趣味数学教学设计
2018-10-21田桂玲
田桂玲
今天我来讲一讲生活中的有关数学的几个趣味问题。
1.缪勒——莱耶错觉
看看上面的带箭头的两条直线,猜猜看哪条更长? 是上面那条吗? 错了!其实它们一样长. 这就是有名的缪勒--莱耶错觉,也叫箭形错觉。它是指两条长度相等的直线,如果一条直线的两端加上向外的两条斜线,另一条直线的两端加上向内的两条斜线,则前者会显得比后者长得多。现在明白了吗?
2.奥毕森幻觉
这确实是一个完好的正方形。但是放射线会歪曲一个人对线条和形状的感知。虽然它被称作奥毕森幻觉,但其实它是黑林幻觉的一个变体。
3.梯形幻觉
红线比蓝线显得长一点,尽管它们的长 度完全相等。小于90°的角使包含它的边显 得 短一些,而大于90°的角使包含它的边显得长一些。这就是梯形幻觉。
4.回环诗图
这幅图是宋代诗人秦观写的一首回环诗。全诗共14个字,写在图中的外层圆圈上。读出来共有4句,每句7个字,写在图中内层的方块里。
这首回环诗,要把圆圈上的字按顺时针方向连读,每句由7个相邻的字组成。第一句从圆圈下部偏左的“赏”字开始读;然后沿着圆圈顺时针方向跳过两个字,从“去”开始读第二句;再往下跳过三个字,从“酒”开始读第三句;再往下跳过两个字,从“醒”开始读第四句。四句连读,就是一首好诗:赏花归去马如飞,去马如飞酒力微。酒力微醒时已暮,醒时已暮赏花归。
这四句读下来,头脑里就像放电视一样,闪现出姹紫嫣红的花,蹄声笃笃的马,颠颠巍巍的人,暮色苍茫的天。如果继续顺时针方向往下跳过三个字,就回到“赏”字,又可将诗重新欣赏一遍了。生活中的圆圈,在数学上叫做圆周。一个圆周的长度是有限的,但是沿着圆周却能一圈又一圈地继续走下去,周而复始,永无止境。回环诗把诗句排列在圆周上,前句的后半,兼作后句的前半,用数学的趣味增强文学的趣味,用数学美衬托文学美。
5.填充错觉
看看这幅图,中间有一个黑点,周围是一团灰雾。 盯着黑点目光不要移动, 你觉得灰雾消失了!
同样的你试试下边的那幅,这次灰雾不会消失了。 这是怎么回事?为什么灰雾有时消失有时又不消失?这是怎么回事?!
我们的眼睛不习惯于固定的刺激,视觉中有一个系统调节眼球的运动使物体的视像保持在视网膜上的某个固定的区域,我们将这个系统称之为视觉稳定系统。
你可以通过后像来体验这种视觉稳定的效果。如果你盯着一个物体看上一分钟,移走目光后它的后像仍会在眼前停留几秒种,然后才会消失。你可以通过眨眼使其多停留一会儿。
现在再来看看左边的那幅图,大多数人当他们凝视黑点的时候都感到灰雾消失了,而对右边的那幅灰点不会消失。在左边的图里,从中心的黑点向外灰雾逐渐由黑变浅,这种渐变与视觉的停留过程是一致的,当然如果你的目光随意移动的话,灰雾的视像一直保留在视网膜上。当你注目盯着黑点时,灰雾逐渐减弱直到消失,而背景的颜色取而代之。
前边的图与后边的几乎一模一样,除了有一个黑环以外。黑环的作用是无论你怎样努力的盯着灰雾都能使其不至于在视觉中消失。当你凝视黑点的时候,你的眼球仍然在不时的运动,当然这种眼球的颤动与扫视时的那种运动是不同的,这时的颤动是非常微弱的。但正是这种运动使视像停住。当一个物体象左边图中的灰雾一样,颜色逐渐由灰变白时,这种变化正好与视像逐渐消失的变化是一样的,这样你就会觉得物体消失了。当你移动目光后再来看灰雾时,它又会再出现,这是因为你的眼球做了一个足够大的运动。右边图中灰雾不消失的原因在于很小的眼动都能使视像停留。
6.大小恒常性错觉
在这幅图像中,一个大个子正在追赶一个小个子,对不对? 其实,这两个人完全是一模一样的!(不信?用尺子量量看!)你所看见的并不一定总是你所感知的。眼见为实在这里就不适用了!
这是怎么回事?! 对于这种错觉,斯坦福大学的心理学家 Roger Shepard 认为它与三维图像的适当的深度知觉有关。与这有关的是,后面的那个人看起来比前面的那个人离你远些,但是,不管怎样,后面的那个人在实际尺寸上与前面那个人是一样大的。
通常一个东西离你越远,它就显得越小,换句话说,它的视角变小了。在这幅图里,后面的图形与前面的图形有着相同的尺寸(和相同的视角〕。由于两个图形的视觉相同而距离不同,因此,你的视觉系统就会认为后面的那个人一定比前面的大。这个例子说明了你所看见的并不一定是你所感知的。你的视觉系统常常依据从视觉环境中得出规则来作出推论。你可以通过改变这个例子来发现一些通常隐藏着的视知觉规律,比方说,如果你把后面的图形移到与前面的图形相同的位置,这种视觉的大小错觉便会消失。这是因为,在水平面上,随着物体往后退, 不仅视角变小了,而且它们在视野中相对于水平线的位置也升高了。
从这幅图画中可以看出,在同一平面的距离不同的两个人,后面的那人虽然实际尺寸的个头很小,在前面的人之后,却显得很正常。 在稍右一点的地方,你可以看到后景中的那个人被放到与前面的人相同的位置。现在你就會出现另外一错觉,这种错觉正好与前面提到的Shepard错觉相反。在Shepard错觉中,前面的那个图形(通常有较大的视觉〕被放到后景中,这样就使得后面的图形比前面的图形显得大一些。而在这种错觉中,后面的较小视角的图形被移到前景中。另一个需要考虑的变量是,物体是被认为在地面上还是浮起来的。这个变量确实在大小错觉中起作用。把图形从地面上移去会彻底改变你对图景的感知。一个浮在地面上的物体与停在地面上的物体有很大的不同。图画的背景也是非常重要的,因为它提供了深度的尺度。如果你删除背景, 图像就成了平的,没有了立体感,你就不会有错觉产生,或者,即使有也是非常微弱的。在非透视图中改变图形的深度是没有意义的,错觉也不会出现,但是,你的视觉系统,依据与水平线的对比,会得到另一个结果。这些错觉表明你的视觉系统从视觉环境中得出了很多规则,用以判断物体的大小和位置的关系。
通过这节课我们的学习,希望同学们不再对数学恐惧,数学不仅是一门学科,它也是一门艺术。