APP下载

高中数学教学破解概念解决对策之我见

2018-11-15王娜娜

散文百家 2018年7期
关键词:异面最值直线

王娜娜

河北省衡水市第十四中学

一、高中数学概念化教学的现状

一直以来,教师受到应试教育的制约和影响,数学教学重点的教学方式就是题海战术,从未重视过对数学概念的深入解读,导致学生难以将概念有机的运用到解题过程中,造成两者的脱节。在很多老师的眼中,数学概念仅仅是一个学术名词,只要对概念进行解释,学生强制性记忆,就算完成了概念教学的工作。完全没有认识到:在数学领域中,作为一种学术观念而存在的概念的真实意义,并且概念也是一种利用数学方式进行解决问题的方法。教师自认为完成概念教学工作后,让学生马不停蹄的开始解题,使得学生对数学概念的印象模棱两可,无法对概念进行一个全面、深刻、透彻的理解,直接导致学生很难将概念在具体的解题过程中熟练的应用,最终造成数学学习上的舍本逐末、本末倒置。

二、高中数学概念教学的对策

1.科学铺垫,循序渐进。

教师在教授高中数学知识前,应积极引导学生回顾初中阶段所学习的知识内容,学生温故初中知识的基础的同时,自然平稳过渡到高中阶段数学知识的学习。在这一阶段的教学实践中,难点和重点内容,教师不能急功近利、急于求成,要始终遵循“以生为本”的原则,通过循循善诱、循序渐进的方式,贴近学生思维最近发展区域,让学生在分析,思考,探究中对知识的掌握。比如,在对函数中的值域和最值问题进行讲解时,教师应秉持先易后难、层层推进的教学原则,先讲解一些难度不大一次函数的值域和二次函数的最值。再讲解一些配方法、单调性法等一些求最值或者值域的方式,在这个循序渐进的过②程中逐渐清除学生的畏难心理。

2.深刻认知概念产生的过程。

在教学过程中引入数学概念,应该以客观条件为基础,创造建设具体的环境情景,提出具体的问题。列举一些能够直接反映概念内涵并可以将概念形象、直观体现出来的具体例子,让学生通过具体的事例加深对概念的理解,从心里对抽象的概念形成一个感官上的认识,通过大量材料的阅读,透过对材料的研究了解到深处的本质内容。比如,在对“异面直线”的具体概念进行讲解时,教师要从源头开始讲解,展现这一概念诞生的具体历史背景。例如学生在长方体的模型中指出两条直线,这两条直线之间既不相互平行,同时也不相交,老师顺势导出异面直线的概念,让学生自己思考异面直线定义,将时间还给同学们,让他们去发挥想象力与逻辑思维能力,展开热烈的讨论,在给出一个初步的答案后,继续让学生补充、修改,最后得出一个逻辑严密、言简意赅、简明扼要的答案不同在任何一个平面内的两条直线叫做异面直线(skewlines)。特点:既不平行,也不相交。在完成概念的定义后,让学生画出实际生活环境中存在的异面直线,然后把异③面直线和同面直线的草图作对比。学生们不但将异面直线与实际生活紧密的联系在一起牢牢记住,而且还通过生动形象的过程深刻体会到概念从无到有的整个过程,领会了概念与实际生活的关联,不再抽象,而变得形象。

3.理解函数本质,加强函数符号教学。

在进行函数概念教学时,要加强对函数符号的抽象理解:f:A→B,y=f(x),x∈A,f(x)∈B。其中对应关系 f是什么?对于此概念的突破主要是要利用学生已有的认知,对学过的函数知识进行全面的分析回顾,利用一些实例来让学生了解对应法则f的本质含义。这样学生才能体会到限制变量x以及y的取值范围,引导学生利用严谨的数学语言来刻画出变量之间的关系。举个例子:求解y=的对应关系,很多学生无法描述清楚,可以利用一些数学语言让学生进行描述,算术平方根可以利用抽象的符号f进行表示,依照具体到抽象的方式进行处理,以大量形式多样的实际问题为依托,这样会用抽象符号f(x)来表示其背景,促进学生对知识本质的理解。对应法则f,自变量为x,另外,f(x)是数集B中的一个数字,以此来让学生体会到f的对应关系,使其了解不同函数中f的具体意义。

三、结语

在高中数学教学中,针对概念的理解应该以教材为基础,在教材的基础上发挥创造性。对于教材之中存在不合时宜的内容,应该果断的进行删减,不仅如此,还要删除教材中干扰教学、脱离实际应用的例子,在概念化教学时要坚持去粗取精、宁缺毋滥的原则,提高概念化教学的整体意识,使学生产生心灵上的共鸣,最终达到领会数学核心概念的终极目的。

猜你喜欢

异面最值直线
单调任意恒成立,论参离参定最值
聚焦圆锥曲线中的最值问题
巧用不等式求最值
数列中的最值题型例讲
求解异面直线夹角问题的两个路径
画直线
六种方法破解高考异面直线所成的角
两条直线 变变变
画直线
空间角的求法举隅