基于复杂网络方法的既有雨水管段脆弱性判定
2018-10-08杨秋侠晁昕逸
杨秋侠,晁昕逸
(西安建筑科技大学土木工程学院,陕西 西安 710055)
城市既有雨水管网系统作为城市重要的排水设施,负责城市雨水的收集和输送,同时也承担着城市防洪、排涝的重要责任[1]。雨水管网系统能否安全可靠运行,直接关系整个城市的经济发展和居民生活的便捷和安全[2]。我国许多城市在经受暴雨的洗礼后,发生过不同程度的洪涝灾害,导致地面严重积水,引发城市的内涝问题,严重影响城市的交通和居民的正常生活。随着城市化进程的加快,雨水管网系统在顺利排除雨水的过程中存在许多不确定性,比如因为施工或疏于管理等原因导致雨水管被破坏、堵塞,影响排除雨水。由于这些不确定因素的存在,城市雨水管网系统经常处于不稳定的状态,时刻面临着排除雨水不畅的问题,威胁着城市交通和人们的日常生活,即使通过加强维护管理,尽可能地减少施工破坏,也无法完全根除这种不稳定性。此外,我国部分城市的雨水管道由于铺设年代久远,管道老化严重,使得旧的设计参数早已不符合现状管道的排水要求[3-5]。
为了能准确掌握现有城市雨水管网系统的不确定性因素,笔者总结了既有雨水管段脆弱性所涉及的影响因素,综合分析了各功能模块之间的相关程度,然后结合复杂网络拓扑模型,提出一种利用节点的重要度来确定既有雨水管段脆弱性判定的方法,以期掌握雨水管网系统的薄弱环节和管段状况,更好地做出有针对性的预防工作,减少洪涝灾害的发生。
1 城市既有雨水管网系统脆弱性
脆弱性一词来自拉丁文,表示“在干扰因素存在的情况下,物体易受攻击、损坏的特性”,现在已被广泛应用于各个学科领域,但内涵不尽相同。本文将脆弱性的原始定义与城市雨水管网系统的特点相结合,将城市雨水管网系统脆弱性[6-8]定义为:城市雨水管网系统在外部环境改变(洪涝灾害、施工破坏、管理疏忽等)的作用下,所表现出的一种易于受扰动的状态,它是导致城市雨水不能及时排除的重要原因。
2 城市雨水管网系统脆弱性影响因素及功能模块划分
城市雨水管网系统是城市的重要基础设施之一,是防止雨水径流危害城市安全的主要工程设施。本文将既有雨水管网脆弱性影响因素分为4个大类:外部破坏、设计因素、水力因素和管理因素。将功能相对独立的影响因素统一称为功能模块,根据既有雨水管网系统脆弱性影响因素及各个影响因素的相对独立性,将既有雨水管网系统脆弱性影响因素分解成20个功能模块(表1)。
每个功能模块的性能都直接或间接地影响着雨水管网系统的脆弱性,例如,管径偏小或管道坡度偏小都可能导致在特大暴雨来临时排水速度远远小于降雨速度,导致地面积水;车辆荷载过大或覆土厚度较小等情况可能使得雨水管道承受较大的压力,导致管道破裂,造成难以估计的损害;检查维修的时间间隔过长会使得管道堵塞情况严重,影响排水能力,等等。
3 雨水管段功能模块相关性分析
对分解成20个功能模块的雨水管网系统脆弱性影响因素进行分析,发现不同的模块功能不同,彼
表1 既有雨水管网系统脆弱性影响因素
此之间相互影响。设计因素和水力因素属于自然因素,设计因素主要是针对雨水管道及其附属设施的自身结构,与管道直径、管道材料、管道坡度等因素有密切关系;水力因素则与管道的水力参数、降雨历时等有关。外部破坏和管理因素属于人为因素,但是人为因素和自然因素之间存在着强烈的相互作用。
雨水管网系统是指某一范围内所有雨水管段的总和,它是由多个雨水管段相互连接组成的整体,使城市雨水能够顺畅排除;而雨水管段则是指在相同设计参数,或者处于相同外界环境的情况下,某一段特定的雨水管道。雨水管段作为整个雨水管网系统中的一部分,与其所属的雨水管网密切相关,也在一定程度上影响着整个雨水管网系统。雨水管段与雨水管网系统是部分与整体的关系,当某一段雨水管道遭到破坏时,整个雨水管网的稳定性也随之受到影响。同理,当雨水管网系统处于一个相对波动的状态时,组成它的各个雨水管段也基本处于不太稳定的状态。雨水管网系统的20个功能模块同样适用于雨水管段中,因为不管在某一特定的雨水管段中,还是在整个雨水管网系统中,对于雨水管道而言,其影响因素都是类似的。本文选取西安某高校特定既有雨水管段为研究对象,对各个影响因素之间的关联关系进行分析,得到20个功能模块的关系矩阵(表2)。表2中1代表两个功能模块之间存在关联关系,0代表两个功能模块之间不存在关联关系。
4 城市既有雨水管段的脆弱性判定模型
4.1 复杂网络方法
复杂网络是具有自组织、自相似、吸引子、小世界、无标度中部分或全部性质的网络。基于复杂网络方法构建网络模型时,不论子系统或元素之间的联系强弱,只要它们之间存在关联关系,都可以用一条边来表示,用统一的网络模型来分析。一个复杂网络可以表示为G=(V,E),其中V表示网络节点的集合,E表示网络节点间相互关系的集合,它作为对复杂系统的一种抽象和描述方式,由大量节点通过边的相互连接而构成,突出强调了系统结构的拓扑特征。复杂网络脆弱性判定的主要依据是网络节点和边受到攻击后网络的波动程度,是针对整个网络系统的功能水平变化,不是测评单个网络节点和边的可靠性水平,因而判定指标主要表现网络的全局抗毁性水平[9]。而雨水管段的脆弱性判定也是针对整个既有雨水管段而言的,雨水管段的脆弱性往往受许多因素影响,且这些影响因素之间存在复杂的相互作用,即可认为这些相互作用的影响因素决定着雨水管段的脆弱性。基于此思路,本文将复杂网络的方法运用到既有雨水管段脆弱性的判定中,将雨水管段的功能模块视为网络中的节点,将模块之间的关联关系视为连接节点的边。通过计算各个功能模块在整个雨水管段中重要程度的大小,找出雨水管段中的薄弱环节,将该功能模块作为水务部门日后的重点关注和保护对象,以此来提高整个雨水管段的可靠性。
复杂网络的节点是指各个不同的功能模块,如图1所示,标号1、2、3、4代表网络中的节点,复杂网络中的边是指功能模块之间是否有关联关系。当两个功能模块之间存在相互影响关系时,这两个节点之间存在相连的边;当两个功能模块之间没有关系时,则不存在边。图1中,网络中的节点1-2,1-3,2-3,2-4之间因为存在关联关系,所以存在4条边。将功能模块之间的相关关系归结为两种情况进行处理:①两个功能模块之间明显是单向影响关系,此时这两个功能模块之间的边为单向箭头;②两个功能模块之间的相互影响是双向的,此时这两个功能模块之间的边为双向箭头。图1中,网络中1-2之间的边从节点1指向节点2,即表示节点1受到节点2的影响。
图1 节点、边和边的方向
4.2 复杂网络方法常用的拓扑特征量
4.2.1 节点度
节点度是指网络中与该节点相关联的边的条数[10]。节点度值能直接反映该节点对其相邻节点的关联程度,节点度越大,与周边节点的关联就越密切,在整个网络中的影响力也就越强。特别地,对于有向图,节点度可以根据连接方向的不同,分为出度和入度两种类型。节点的出度是指从该节点指向其他节点的边的数目,节点的入度是指从其他节点指向该节点的边的数目[11]。在既有雨水管段中,节点度的大小反映了整个雨水管段中各个功能模块之间相互作用的密切程度。
(1)
式中:ki为节点度;eij为网络中节点i与节点j之间相关联的边的总数;N为网络中节点的数目。
4.2.2 网络直径
网络直径是指一个网络中任意两个节点之间距离的最大值[12]。本研究中,两个节点之间有连线则将其距离记为1,没有连线则记为0。在网络中某一个节点受到攻击和破坏的情况下,网络直径越小,对整个网络的脆弱性影响越小,反之越大。在既有雨水管段中,网络直径反映了整个雨水管段所形成的复杂网络的聚集程度,即各个功能模块之间连通的程度。
(2)
式中:D为网络直径;dij为网络中任意两个节点i和j之间的距离,表示两节点之间最短路径上边的数量。
4.2.3 网络效率
网络效率是指网络中所有节点对之间距离倒数之和的平均值[13]。网络效率用来表示网络信息流通的平均难易程度,效率越高,网络信息流通越容易。在效率较高的既有雨水管段中,某一节点遭受攻击和破坏时,将在更少的时间内传递给周围的节点,显现出较高的脆弱性。
(3)
式中E(G)为网络效率。
4.3 复杂网络节点重要度判定矩阵的构建
复杂网络是一个由节点和边组成的统一整体,某一节点的重要度必然要受到其相邻节点的影响,即节点对其相邻节点是存在重要度贡献的[14]。在复杂网络节点重要度判定的过程中需要综合考虑节点自身在网络中所处的位置和相邻节点的重要度贡献[15-17]。彼此孤立的节点之间不存在重要度的依赖关系,一旦节点间相互连接,即存在相互影响的关系,就可能导致彼此之间重要度的变化。节点之间通过相互连接,使信息通过一个节点传递给另一个节点,就会形成一个重要度贡献关系的拓扑网络。由于网络的邻接矩阵反映了节点之间相邻的情况,而节点间最重要的重要度贡献关系存在于相邻节点之间,因此节点间的重要度贡献关系可以用邻接矩阵的映射矩阵来表示,本文将该矩阵定义为节点重要度贡献矩阵[13]。
4.3.1 节点重要度贡献矩阵
在节点数为N,平均度值为m的无自环无向网络中,若节点vi的度为ki,则vi将自身重要度的ki/m2贡献给它的每一个相邻节点。将所有节点对其相邻节点的重要度贡献值用矩阵的形式表现出来,就形成了节点重要度贡献矩阵,记为HC。在既有雨水管段中,节点重要度贡献矩阵反映了各个功能模块对周围邻接的各个功能模块的影响程度。
(4)
式中,rij为网络邻接矩阵中对应的元素,称为贡献分配参数,对应于表2中功能模块的关系矩阵。当vj对vi有影响时取1,否则取0。HCij表示节点j对节点i的重要度贡献比例值。
4.3.2 节点效率
由于节点的重要程度不仅取决于节点自身的度值,还取决于其在网络中所处的位置。根据网络效率的定义,将节点的效率Ik定义为该节点到网络中其他节点的平均难易程度,体现了该节点对网络信息传输过程中所做的贡献[13]。节点效率值越大,表示通过该节点传递的信息速度越快,则它在网络信息传输过程中所处的位置就越重要。在既有雨水管段中,节点的效率在一定程度上反映了功能模块的重要程度。
(5)
式中dki为节点k和i之间的距离。
4.3.3 节点重要度判定矩阵
在节点重要度贡献矩阵的基础上,融合节点的效率值,将节点重要度判定矩阵HE定义为
(6)
式中HEij为节点j对节点i的重要度贡献值。可以看出,一个节点对其相邻节点的重要度贡献值与自身的效率值和度值有关,节点的效率值越大,度值越高,则它对相邻节点的重要度贡献就越大[14]。
4.4 节点重要度
综合考虑节点自身的效率值和相邻节点的贡献度,将节点i的重要度Ci定义为节点i的效率值与所有跟节点i相邻的节点重要度贡献值之和的乘积。节点的重要度取决于它自身的度值、效率值以及相邻节点的度值和效率值的大小。在综合考虑了节点的对局部重要性的作用和对整个复杂网络的影响,将节点重要度运用到雨水管网系统脆弱性判定中,使节点重要度评估具有更高的精度,更加准确地找出脆弱性较高的功能模块[15-17]。
5 实例分析
以西安某高校的雨水管网系统为例进行研究,根据表1功能模块划分及表2的相互关联关系,将构建好的Pajek networks格式数据文件导入Pajek软件,使用软件自带的绘图工具,可以得到可视化的雨水管段脆弱性模型(图2)。
图2 雨水管段脆弱性模型
5.1 节点度分析
根据式(1),运用Pajek软件进行计算,可以得到该雨水管段脆弱性的复杂网络,其中节点度最高的为节点1(管径),网络模型的平均节点度是5.7,这表明雨水管脆弱性网络中的每个子系统平均与6个其他子系统存在关联关系,图3为节点度分析结果。
图3 节点度分析结果
5.2 网络直径和网络效率
根据式(2)进行计算,可以得到雨水管脆弱性网络模型的直径是3。根据式(3)进行计算,可以得到整个网络的效率为0.3。可以认为该既定雨水管脆弱性影响因素之间的关联比较紧密,相互影响的特征比较明显。
5.3 节点重要度分析
根据前文的节点重要度判定方法,构造雨水管段节点重要度贡献矩阵如下:
计算网络中各个节点的效率,建立节点重要度判定矩阵如下:
表3为节点重要度计算结果。由表3可见,对于这个复杂网络而言,节点1(管径)的重要度最高,其次是节点5(雨水篦子数量),即在所选取的雨水管段中,管径对整个网络脆弱性的影响最大。这与图2中雨水管段脆弱性网络模型的拓扑结构所反映出的图像保持一致,因为节点1处于整个网络的中枢位置,是网络中度值最高的节点,与周围节点的相互作用最为密切。而节点9(车辆荷载)与节点20(安全培训及宣传教育)的重要度均为0,这是因为这两个点都只有入度,没有出度,即节点9和节点20这两个影响因素几乎不受其余功能性指标的影响。
表3 节点重要度计算结果
6 结 语
既有雨水管段脆弱性是整个管段在内部和外部的各种影响因素干扰下的综合反映,网络局部或者单一节点失效都会在一定程度上导致整个雨水管段结构的破坏和功能的丧失。将既有雨水管网脆弱性影响因素分为4个大类:外部破坏、设计因素、水力因素和管理因素,并分解成20个功能模块。综合分析了各功能模块之间的相关程度,并且在此基础上结合复杂网络拓扑模型,提出了一种利用节点的重要度来确定既有雨水管段脆弱性判定的方法。结果表明,该方法能够体现节点之间的重要性差异,使节点脆弱性的判定更加准确,为后续进行城市雨水管网改造、修建提供理论依据。