph when the value is λ(G((n-4)/2,(n-4)/2)C). The result shows that the associative graph adjacency matrix is a matrix which represents the adjacency between vertices, and its minimum eigenvalue is the minimum eigenvalue of graph, which can describe the essential properties of graph well. The conclusion from this research shows that the minimum eigenvalue of the complement graph of the tricyclic graph with a given order of n and n-4 pendent vertexes reaches the minimum eigenvalue, which provides certain reference for further study of the minimum eigenvalue of the adjacency matrix in the complement graph class.
Keywords:graph theory; tricyclic graph; adjacency matrix; the minimum eigenvalue; pendent vertexes; complement graph
3 结 论
本文讨论了给定阶数为n且具有n-4个悬挂点三圈图补图图类中邻接矩阵的最小特征值,在只考虑简单无向连通图的基础上,从补图的结构出发研究图的最小特征值,从而刻画了当给定阶数为n且具有n-4个悬挂点的三圈图补图图类中邻接矩阵的最小特征值为λ(G((n-4)/2,(n-4)/2)C)时,其邻接矩阵的最小特征值达到极小的唯一图,并为研究此类图最小特征值达到极小的唯一图和后续补图图类中邻接矩阵的最小特征征值提供了一定的理论依据。
参考文献/References:
[1] BELL F K, CVETKOVIC D, ROWLINSON P, et al. Graphs for which the least eigenvalues is minimal, I[J]. Linear Algebra and Its Applications, 2008, 429(2): 234-241.
[2] BELL F K, CVETKOVIC D, ROWLINSON P, et al. Graphs for which the least eigenvalues is minimal, II [J]. Linear Algebra and Its Applications, 2008, 429(8/9): 2168-2176.
[3] FAN Yizheng, WANG Yi, GAO Yubin. Minimizing the least eigenvalues of unicyclic graphs with application to spectral spread[J]. Linear Algebra and Its Applications, 2008, 429: 577-588.
[4] HAEMERS W H. Interlacing eigenvalues and graphs[J]. Linear Algebra and Its Applications, 1995, 226(95): 593-616.
[5] TAN Yingying, FAN Yizheng. The vertex(edge) independence number, vertex(edge) cover number and the least eigenvalue of a graph[J]. Linear Algebra and Its Applications, 2010, 433 (4): 790-795.
[6] FAN Yizheng,ZHANG Feifei,WANG Yi.The least eigenvalue of the complements of trees[J]. Linear Algebra and Its Applications, 2011, 435(9):2150-2155.
[7] WANG Yi, FAN Yizheng, LI Xixin, et al. The least eigenvalue of graphs whose complements are unicyclic[J]. Discussiones Mathematics Graph Theory, 2013, 35(2):1375-1379.
[8] YU Guidong, FAN Yizheng, WANG Yi. The least eigenvalue of graphs[J]. Journal of Mathematical Research with Applications, 2012, 32(6): 659-665.
[9] HOU Xiaohua, QU Hui. The least eigenvalue for unicyclic graphs with given independence number[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2015, 48(4): 73-79.
[10] FAN Dandan, CHEN Ya, MAMATABDULLA A,et al. Tricyclic graph whose least eigenvalue is minimum[J]. Journal of Qufu Normal University, 2018, 44(1): 11-16.
[11] YE Miaolin, FAN Yizheng, LIANG Dong. The least eigenvalue of graphs with given connectivity[J]. Linear Algebra and Its Applications, 2009, 430(4): 1375-1379.
[12] YU Guidong, FAN Yizheng, WANG Yi. Quadratic forms on graphs with application to minimizing the least eigenvalue of signless Laplacian over bicyclic graphs[J]. Electronic Journal of Linear Algebra, 2014, 27(2): 213-236.
[13] YU Guidong, FAN Yizheng. The least eigenvalue of graphs whose complements are 2-vertex or 2-edge connected[J]. Operations Research Transactions, 2013, 17(2):81-88.
[14] YU Guidong, FAN Yizheng, YE Miaolin. The least signless Laplacian eigenvalue of the complements of unicyclic graphs[J]. Applied Mathematics and Computation, 2017, 306(1):13-21.
[15] LI Shuchao, WANG Shujing. The least eigenvalue of the signless Laplacian of the complements of trees[J]. Linear Algebra and Its Applications, 2012, 436(7): 2398-2405.
[16] PETROVIC M, BOROVICANIN B, ALEKSIC T. Bicyclic graphs for which the least eigenvalue is minimum[J]. Linear Algebra and Its Applications, 2009, 430(4):1328-1335.
[17] 李雨,薛婷婷,孫威,等. 一种特殊补图的最小特征值研究[J].廊坊师范学院学报(自然科学版),2017,17(2):5-12.
LI Yu, XUE Tingting, SUN Wei,et al. Study on the minimum eigenvalue of a special complement graph[J]. Journal of Langfang Teachers University (Natural Science Edition), 2017, 17(2): 5-12.
[18] 王禮想,芦兴庭.具有n-3个悬挂点的单圈图补图的最小特征值[J].安庆师范大学学报(自然科学版),2017,23(4):22-24.
WANG Lixiang, LU Xingting. Least eigenvalue of the complement of unicyclic graphs with n-3 pendent vertexes[J]. Journal of Anqing Normal University (Natural Science Edition), 2017, 23(4): 22-24.
[19] 芦兴庭,余桂东,严亚伟,等.补图是独立数为n-2的双圈图的最小特征值[J].安庆师范大学学报(自然科学版),2018,24(1):8-11.
LU Xingting, YU Guidong, YAN Yawei, et al. Least eignvalue of graphs whose complements are bicyclic graphs with independence number n-2 [J].Journal of Anqing Normal University (Natural Science Edition), 2018,24(1): 8-11.
[20] 孙威,余桂东,芦兴庭,等.一类特殊图的最小特征值[J].安庆师范大学学报(自然科学版),2017,23(3):32-34.
SUN Wei, YU Guidong, LU Xingting, et al. The least eignvalue of the special graphs[J]. Journal of Anqing Normal University (Natural Science Edition), 2017, 23(3): 32-34.
[21] 余桂东,孙威,芦兴庭.补图具有悬挂点且连通的图的最小特征值[J].运筹学学学报,2019,23(1):90-96.
YU Guidong, SUN Wei, LU Xingting. The least eigenvalue of the graphs whose complement are connected and have pendant vertices[J]. Operations Research Transactions, 2019, 23(1): 90-96.