APP下载

科技文摘

2019-01-03

中国农业文摘-农业工程 2019年3期
关键词:闸站疏果数据流

20190301 基于无人机高光谱遥感的柑橘黄龙病植株的监测与分类/兰玉彬(华南农业大学工程学院/国家精准农业航空施药技术国际联合中心),朱梓豪...// 农业工程学报.-2019,35(3).-92~100

柑橘黄龙病(Huanglongbing,HLB)是柑橘产业的毁灭性病害,及早发现并挖除病株是防治HLB的有效手段。通过无人机低空遥感监测大面积果园,可大大减少HLB排查工作量和劳动力。该文获取了无人机低空柑橘果园的高光谱影像,分别提取并计算健康和感染HLB植株冠层的感兴趣区域的平均光谱,并对初始光谱进行Savitzky-Golay平滑、异常数据剔除和光谱变换,得到原始光谱、一阶导数光谱和反对数光谱3种光谱,对这3种光谱采用主成分分析法进行降维,与全波段信息比较,分别采用k近邻(kNN)和支持向量机(SVM)进行建模和分类。结果表明,以二次核SVM判别模型对全波段一阶导数光谱的分类准确率达到94.7%,对测试集的误判率为3.36%。表明低空高光谱遥感监测HLB的手段具有可行性,可大大提高果园管理效率和政府防控病情力度。

20190302 基于多通道数据流在线相关分析及聚类的闸站工程安全监测/包加桐(扬州大学水利与能源动力工程学院),钱江...// 农业工程学报.-2019,35(3).-101~108

闸站工程自动安全监测可积累大量高质量监测数据,然而对这些数据的在线自动分析手段较为有限。该文提出一种针对多通道实时监测数据流的在线相关分析与聚类方法,以挖掘多个感兴趣测点通道数据流之间的联系。该方法能够在线快速计算数据流的统计特征,在计算数据流之间相关性度量的基础上,对多数据流进行自动聚类。以泰州高港闸站工程安全监测系统为例,针对扬压力、伸缩缝、温度等多类型共65个通道数据流进行在线相关分析与聚类,一次特征计算、分析与聚类总时长低于1 s,满足在线处理的实时性要求。该文提出的方法能够判断闸站工程渗压情况、伸缩缝与温度变化特性等,可有效发现潜在的工程安全问题或传感器故障。

20190303 基于R-FCN深度卷积神经网络的机器人疏果前苹果目标的识别/王丹丹(扬州大学水利与能源动力工程学院) ,何东健//农业工程学报.-2019,35(3).-156~163

疏果前期苹果背景复杂、光照条件变化、重叠及被遮挡,特别是果实与背景叶片颜色极为相近等因素,给其目标识别带来很大困难。为识别疏果前期的苹果目标,提出基于区域的全卷积网络(region-based fully convolutional network,R-FCN)的苹果目标识别方法。该方法在研究基于ResNet-50和ResNet-101的R-FCN结构及识别结果的基础上,改进设计了基于ResNet-44的R-FCN,以提高识别精度并简化网络。该网络主要由ResNet-44全卷积网络、区域生成网络(RegionProposal Network,RPN)及感兴趣区域(Region of Interest,RoI)子网构成。ResNet-44全卷积网络为基础网络,用以提取图像的特征,RPN根据提取的特征生成Ro I,然后Ro I子网根据ResNet-44提取的特征及RPN输出的Ro I进行苹果目标的识别与定位。对采集的图像扩容后,随机选取23 591幅图像作为训练集,4 739幅图像作为验证集,对网络进行训练及参数优化。该文提出的改进模型在332幅图像组成的测试集上的试验结果表明,该方法可有效地识别出重叠、被枝叶遮挡、模糊及表面有阴影的苹果目标,识别的召回率为85.7%,识别的准确率为95.1%,误识率为4.9%,平均速度为0.187 s/幅。通过与其他3种方法进行对比试验,该文方法比FasterR-CNN、基于ResNet-50和ResNet-101的R-FCN的F1值分别提高16.4、0.7和0.7个百分点,识别速度比基于ResNet-50和ResNet-101的R-FCN分别提高了0.010和0.041 s。该方法可实现传统方法难以实现的疏果前苹果目标的识别,也可广泛应用于其他与背景颜色相近的小目标识别中。

猜你喜欢

闸站疏果数据流
不同化学疏果剂对富士苹果疏除效果及品质的影响
不同疏花疏果剂处理对蜜脆苹果的疏花效果
海宁市圩区典型闸站结构设计分析
科学疏果 葡萄高产
大都闸站重建工程自动化系统质量控制架构设计
汽车维修数据流基础(下)
一种提高TCP与UDP数据流公平性的拥塞控制机制
闸站合建枢纽进水流态的特性研究
三峡强德勒红心柚果实疏果套袋试验
基于数据流聚类的多目标跟踪算法