APP下载

果树落果的生理及分子机制研究进展

2018-09-10文晓鹏仇志浪洪怡

山地农业生物学报 2018年4期
关键词:果树研究进展机制

文晓鹏 仇志浪 洪怡

摘 要:落花落果是果树普遍存在的一种生理现象,是由于细胞壁降解而引起的花果脱落过程,是利于果树进化的一种表现,但落花落果不利于果树生产。前人研究表明,果树花果脱落部位能够感受外界环境因子及自身生长因子等脱落信号,从而调节果树细胞内相关基因的表达,引起生理生化反应而导致整个器官脱落过程,但各影响因子间的互作机理研究尚待加强。本文从果树落花落果的类型和特点,环境因子对落花落果的影响,以及果树落花落果的生理及分子机制研究进展,旨在为全面深入理解果树落花落果特性和形成机制,促进果树高产稳产提供新信息。

关键词:果树;落花落果;机制;植物激素;研究进展

中图分类号:Q945

文献标识码:A

文章编号:1008-0457(2018)04-0001-017 国际DOI编码:10.15958/j.cnki.sdnyswxb.2018.04.001

Advances in Physiological and Molecular Mechanisms Underlying the Fruit Abscission of Fruit Trees

WEN Xiao-peng,QIU Zhi-lang,HONG Yi

(Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education),Institute of Agro-bioengineering/College of Life Sciences,Guizhou University,Guiyang,Guizhou 550025,China)

Abstract:Fruit and flower abscission is a phenomenon commonly occurred in fruit trees due to the degradation of cell walls.It is a kind of adaptation behavior that is conducive to the evolution of fruit trees,but give a negative effect for fruit production.To date,intensive researches have demonstrated that after the abscission signal of external environmental factors and interior self-growth factors were received,the expression levels of related genes as well as physiological and biochemical responses,leading to the formation of the abscission layer of fruit pedicels and the occurrence of fruit abscission,however,the interaction mechanism between the factors have been not yet perfect so far.Currently,the types and characters of flower and fruit abscission,the environmental factors leading to the flower and fruit abscission,and the advances in the physiological and molecular mechanisms underlying the flower and fruit abscission are reviewed,which are beneficial for the further understanding of the characters and formation mechanisms of flower and fruit abscission so as to improve the fruit yield.

Key words:fruit tree; flower and fruit abscission; mechanism; phytohormone; advance

落花落果是普遍存在于果樹中的一种现象,是一个对果树进化非常有利的过程[1]。但对于果农来说,花果脱落可能成为限制果树产量的重要因素[2]。果树的落花落果是由环境因子、生理生化代谢,以及基因表达等共同调节的结果[3]。为了更好地服务于农业,提高果实产量,全面认识果树落花落果的机制尤为重要[4]。从理论上讲,所有果树都会经历落花落果,最常见的因果实脱落而严重影响产量的果树有桃[5]、李[6]、梨[7]、枣[8]、樱桃[9]、苹果[10]、柑橘[11]、芒果[12]、夏威夷果[13]、橄榄[14]、葡萄[15]、柿树[16]、荔枝[2,17]、文冠果[18]等。因此,了解果树落花落果的类型和特点,环境对落花落果的影响,以及从生理和分子生物学层面揭示果树落花落果的机制,对生产上如何减轻花果脱落,保证产量和品质有重要意义。本文将从果树落花落果的类型和特点,导致落花落果的环境因子,花果脱落的生理及分子机制,旨在为提高果树产量和品质提供理论和技术支持。

1 果树落果的类型和特点

1.1 生理落果

从进化角度上看,植物都应具备过度生殖的特性。为了繁衍生息,很多果树也进化出大量座果的特性,但植株制造的养分是有限的,因此不可避免地会出现花果脱落现象。在果实生长发育过程中,为了使部分种子(果实)能够完成整个生命活动,会主动淘汰发育不良的和过多的花果,避免和减轻养分的浪费,以保证发育正常的种子(果实)能够完成自己的生物学使命;或是在果实成熟时主动脱落,便于自身种子能够掉落到土里,从而达到延续后代的目的。果树的生理落果通常分为四次,第一次是落花,指未正常受精的花脱落[19];第二次是落花之后15~20天的幼果脱落,这些果实雌性器官正常,但受精不正常,最终导致胚和胚乳发育受限,进而引起脱落[20];第三次生理落果又称“六月落”,是指在六月前后的果实大量脱落,这时期的脱落大多也是由于胚和胚乳发育不正常而导致的脱落[21];第四次则是采前落果,是因为果实成熟、衰老而引起的果柄细胞壁降解的过程[22]。落果率的高低与果实中激素含量变化及树体营养水平密切相关。

1.2 异常落果

异常落果通常是指花果在发育过程中,因异常气候、营养不足、病虫害等因子的影响而导致严重影响产量的脱落。如柑桔在花期和幼果期遇高温干燥或长时间低温阴雨等不利天气,势必造成柑桔授粉受精不良,继而发生严重的落花落果[23]。在杏中已有研究表明,花期遇大雨会导致受精不良,进而导致落花落果[24];在椰子中也发现气候的变化与授粉有着极大的关系[25]。在柑桔、橄榄、鳄梨、龙眼的研究中发现,碳水化合物和矿质营养对果实生长和脱落起着重要作用[26-29]。在欧洲坚果和芒果中发现,病虫害对其落果有着重要影响[30]。

2 影响果树落花落果的环境因子

在果树的生长发育过程中,气候的变化会使其遭受各种生物和非生物胁迫[31-32],而这些生物和非生物胁迫则会导致花果的脱落,使果实产量减少。

2.1 生物胁迫对花果脱落的影响

在生物胁迫之后,植物免疫系统的激活(其允许从生长和发育转变为防御模式)通过激素和(或)碳水化合物含量的变化导致缺乏营养,从而诱导脱落。虽然已知生物应激通过发育和生理学改变诱导脱落[33-35],但是仅有少数研究致力于生物应激对花果脱落的特定作用。例如有研究表明,炭疽菌(Colletotrichum acutatum)诱导柑橘类水果脱落可能是由于生长素和相关吲哚化合物之间平衡的改变所致[36]。

2.2 非生物胁迫对花果脱落的影响

非生物胁迫因素通过降低大多数主要作物的平均产量对世界农业产生巨大影响[37]。在开花时,温度(冷/热)、水可用性和光辐射(质量和数量)被认为是脱落的主要原因。

2.2.1 温度胁迫 植物应对恶劣温度的能力非常复杂,不仅取决于温度状况,还取决于遗传特性,并且已在多种物种中报道[38-43]。许多研究报告了有害温度(冷/热)对生殖器官和后续果实的影响(表1)。简而言之,温度胁迫可以在雄性和雌性的繁殖发育之间产生不同步,是这两者成功繁殖所必须的[44-45]。例如,在杏花中,温暖的环境会加速开花,但不会促进幼芽的发育,导致雌蕊重量减少,花柱长度缩短[46]。

2.2.2 水分胁迫

干旱或洪涝均可称水分胁迫,由于植物生长和活力下降,水分胁迫可能促进植物器官的脱落[56]。例如,柑橘在严重缺水条件下开花减少,在橄榄中水可用性增加开花和结果,并减少果实掉落[57-58]。在苹果和柑橘中,开花期间的水分胁迫影响单株果实数量,显著降低了产量[59-60]。对这些结果的解释导致了一种假设的产生,即水分胁迫促使根中ACC (1-aminocyclopropane-1-carboxylate)积累,其在去除应力后转移到枝条并氧化形成乙烯,这反过来促进花果的脱落[56]。但是,近年来发现适度的水分胁迫可减少柿树果实的脱落,而且提出可将这种适度水分胁迫用于生产上,减少果實的脱落进而提高产量[61]。

2.2.3 光胁迫

黑暗和弱光会引起多种植物花果的脱落[56],例如大豆、葡萄、棉花、胡椒等在生殖发育过程中遮阴30%-90%均显著增加花序和果实脱落[62-65]。并且近年也发现,遮阴处理对荔枝落果也有影响,在遮阴处理5天时,相对落果率差异最大,5~7 天后对照的相对落果率迅速增加,而处理中的相对落果率缓慢增加,但处理中的相对落果率始终高于对照[66]。

3 果树落花落果的生理机制

生理生化代谢是果树生长发育极为重要的因素,但在果树落花落果中,碳水化合物[67]、激素[68]、矿质元素[69]、pH[70]等都扮演着重要角色。

3.1 碳水化合物与落花落果

碳水化合物(Carbohydrate)是植物生长发育所必须的一类化合物,在果树落花落果中也扮演着重要角色。在果树形成花芽期间,需要大量营养物质,用于胚珠发育[71]。如在此期间营养供应不足,便会导致花芽形成受影响,花的育性降低,影响授粉受精,进而引起花果脱落[17]。此外,糖分太低会诱导活性氧(Reactive Oxygen Species,ROS)产生,进而导致花果脱落,这在龙眼中已证实[72]。在荔枝上也发现,糖胁迫诱导荔枝果实脱落,其主要机制可能是糖饥饿诱导细胞新陈代谢,如激素信号转导、蛋白激酶激活、转录因子激活等改变,引起蛋白水解、细胞分离、细胞死亡的发生,最终导致果实脱落[17],且有证据显示,糖饥饿可诱导荔枝生长素信号转导相关基因的表达变化[67]。碳水化合物为细胞提供能量,一旦能量缺乏则会导致新陈代谢紊乱,细胞程序化死亡,进而引起落花落果。

3.2 植物激素与落花落果

植物激素(Phytohormone)是植物生长发育过程中不可或缺的一类物质[73],在果树落花落果和保花保果中也极为重要,有的促进花果脱落,而有的则起抑制作用[56]。常见的与落花落果相关的植物激素有生长素、赤霉素、细胞分裂素、乙烯、脱落酸[74]等,其作用机制也不尽相同。

3.2.1 生长素

生长素(Auxin)是一类含有一个不饱和芳香族环和一个乙酸侧链的内源激素,在植物生长发育过程中发挥重要作用[75]。生长素在果树生长发育中具有促进根、茎、叶生长,维管束组织的形成和分化发育,以及植物的向地和向光反应等功能[76],在果树花果脱落中也具有重要作用。早在1955年,科学家就提出的“生长素梯度论”[77],并通过实验证明,用NAA、IAA、2,4-D等对番茄花絮脱落有抑制作用。由于生长素的运输方式为极性运输,因此如极性运输途中受到阻碍,也会加速器官的脱落。如Drazeta等[78]用生长素极性运输抑制剂 NPA(N-(1-Napthyl)phthalamic acid)处理苹果梗部,增加了果实的脱落率。在葡萄中也发现,生长素极性运输如果被抑制,会导致葡萄果实脱落[79]。通过沉默番茄中SlPIN1基因发现,番茄花器官生长素在源库端分布异常,促进了花柄脱落,这表明SlPIN1可能对番茄花器官维持正常的生长素极性运输、阻止脱落具有重要的作用[80]。因此,生长素在转运过程中如遭阻止,将会影响植物体内激素平衡,从而引起脱落。

在生长素进入植物细胞中行使功能时,必须由一部分生长素受体及生长素响应因子参与方可完成。其中较为重要的受体之一为AUX1,该受体存在于细胞膜上,对生长素进入细胞起关键作用。番茄果实脱落机理研究中发现,在脱落初期,AUX1基因下调表达[81],说明在脱落初期,生长素进入细胞的途径受到阻碍,进而导致番茄果实脱落。生长素的作用依赖于生长素响应因子Aauxin Response Factor,ARF),大多数的 ARF 蛋白有三个结构域:一个N末端DNA 结合域,一个C末端可以与AUX/IAA 结合形成 AUX/IAA-ARF,中间区域负责活化或抑制基因转录,它们可与生长素响应元件(Auxin Response Element,AuxRE)的 TGTCTC 结构结合,从而活化或抑制受生长素调控的基因表达,调控生长素许多生理效应[82]。当细胞处于低浓度生长素条件时,AUX/IAA 与 ARF 结合形成 AUX/IAA-ARF复合物,从而抑制 ARFs 的活性;当生长素浓度升高时,生长素与TIR1结合,可促进 AUX/IAA 的泛素化途径水解,AUX/IAA-ARF 解离,进而激活 ARFs,引起生长素应答基因的表达[83]。并且,已有较多的研究证明生长素在抑制花果脱落有着重要作用。如人工合成的生长素对荔枝果实的脱落有明显的减少[84]。

3.2.2 赤霉素

赤霉素(Gibberellin,GA)是常见五大类植物激素之一,在植物生长发育阶段具有重要调控作用[85]。GA不仅自己能起作用,且能与其他激素间存在相互作用,其作用方向和类型取决于组织器官、发育阶段及环境条件,使GA对植物生长发育的调控及其在不同器官中的生理功能不同[86]。通过外源喷施GA,促进了内源 GA、IAA、ZR 含量的积累,延缓了GA、IAA、ZR的下降速度,进而抑制了果实脱落[87]。GA 抑制果实成熟衰老的另一机制是通过抑制ACC的积累,进而抑制乙烯的生物合成来实现[88];同时有研究证实,GA有促进IAA生物合成的作用[89]。此外,用 GA3 喷洒到甜橙上也能明显防止果实脱落[90]。但是,也有证据显示,是外源GA对脱落无影响[91]。在对葡萄脱落机制研究中发现,GA和遮阴均可诱导花器官脱落[15]。因此,GA对植物器官的脱落所起的作用目前存在争议,需进一步深入的研究,方可清楚其机制,进而为落花落果的防止提供理论依据。

3.2.3 细胞分裂素

细胞分裂素(Cytokinins,CTK)是一类重要植物生长调节激素,广泛调控植物生长发育过程[1,92]。在芒果中发现,细胞分裂素促进了维管组织的分化,增加了对营养物质的转运,进而减少了果实脱落[4]。将细胞分裂素应用于夏威夷果的花和未成熟果实上,发现细胞分裂素促进了坐果和延迟了果实脱落[93]。此外,在非果树植物中也存在细胞分裂素调控花果器官脱落,如石斛[94],豇豆[95]等,其主要机制可能是喷施CTK可通过降低花荚中的多聚半乳糖醛酸酶活性和纤维素酶活性,从而降低花荚脱落率实现对豇豆产量的调控[96]。

3.2.4 脱落酸

脱落酸 (Abscisic acid,ABA) 是20世纪60年代在植物体内发现的半萜类化合物,在植物生长和响应逆境过程中发挥着重要作用[97]。首次发现脱落酸时,因它促进脱落,脱落酸被称为脱落素II[98]。随后,科学家也发现棉花果实发育和脱落酸存在着较大的相关性[99]。后来,科学家又发现水胁迫引起柑桔叶子脱落,在根部有大量的脱落酸积累,因此认为柑橘在水胁迫中,乙烯所引起的落叶,需要之前根部脱落酸的积累[100]。其原因是脱落酸增加了纤维素酶的活性,并且纤维素酶合成也增加[101-102]。另外,研究人员还认为脱落酸通过刺激合成乙烯从而加速脱落[103]。在班菲尔脐橙第一和第二次生理落果期,脱落果实中脱落酸含量显著高于正常果实[104]。有人通过对无核荔枝脱落酸合成关键酶LcNCED基因的克隆及其在生理落果阶段中的表达分析,结果发现LcNCED2 在离区中表达量变化比较符合无核荔枝生理落果趋势,因此推测LcNCED2与荔枝生理落果密切相关,也可推断脱落酸在果实生理落果中起着重要作用[105]。此外,脱落酸还可能与其他激素和第二信使共同作用产生一个导致下游脱落区被激活的信号[106]。因此,脱落酸促进花果脱落的机制较多,还有待进一步深入研究。

3.2.5 乙烯

乙烯(Ethylene,ETH)是具有促进成熟、衰老和脱落作用的一类激素,在果树落花落果过程中,乙烯也起着重要作用。早在1968年,科学家们就发现乙烯与器官脱落有关[107]。至此以后,陆续报道了拟南芥[108]、桃[109]、番茄[110]、苹果[111-113]、柑橘[114-115]等多种植物的多种器官脱落都与乙烯密切相关。直到最近,还有科学家通过microRNA研究,发现Sly-miR1917的过表达增强了乙烯反应,在缺乏乙烯的情况下,也能加速叶柄生长,加速花梗脫落和果实成熟[116]。因此,乙烯被认为是植物脱落的天然调节剂。

乙烯之所以能调控落花落果,是由于其受体作为负调控元件对乙烯信号进行感知,抑制下游的CTR1,激活细胞质中正调控因子EIN2,进而将信号传递给细胞核内的 EIN3/EIN3-LIKEs(EIN3/EILs),促进转录因子ERF的表达[117],最终诱导一系列与乙烯反应相关基因的转录翻译,从而引起离区细胞壁水解酶活性增强和基因表达量上升,进而导致离区细胞壁发生破碎,最终导致落花落果[118]。在乙烯生物合成过程中,ACC氧化酶ACO是植物体内乙烯合成的关键酶,而通过1-MCP (1-methylcyclopropene)处理可降低开花中的ACC合成酶和花蕾中的ACC氧化酶活性,抑制了花序中乙烯的产生,从而防止了花的脱落[119]。值得一提的是,与乙烯的合成共用同一前体的多胺,多胺在果实生长发育过程中的作用是促进坐果,其原因是多胺的合成与乙烯的合成形成了竞争关系,从而降低乙烯合成量,进而促进坐果。

3.3 pH对落花落果的影响

细胞内pH值(Intracellular pH,pHi)是细胞生理活动的重要调节因素,胞内pH值不仅能调节酶活性和一些重要的代谢过程,细胞内许多生理活动如ATP合成、DNA复制、蛋白质合成以及细胞生长等都受胞内pH值的调节[120]。因此,离区也不例外,离区pH值控制着各种各样的过程,其中可能是基因表达的信号[121],也可能是纤维素、果胶等酶活性,进而影响器官的脱落。早在多年前,就有人预测了pH可能与器官的脱落过程相关[122],但这个猜测却一直未被证实。直到近年,才有少量文章报道关于pH对器官脱落的影响。研究发现,pH值变化是离区特异性的,并与在三个不同的脱落系统中脱落的执行一致。目前的数据表明,在拟南芥花器官的自然脱落期间离区细胞的胞质pH逐渐增加;在番茄花梗脱落期间观察到类似的pH增加,但是pH变化较小;有人用乙烯处理芝麻菜,结果发现显著增强了花梗的脱落,并且pH在离区特异性的上升,相反用1-MCP抑制花梗脱落时,在24 h之后完全抑制了离区pH值的增加[123]。与芝麻菜类似,用1-MCP预处理番茄外植体时,在其花去除后抑制花梗脱落。

离区细胞的pH除了影响离区的酶活性以外,离区pH的升高还可能作为信号转导途径的一个组成部分,从而获得脱落的能力,并可能依次作为脱落相关基因的表达信号。此外,细胞质的碱化可能反映在质外体的酸化中,因为质外体酸化是由H+ -ATPase和特定的转运蛋白从细胞质中泵出H+而导致[124]。质外体的酸化可能激活细胞壁修饰酶[122]。事实上,最近有报道指出,当乙烯利处理的菜豆叶柄经历pH值为3.5或5.5时,会改变质外体pH值,发生脱落,而在pH为7时,脱落受到抑制[125]。然而,作者却在满江红根部获得了相反的结果,pH的降低抑制脱落。微阵列结果表明,液泡型H+转运ATP酶、质膜H+-ATP酶、硝酸盐和(或)铵转运蛋白以及GTP结合蛋白在离区特异改变。并且以上这些基因的改变在拟南芥雄蕊[126]、柑橘叶[127]、苹果花[128]、成熟的橄榄果实[129]、甜瓜[130]、番茄花梗[132]得到证实。Sundaresan等[71]认为,满江红与菜豆之间pH敏感性的显著差异可能归因于这些物种中果胶酶的最佳pH值不同。在以上植物系统中,除柑橘和番茄是外源乙烯诱导脱落外,其余均为内源乙烯诱导的脱落。

此外,在模拟酸雨对龙眼幼果纤维素酶活性和内源激素含量的影响中发现,易脱落幼果的纤维素酶活性和脱落酸 含量高于正常幼果,而 IAA、GA1+3、iPAs、ZRs、DHZRs含量低于正常幼果,说明酸雨引起龙眼幼果脱落可能通过改变内源激素含量及组成,进而调控纤维素酶活性而促进果实脱落[132]。这些研究结果,为器官脱落过程中pH参与果实脱落提供了证据,其可能通过离区细胞中转运蛋白的特异性修饰来调节。

4 果树落花落果的分子机制

果树落花落果的直接原因是由于细胞壁的降解,而细胞壁的降解又是由于一些与之相关的纤维素酶、果胶酶、过氧化物酶、多聚半乳糖醛酸酶、木葡聚糖内转葡糖基酶/水解酶,以及扩展蛋白等导致细胞之间的粘附力破坏[133-138]。而引起这些酶的基因上调表达则又是体内糖、激素、多胺等多种因素所致,这些生理指标的变化又是由多基因的差异表达所调控,还包括转录因子调控相关功能基因的表达。因此,落花落果的生理机制和分子机制互相影响,共同调节果树花果的脱落。

4.1 落花落果相关酶及蛋白

4.1.1 纤维素酶

纤维素和果胶是植物细胞壁主要组成部分,而纤维素酶具有水解纤维素的作用,可使细胞壁降解,因此该酶在植物器官脱落上发挥重要作用[139]。研究发现,在脱落之前,离区细胞中纤维素酶活性较高,表明该酶在细胞分离中发挥作用[140]。随后发现在柑橘叶、果脱落之前,纤维素酶活性显著上调[141-142]。迄今为止,纤维素酶活性已经成为判断植物器官脱落的常用指标。如Qi等[143]通过在番茄中超表达梨PsJOINTLESS基因,增加了番茄果实的脱落率,并且纤维素酶在转基因植株中的活性高于野生型,进而确定PsJOINTLESS基因与器官脱落相关。

4.1.2 果胶酶

果胶酶(Pectinase)普遍存在于高等植物不同组织器官,如根、茎、叶、果实等,在细胞壁降解中发挥重要作用[144]。果胶酶在促进果实成熟上起着重要作用,在器官脱落的研究上,编码果胶酶基因的表达主要受乙烯调控,可以为多聚半乳糖醛酸酶做准备底物,从而辅助植物器官的脱落[145],但仍存在较多争议。在烟草叶柄离区中发现有较高活性的果胶酶[146];而Ratner等[147]发现,柑桔叶柄脱落过程与果胶酶存在必然联系。在番茄果实绿熟期,果实与花托的连接处无果胶酶活性,而在即将脱落果实与花托连接处一侧的次生木质部中,果胶酶活性显著增强[148];在橄榄中也发现,经乙烯利处理后增加了离区的果胶酶的活性[149]。因此,果胶酶在果树的落花落果中也有较高的相关性。

4.1.3 多聚半乳糖醛酸酶

多聚半乳糖醛酸酶 (Polygalacturonase ,PG) 是一种细胞壁结合蛋白,可以催化果胶分子中α- (1 ,4)-聚半乳糖醛酸的裂解,参与果胶的降解,使细胞壁结构解体,导致果实软化[150]。外切多聚半乳糖醛酸酶可水解果胶分子的非还原端产生半乳糖醛酸,内切多聚半乳糖醛酸酶可随机地在不同部位水解切开α-1,4-半乳糖苷键,断裂多聚半乳糖醛酸链,进而起到水解果胶的作用[151]。研究发现,多聚半乳糖醛酸酶在桃、番茄、荔枝、梨等果树的落花落果中发挥作用,该酶促进落花落果的原因是促进初生细胞壁松弛[152-155]。

4.1.4 过氧化物酶

过氧化物酶(Peroxidase,POD)是植物体内广泛而大量存在的、活性较高的一种氧化还原酶。它能催化植物体内多种反应,参与光合作用、呼吸作用、抗病作用、植物生长等诸多生理活动[156],因此,过氧化物酶在不同逆境胁迫下会呈现出不同结果。据报道,过氧化物酶活性在植物器官脱落过程中也有增强[151]。此外,还发现过氧化物酶具有分解吲哚乙酸的功能[157]。过氧化物酶对植物器官脱落的调节机制,主要是通过参与生长素的氧化进程实现,该酶能够降低离区生长素水平,促进植物器官脱落。在研究碳水化合物对龙眼脱落的影响中,发现过氧化物酶活性上升[73];尹宝重等[158]在探索短日照对红小豆花器官脱落的研究中,发现12 h短日照處理落花数和比例均最低,且过氧化物酶活性在脱落部位最低。

4.1.5 扩展蛋白

扩展蛋白(Expansin,EXP)是一种细胞壁蛋白,可调节细胞壁的松弛和伸展[159]。植物在正常生长条件下,细胞壁中扩展蛋白的含量较低,但在特定发育阶段,或遭受外界环境因子刺激时,扩展蛋白含量可迅速提高几倍甚至上百倍[160]。如在接骨木中,乙烯促进的小叶脱落期间,特异性检测到在遭受细胞分离的组织中扩展蛋白活性7倍增加,而在邻近的非脱落组织中活性较低[161]。此外,在大豆脱落叶柄离区也发现扩展蛋白有显著上调[162]。有数据显示,离区定位扩展蛋白抗原决定簇显著增加,并且在脱落之前的黄化阶段检测到最高水平的扩展蛋白,推测扩展蛋白可能增加纤维素晶体的紊乱,使得葡聚糖链更易于水解,这表明扩展蛋白通过促进纤维素与细胞壁中其他组分之间的连接降解而在脱落中起作用[163]。

4.2 离区细胞的分化

了解离区(Abscission Zone,AZ)细胞结构是了解果树落花落果所必须,前人对离区进行解剖结构观察,发现离区是由几层小细胞带组成,呈方形,含有致密的细胞质[164]。它们的分化可能在果实发育早期或相对较晚期开始[165],并且被大量的转录因子调控。这些转录因子主要包括JOINTLESS[143,166],MACROCALYX[167],LS[168],以及 BLADE-ON-PETIOLE (BOP)[169]。有人用图位克隆法,首次从番茄中克隆出了JOINTLESS基因,并鉴定该基因是具有MADS-box结构的转录因子,在控制离区发育上有重要作用,而且只存在于花梗中,在叶中不存在[166],表明该基因存在组织特异性。最近,又从“库尔勒香梨”中克隆出JOINTLESS基因,并将其在番茄中超表达,发现该基因导致果柄细胞结构变化,形成离区,并且增强了脱落相关基因的表达[143]。MACROCALYX和JOINTLESS 可相互作用,形成了具有特异DNA结合活性的二聚体。调节植物激素相关功能,细胞壁修饰,脂肪酸代谢,以及转录因子活性[167]。关于LS基因(番茄突变体侧抑制子),它是编码VHIID蛋白家族的新成员,也被认为是控制花梗离区形成的转录激活因子,控制着花梗离区的形成[168]。拟南芥BLADE-ON-PETIOLE 1(BOP1)和BOP2基因编码冗余转录因子,促进叶和花发育过程中的形态不对称。功能丧失的bop1、bop2突变体显示出一系列发育缺陷,包括丧失花器官脱落[170]。在烟草中也发现类似现象,NtBOP2基因的过表达导致离区细胞的异常伸长而引起花冠脱落失败[169],其机制是NtBOP2通过与TGA转录因子的相互作用来控制离区的发育。

除了以上几种转录因子以外,在拟南芥、番茄、水稻等模式植物中也有发现LeWUS,GOBLET (GOB)与Blind (Bl)在花梗离区有表达,但是在花梗周围的其他区域没有发现,这表明这些基因参与离区的功能[167]。番茄LeWUS与拟南芥WUS编码同源的转录因子,在茎尖分生组织中扮演着至关重要的角色[171-172]。同时,GOB、Bl以及Ls与拟南芥中的CUC、LAX以及RAX同源,这些基因调节腋生分生组织的发育[173-177 ]。花梗离区细胞一直到脱落都很小[178],而在番茄中,这个细胞的大小可能是由于Bl调节的[179]。另外,GOB可能会像拟南芥同源基因CUC2一样,起到维持杆状细胞的作用[180]。与SAM细胞相似,番茄花梗离区细胞也有能力发育不定芽[167],表明LeWUS活性可能影响离区细胞的命运,在茎尖分生组织中调节细胞活性,其作用方式与拟南芥同源物相似。这些发现表明,离区的形成与茎尖分生组织有着特定的调控机制。

4.3 脱落信号的产生与传递

果树中脱落信号的产生往往受环境因子的影响,如温度、光、水的过多或过少都会引起树体内一些化合物的变化,这些化合物主要包括激素、糖类、多胺等。而这些化合物的变化会引起一些基因或转录因子的变化,进而促进落花落果。

4.3.1 激素、糖类和多胺与落花落果

支持激素之间,激素和糖类之间以及激素和多胺之间联合作用的证据主要来自对苹果、芒果和柑橘的研究[66,92,181]。这些化合物的协同作用或拮抗作用及其相应的生物合成途径在调节果实脱落中起重要作用,从而能够对内部和外部因素作出充分反应[182]。目前,人们普遍认为,离区的乙烯和生长素含量之间的平衡是影响果实脱落的重要因素。乙烯促进果实脱落,而生长素阻碍这一过程,并降低了离区对乙烯的敏感性[57]。然而,生长素本身通过增加ACS基因的表达来刺激乙烯的产生[183-184]。反过来,乙烯作为反馈抑制因子阻止生长素从水果中运输[66]。关于生长素和乙烯相互作用的分子机制仍然缺乏详细了解。脱落酸似乎通过增加ACC水平而具有脱落加速效应[92,185]。因此,少数情况下果实脱落是由生长素和脱落酸的相对浓度决定[186]。脱落酸可能参与了糖缺乏的感知,进而将糖缺乏与果实脱落联系起来[92]。

基于转录组测序数据,ROS信号可能与糖缺乏有关,脱落酸信号可能同时协调糖-ROS。随后,被相关调节蛋白引起的脱落酸-乙烯联合作用可以促进果实脱落,并且在脱落果实中发现一个编码AMP激活蛋白激酶的基因上调,该基因可能参与脱落酸-蔗糖联合起作用[187]。另外,S6PDH基因也可能作为脱落酸介导的应激反应基因参与脱落酸-蔗糖联合作用[66]。与果实脱落控制相关的糖类和激素之间的关联中的关键基因需要进一步鉴定。特别是糖类作为信号分子在激素生物合成或果实脱落信号传导途径的直接调节中的作用仍有待研究。

在橄榄果实脱落期间,乙烯产量的增加伴随着Put积累,其中ADC和SAMDC活性分别上调和下调,目的是調节乙烯和多胺生物合成途径之间的关系,协调控制果实脱落[188-189]。外源乙烯均上调ADC和ODC活性,而与果实脱落相关的ACO抑制剂CoCl 2仅抑制ADC活性,提示通过ADC合成的Put主要通过刺激果实离区中的ACO活性来调控[190]。此外,CoCl 2通过增强SAMDC活性提高果实离区中的Spd和Spm量,从而增强SAM的通量,然而,外源乙烯下调SAMDC活性以及OeSAMDC1基因表达[190]。鉴于乙烯和多胺生物合成途径通过SAM连接,似乎乙烯和多胺之间的拮抗关系主要通过SAMDC活动进行调整[190]。多胺生物合成具有改变SAMDC活性的巨大潜力,表明这两种途径间竞争支持来自观察到OeACS2和OeEIL2表达在Spd的阴性对照下,而外源乙烯在橄榄成熟果实脱落期诱导其表达[189]。考虑到乙烯和多胺生物合成途径通过SAM连接,推测乙烯和多胺之间的拮抗关系主要通过SAMDC活性调节,并且所有可影响乙烯和多胺生物合成的内部和外部因素具有改变SAMDC活性的巨大潜力[190]。有报道,用Spd处理观察到OeACS和OeEIL2未表达,而用外源乙烯处理却诱导他们在成熟果实脱落期间表达[189]

4.3.2 转录因子与器官脱落

MYB基因家族是植物中最大的一类转录调控因子,在代谢、发育和抗逆性等方面起着重要作用[191]。在落花落果方面报道较少,但近年来有涉及在器官脱落上的研究报道,如已确定MYB家族基因AS1在建立萼片和花瓣离区位置方面具有作用,在as1突变花中,萼片和花瓣离区向远侧移位,内侧萼片的脱落显著延迟[192];木薯R2R3 MYB亚家族转录因子与环境应力诱导的脱落有关,有9个R2R3 MYB亚家族基因在叶子脱落期间高度表达,对启动子顺式元件的进一步分析证实R2R3 MYB亚家族响应乙烯,并调节木薯离区发育[193]。通过转录组分析番茄花梗组织,发现MYB78在离区特异性高表达,说明MYB78与器官的脱落存在着较大的相关性[194];通过克隆MYB基因并进行分析,发现MYB与花萼的脱落存在一定关系[195]。

WRKY转录因子是一类 DNA 结合蛋白,主要存在于植物中,参与植物的各个生理过程,涉及生长、发育和自我应激信号传导或与不同的基因和转录因子交叉调节[196]。WRKY轉录因子在器官脱落过程中,主要表现在对脱落酸和乙烯的响应。如WRKY8可调控脱落酸和乙烯信号通路,在TMVcg-拟南芥相互作用期间,介导脱落酸和乙烯信号之间的串扰,从而赋予TMV-cg抗性[197]。由此可见,可推测WPKY8可以调控乙烯和脱落酸,进而调节器官的脱落。此外WRKY 转录因子会通过激活水杨酸(Salicylic acid,SA)、茉莉酸(Jasmonicacid,JA)和乙烯信号通路,来改变相关基因的转录水平[198]。因此,推测在器官脱落中所发现的WRKY转录因子,部分可通过信号通路的调节来调控相关基因的表达而引起的器官脱落。

除以上所提及的转录因子以外,还有bHLH、YABBY、Zinc finger等转录因子在离区特异的被检测到[16],而bZIP转录因子在甜瓜脱落中也有涉及,在早期脱落的时候bZIP有所上调[131]。乙烯响应因子ERF/AP2受乙烯的调控,也参与了器官脱落[199-200],而ARF则通过调节生长素的响应来调节器官脱落。[15,201]

4.4 细胞壁降解

构成离区细胞壁的化合物如纤维素和果胶,必须在果实脱落前分解,这是果实脱落发育计划的最后一部分,其特征是细胞壁水解的基因表达和酶活性增加,包括多聚半乳糖醛酸酶(PG)、β-1,4-葡聚糖酶(EG)、β-半乳糖苷酶、扩展蛋白和果胶裂解酶[66,202]。其中PG和EG是苹果、橘子果实脱落的主要酶,它们是由乙烯直接调控的[202-204]。然而,据我们所知,目前还没有关于其他激素、糖类、多胺和其他代谢物是否直接调控这两个基因的信息。PGs和EGs已被分离、鉴定并显示属于一个多基因家族。例如,苹果中的MdPG2和小果脱落有关,而MdPG1却与脱落无关[66,184,205]。有趣的是,MdPG2表达可以通过果实离区中的NAA增强,但在成熟果实离区中受到抑制,这需要进一步研究[205]。也许,基因家族成员的功能多样化很好地满足了空间或时间调节的需求,使植物更适合生存。

5 展望

果树花果脱落是植物生长发育所必须,其对植物进化起着重要的作用,在生产上需合理调控,保持植物营养生长和生殖生长的平衡,以至于其既可获得较高产量,又可保证较好的树势,为果树在下一年获得好收成做充分准备。在生产上通常用调节水肥[206]、增加授粉、修剪、疏花蔬果、环割或环剥等方法来调节果树的营养生长和生殖生长,从而获得较高的产量和较好的果实品质[207-208]。如通过研究龙眼的修剪方法对龙眼结果的影响发现,结果枝率50%~60%、单穗果数60粒左右,适度的回缩修剪,是龙眼植株获取生长与结果、产量与品质平衡关系的最优组合[209]。

果树落花落果的直接原因是由于细胞壁的降解所致,而植物细胞壁的降解主要是由于纤维素酶、多聚半乳糖醛酸酶、果胶酶等多种酶共同作用的结果[151]。与之相关的生理、分子机制复杂多样,如需详细、清楚的揭示其机制,需结合转录组学,蛋白组学,代谢组学等多组学分析果树体内脱落相关酶、激素、多胺、转录因子、microRNA以及长链非编码RNA。在揭示清楚其机制之后,可通过杂交选育、遗传转化、基因编辑,基因敲除等生物技术对果树的基因进行定向改造,进而培育出低落花落果率的优良品种[210-212],增加座果率,提高果实品质。

参 考 文 献:

[1] Estornell L H, Agustí J, Merelo P, et al. Elucidating mechanisms underlying organ abscission [J].Plant Science, 2013, 199-200C(3):48-60.

[2] Ying P, Li C, Liu X, et al. Identification and molecular characterization of an IDA-like gene from litchi, LcIDL1, whose ectopic expression promotes floral organ abscission in Arabidopsis[J].Scientific Reports, 2016(6):37135-37147.

[3] 齐明芳, 许 涛, 郭 泳,等. 园艺植物器官脱落研究进展[J].沈阳农业大学学报,2010,41(6):643-648.

[4] Costa G, Dal Cin V, Ramina A. Physiological, molecular and practical aspects of fruit abscission[J].Acta Horticulturae,2006,727(727):301-310.

[5] Wu X, Yu M, Chen H, et al. Regulation of the protein and gene expressions of ethylene biosynthesis enzymes under different temperature during peach fruit ripening[J].Acta Physiologiae Plantarum,2018, 40(3):52-68.

[6] Gupta M. Effect of black polythene mulch along with irrigation on pre-harvest fruit drop in plum (Prunus salicina L) cv. Satluj Purple.[J]. Hortflora Research Spectrum,2014,3(2):142-145.

[7] VillalobosAcua, M. G, Biasi, W. V, Flores, S, et al. Preharvest application of 1-methylcyclopropene influences fruit drop and storage potential of 'Bartlett' pears.[J].Hortscience A Publication of the American Society for Horticultural Science, 2010, 45(4):610-616.

[8] 侍 瑞,陳辉惶,努尔尼萨,等. 阿克苏地区骏枣落果规律及其保果措施[J].西北农业学报,2013, 22(6):108-112.

[9] Jones J E, Mertes E, Close D C. Does carbohydrate availability play a role in sweet cherry fruitlet abscission[J]. Acta Horticulturae, 2016, 1119:53-58.

[10] Nakano T, Kato H, Shima Y, et al. Apple SVP family MADS-box proteins and the tomato pedicel abscission zone regulator JOINTLESS have similar molecular activities.[J]. Plant & Cell Physiology, 2015, 56(6):1097-1144.

[11] Xie R, Dong C, Ma Y, et al. Comprehensive analysis of SAUR, gene family in citrus and its transcriptional correlation with fruitlet drop from abscission zone A[J]. Functional & Integrative Genomics, 2015, 15(6):729-740.

[12] Hagemann M H, Patrick W, Martin H, et al. Ethephon induced abscission in mango: physiological fruitlet responses[J]. Frontiers in Plant Science, 2015, 6:706-717.

[13] Mcfadyen L, Robertson D, Sedgley M, et al. Effects of the ethylene inhibitor aminoethoxyvinylglycine (AVG) on fruit abscission and yield on pruned and unpruned macadamia trees[J]. Scientia Horticulturae, 2012, 137:125-130.

[14] Parra R, Paredes M A, Sanchezcalle I M, et al. Comparative transcriptional profiling analysis of olive ripe-fruit pericarp and abscission zone tissues shows expression differences and distinct patterns of transcriptional regulation[J]. BMC Genomics, 2013, 14(1):866-886.

[15] Domingos S, Scafidi P, Cardoso V, et al. Flower abscission in Vitis vinifera L. triggered by gibberellic acid and shade discloses differences in the underlying metabolic pathways[J].Frontiers in Plant Science, 2015, 6(457):1-18.

[16] Kitajima A, Sasagawa K, Hasegawa K. Development of the abscission zone and morphological changes of abscission cells in the abscission process of persimmon fruit[J]. Acta Horticulturae, 2003(601) :85-87.

[17] Li C, Wang Y, Huang X, et al. An improved fruit transcriptome and the identification of the candidate genes involved in fruit abscission induced by carbohydrate stress in litchi[J]. Frontiers in Plant Science, 2015, 6(439):1-15.

[18] 张 燕, 郭晋平, 张芸香. 文冠果落花落果成因及保花保果技术研究进展[J].经济林研究, 2012, 30(4):180-184.

[19] Garner L C, Lovatt C J. Physiological factors affecting flower and fruit abscission of ‘Hass avocado[J]. Scientia Horticulturae, 2016, 199:32-40.

[20] Mesejo C, Muozfambuena N, Reig C, et al. Cell division interference in newly fertilized ovules induces stenospermocarpy in cross-pollinated citrus fruit[J]. Plant Science, 2014, 225(8):86-94.

[21] Cin V D, Danesin M, Boschetti A, et al. Ethylene biosynthesis and perception in apple fruitlet abscission (Malus domestica L. Borck)[J]. Journal of Experimental Botany, 2005, 56(421):2995-3005.

[22] Ferrara G, Mazzeo A, Matarrese A M S, et al. Ethephon as a potential abscission agent for table grapes: effects on pre-harvest abscission, fruit quality, and residue[J]. Frontiers in Plant Science, 2016, 7(620):1-7.

[23] 鄭文芳, 游纯诚, 范接荣,等. 南方柑桔异常落花落果的成因及对策[J]. 现代农业科技, 2014(16):96-96.

[24] Ortega E, Dicenta F, Egea J. Rain effect on pollen-stigma adhesion and fertilization in almond[J]. Scientia Horticulturae, 2007, 112(3):345-348.

[25] 冯美利, 李 杰, 唐龙祥,等. 香水椰子开花授粉习性与气候因子的相关分析[J].西南农业学报, 2015, 28(4):1780-1783.

[26] Ruíz R, Guardiola J L. Carbohydrate and mineral nutrition of orange fruitlets in relation to growth and abscission[J]. Physiologia Plantarum, 2010, 90(1):27-36.

[27] Erel R, Yermiyahu U, Yasuor H, et al. Phosphorous Nutritional Level, Carbohydrate reserves and flower auality in olives[J]. Plos One, 2016, 11(12):1-19.

[28] 杨子琴,李 茂,章笑赟,等.饥饿胁迫对龙眼果实脱落及糖代谢的影响[J].果树学报,2011,28(3):428-432.

[29] Garner L C, Lovatt C J. The relationship between flower and fruit abscission and alternate bearing of 'Hass' avocado[J]. Journal of the American Society for Horticultural Science, 2008, 133(1):3-10.

[30] Trueman S J, Richards S, Mcconchie C A, et al. Relationships between kernel oil content, fruit removal force and abscission in macadamia.[J]. Australian Journal of Experimental Agriculture, 2000, 40(6):859-866.

[31] Petoukhov V, Semenov V A. A link between reduced Barents‐Kara sea ice and cold winter extremes over northern continents[J]. Journal of Geophysical Research Atmospheres, 2010, 115(D21111):1-11.

[32] Assmann S M. Natural Variation in Abiotic Stress and Climate Change Responses inArabidopsis: Implications for Twenty-First-Century Agriculture[J]. International Journal of Plant Sciences, 2013, 174(1):3-26.

[33] Bergey D R, Orozcocardenas M, De D M, et al. A wound- and systemin-inducible polygalacturonase in tomato leaves.[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(4):1756-1760.

[34] Peres N A, Mackenzie S J, Peever T L, et al. Postbloom fruit drop of citrus and key lime anthracnose are caused by distinct phylogenetic lineages of Colletotrichum acutatum[J]. Phytopathology, 2008, 98(3):345-352.

[35] Kumar P R, Gohar T, Dinesh P, et al. Modeling of the MAPK machinery activation in response to various abiotic and biotic stresses in plants by a system biology approach[J]. Bioinformation, 2013, 9(9):443-449.

[36] Chung K R, Shilts T, Ertürk U, et al. Indole derivatives produced by the fungus Colletotrichum acutatum causing lime anthracnose and postbloom fruit drop of citrus[J]. Fems Microbiology Letters, 2010, 226(1):23-30.

[37] Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance[J]. Planta, 2003, 218(1):1-14.

[38] Bertamini M, Zulini L, Muthuchelian K, et al. Low night temperature effects on photosynthetic performance on two grapevine genotypes[J]. Biologia Plantarum, 2007, 51(2):381-385.

[39] Ledesma N A, Nakata M, Sugiyama N. Effect of high temperature stress on the reproductive growth of strawberry cvs. ‘Nyoho and ‘Toyonoka[J]. Scientia Horticulturae, 2008, 116(2):186-193.

[40] Acar I, Kakani V G. The effects of temperature on in vitro, pollen germination and pollen tube growth of Pistacia, spp[J]. Scientia Horticulturae, 2010, 125(4):569-572.

[41] Cottee N S, Tan D K Y, Bange M P, et al. Multi-level determination of heat tolerance in cotton (Gossypium hirsutum L.) under field conditions.[J]. Crop Science, 2010, 50(6):2553-2564.

[42] Greer D H, Weston C. Heat stress affects flowering, berry growth, sugar accumulation and photosynthesis of Vitis vinifera cv. Semillon grapevines grown in a controlled environment[J]. Functional Plant Biology, 2010, 37(3):206-214.

[43] Li X, Kitajima A, Habu T, et al. Induction and characterization of fruit abscission during early physiological fruit drop in citrus[J]. Horticulture Journal, 2016, 86(1):1-8.

[44] Herrero M. Male and female synchrony and the regulation of mating in flowering plants.[J]. Philosophical Transactions Biological Sciences, 2003, 358(1434):1019-1024.

[45] Hedhly A, Hormaza Ji, Herrero M. Global warming and sexual plant reproduction.[J]. Trends in Plant Science, 2008, 14(1):30-36.

[46] Rodrigo J, Herrero M. Effects of pre-blossom temperatures on flower development and fruit set in apricot[J]. Scientia Horticulturae, 2002, 92(2):125-135.

[47] Higuchi H, Utsunomiya N, Sakuratani T. High temperature effects on cherimoya fruit set, growth and development under greenhouse conditions[J]. Scientia Horticulturae, 1998, 77(1-2):23-31.

[48] Couto M, Raseira M C B, Herter F G, et al. Influence of high temperatures at blooming time on pollen production and fruit set of peach 'Maciel' and 'Granada'.[J]. Acta Horticulturae, 2010(872):225-230.

[49] Tromp J, Borsboom O. The effect of autumn and spring temperature on fruit set and on the effective pollination period in apple and pear[J]. Scientia Horticulturae, 1994, 60(1-2):23-30.

[50] Beppu K, Suehara T, Kataoka I. Embryo sac development and fruit set of 'Satohnishiki' sweet cherry as affected by temperature, GA3 and paclobutrazol[J]. Journal of the Japanese Society for Horticultural Science, 2001, 70(70):157-162.

[51] Hedhly A, Hormaza J I, Romero M H. Warm temperatures at bloom reduce fruit set in sweet cherry[J]. Journal of Applied Botany & Food Quality, 2007, 81(81):158-164.

[52] Simons R K. Tissue response of young developing apple fruits to freeze injury[J]. J. Amer. Soc. Hort. Sci, 1969, 94: 376-381.

[53] Stsser R, Anvari S F. On the senescence of ovules in cherries[J]. Scientia Horticulturae, 1982, 16(1):29-38.

[54] Cerovic R, Ruzic, D, Micic N. Viability of plum ovules at different temperatures[J]. Annals of Applied Biology, 2000, 137(1): 53-59.

[55] Sedgley M, Annells C M. Flowering and fruit-set response to temperature in the avocado cultivar ‘Hass[J]. Scientia Horticulturae, 1981, 14(1):27-33.

[56] Taylor J E, Whitelaw C A. Signal in abscission[J]. New Phytologist, 2001, 151(2):323-340.

[57] Michelakis N. Yield response of table and oil olive varieties to different water use levels under drip irrigation.[J]. Acta Horticulturae, 1990, 286(286):271-274.

[58] Lavee S, Nashef M, Wodner M, et al. The effect of complementary irrigation added to old olive trees (Olea europaea L.) cv. Souri on fruit characteristics, yield and oil production[J]. Advances in Horticultural Science, 1990, 4(3):135-138.

[59] George A P, Nissen R J. The effects of temperature, vapour pressure deficit and soil moisture stress on growth, flowering and fruit set of custard apple ( Annona cherimola × Annona squamosa ) ‘African Pride[J]. Scientia Horticulturae, 1988, 34(3):183-191.

[60] Garcíatejero I, Romerovicente R, Jiménezbocanegra J A, et al. Response of citrus trees to deficit irrigation during different phenological periods in relation to yield, fruit quality, and water productivity.[J]. Agricultural Water Management, 2010, 97(5):689-699.

[61] Badal E, El-Mageed TAA, Buesa I, et al. Moderate plant water stress reduces fruit drop of ‘Rojo Brillante persimmon (Diospyros kaki) in a Mediterranean climate[J]. Agricultural Water Management, 2013, 119:154-160.

[62] Aloni B, Karni L, Zaidman Z, et al. Changes of carbohydrates in pepper (Capsicum annuum L.) flowers in relation to their abscission under different shading regimes[J]. Annals of Botany, 1996, 78(2):163-168.

[63] Ferree D C, Mcartney S J, Scurlock D M. Influence of irradiance and period of exposure on fruit set of French-American hybrid grapes[J]. Journal of the American Society for Horticulturalence, 2001, 126(3):283-290.

[64] Marcelis L F M, Heuvelink E, Hofman-Eijer L R B, et al. Flower and fruit abortion in sweet pepper in relation to source and sink strength[J]. Journal of Experimental Botany, 2004, 55(406):2261-2268.

[65] Burkey K O. Response of soybean photosynthesis and chloroplast membrane function to canopy development and mutual shading[J]. Plant Physiology, 1991, 97(1):245-252.

[66] 吴建阳,李彩琴,李建国.荔枝ACS1基因的分离及其与幼果脱落的关系[J].果树学报,2017,34(07):817-827.

[67] Kuang J F, Wu J Y, Zhong H Y, et al. Carbohydrate stress affecting fruitlet abscission and expression of genes related to auxin signal transduction pathway in Litchi[J]. International Journal of Molecular Sciences, 2012, 13(12):16084.

[68] Santiago J, Brandt B, Wildhagen M, et al. Mechanistic insight into a peptide hormone signaling complex mediating floral organ abscission[J]. eLife, 2016, 5(1): 15075-15094.

[69] Valdez M T, Ito T, Maruo T, et al. Effects of root zone temperature and N-K nutrition on the growth, flower and pod abscissions, pod production and mineral contents of bush snap bean[J]. Seibutsu kankyo chosetsu. Environment control in biology, 2010, 40(2):177-186.

[70] 楊 波, 车玉红, 郭春苗,等. 扁桃幼果生理脱落与矿质元素浓度的关系[J].新疆农业科学, 2015, 52(5):852-857.

[71] Sundaresan S, Philosoph-Hadas S, Kochanek B, et al. Ethylene-enhanced flower abscission is associated with specific increased pH of the cytosol in abscission zone cells of Arabidopsis, wild rocket and tomato plants[C]// 21st conference of the international plant growth substances association. 2013.

[72] Yang Z, Zhong X, Fan Y, et al. Burst of reactive oxygen species in pedicel-mediated fruit abscission after carbohydrate supply was cut off in longan (Dimocarpus longan)[J]. Frontiers in Plant Science, 2015, 6:360-370.

[73] Santner A, Estelle M. Recent advances and emerging trends in plant hormone signalling[J]. Nature, 2009, 459(7250):1071-1078.

[74] Glazińska, Paulina, Wojciechowski W, Kulasek M, et al. De novo transcriptome profiling of flowers, flower pedicels and pods ofLupinus luteus(Yellow Lupine) reveals complex expression changes during organ abscission[J]. Frontiers in Plant Science, 2017, 8(641):1-29.

[75] 王家利, 刘冬成, 郭小丽,等. 生长素合成途径的研究进展[J].植物学报, 2012, 47(3):292-301.

[76] 刘瑞娥, 胡长贵, 孙玉强. 植物生长素反应因子研究进展[J].植物生理学报, 2011, 47(7):669-679.

[77] Addicott F T, Lynch R S, Carns H R. Auxin gradient theory of abscission regulation[J]. Science, 1955, 121(3148):644-645.

[78] Drazeta L, Lang A, Cappellini C, et al. Vessel differentiation in the pedicel of apple and the effects of auxin transport inhibition.[J]. Physiologia Plantarum, 2004, 120(1):162-170.

[79] Kühn N, Serrano A, Abello C, et al. Regulation of polar auxin transport in grapevine fruitlets ( Vitis vinifera L.) and the proposed role of auxin homeostasis during fruit abscission[J]. BMC Plant Biology, 2016, 16(1):234-251.

[80] 史自航,韩新奇,姜 赟,等.SlPIN1对番茄花器官脱落及生长素分布的影响[J].沈阳农业大学学报,2018,49(1):1-7.

[81] Hagen G, Guilfoyle T. Auxin-responsive gene expression: genes, promoters and regulatory factors.[J]. Plant Molecular Biology, 2002, 49(3-4):373-385.

[82] 齊明芳. 番茄花柄脱落相关基因表达谱分析及多聚半乳糖醛酸酶性质研究[D].沈阳:沈阳农业大学, 2011.

[83] Gray W M, Estelle M. Function of the ubiquitin-proteasome pathway in auxin response.[J]. Trends in Biochemical Sciences, 2000, 25(3):133-138.

[84] Stern R A, Gazit S. The synthetic auxin 3,5,6-TPA reduces fruit drop and increases yield in `Kaimana' litchi[J]. Journal of Pomology & Horticultural Science, 2015, 74(2):203-205.

[85] Davière J M, Achard P. Gibberellin signaling in plants[J]. Development, 2013, 140(6):1147-1151.

[86] 张国华, 张艳洁, 丛日晨,等. 赤霉素作用机制研究进展[J].西北植物学报, 2009, 29(2): 412-419.

[87] 王 雄, 陈金印, 刘善军. 喷施GA_3和2,4-D对留树保鲜脐橙落果和内源激素含量的影响[J].园艺学报, 2012, 39(3):539-544.

[88] 黄 森, 张继澍, 张院民. 赤霉素处理对采后柿果实乙烯生物合成的影响[J].中国农学通报, 2006, 22(3):98-100.

[89] 樊卫国, 安华明, 刘国琴,等. 刺梨果实与种子内源激素含量变化及其与果实发育的关系[J].中国农业科学, 2004, 37(5):728-733.

[90] Chen H Q, Dekkers K L, Cao L, et al. Evaluation of growth regulator inhibitors for controlling postbloom fruit drop (PFD) of citrus induced by the fungus Colletotrichum acutatum[J]. Hortscience, 2006, 41(5):1317-1321.

[91] Gómez-Cadenas A, Mehouachi J, Tadeo F R, et al. Hormonal regulation of fruitlet abscission induced by carbohydrate shortage in citrus[J]. Planta, 2000, 210(4):636-643.

[92] 韩惠宾, 张国华, 王国栋. 细胞分裂素参与植物维管系统发育的信号转导研究进展[J]. 植物生理学报, 2015(7):996-1002.

[93] Trueman S J. Endogenous cytokinin levels during early fruit development of macadamia[J]. African Journal of Agricultural Research, 2010, 5(24):3402-3407.

[94] Rungruchkanont K. Auxins and cytokinins regulate abscission and physiological changes of flowers in cut Dendrobium cv. Eiskul inflorescences[J]. Science Journal Ubon Ratchathani University, 2011, 2(1):1-11.

[95] Hu Zhi-Hui , Wang Y J, Chen C Y. Effects of spraying cytokinin on abscission rate and enzymic activity of flowers and pods of cowpea[J]. Plant Science Journal, 2016, 34(3):439-445.

[96] 胡志辉, 汪艳杰, 陈禅友. 喷施细胞分裂素对豇豆花荚脱落率及花荚酶活性的影响[J]. 植物科学学报, 2016, 34(3):439-445.

[97] 潘瑞炽.植物生理学(7版)[M]. 北京: 高等教育出版社, 2012: 219-220.

[98] Ohkuma K, Lyon J L, Addicott F T, et al. Abscisin II, an abscission-accelerating substance from young cotton fruit[J]. Science, 1963, 142(3599):1592-1593.

[99] Davis L A, Addicott F T. Abscisic Acid: correlations with abscission and with development in the cotton fruit.[J]. Plant Physiology, 1972, 49(4):644-649.

[100] Gomezcadenas A, Tadeo F R, Talon M, et al. Leaf abscission induced by ethylene in water-stressed intact seedlings of Cleopatra mandarin requires previous abscisic acid accumulation in roots[J]. Plant Physiology, 1996, 112(1):401-408.

[101] Cracker L E, Abeles F B. Abscission: role of abscisic Acid[J]. Plant Physiology, 1969, 44(8):1144-1149.

[102] Chen B, Ma J, Xu Z, et al. Abscisic acid and ethephon regulation of cellulase in the endosperm cap and radicle during lettuce seed germination[J]. Journal of Integrative Plant Biology,2016, 58(10):859-869.

[103] Riov J. Characterization of Abscisic acid-induced ethylene production in citrus leaf and tomato fruit tissues[J]. Plant Physiology, 1990, 92(1):48-53.

[104] 姚珍珍. 晚熟臍橙落花落果生态影响因子及生理机制研究[D].重庆:西南大学,2012.

[105] 陈 哲,胡福初,年宇薇,等.无核荔枝ABA生物合成关键酶LcNCED基因克隆及其在生理落果阶段中的表达分析[J].热带作物学报,2018,39(2):300-307.

[106] Giulia E, Alessandro B, Mariano D, et al. Early induction of apple fruitlet abscission is characterized by an increase of both isoprene emission and abscisic acid content[J]. Plant Physiology, 2013, 161(4):1952-1969.

[107] Burg S P. Ethylene, plant senescence and abscission[J]. Plant Physiology, 1968, 43(9):1503-1511.

[108] Patterson S E, Bleecker A B. Ethylene-dependent and independent processes associated with floral organ abscission in Arabidopsis[J]. Plant Physiology, 2004, 134(1):194-203.

[109] Ruperti B, Cattivelli L, Pagni S A. Ethylene-responsive genes are differentially regulated during abscission, organ senescence and wounding in peach (Prunus persica)[J]. Journal of Experimental Botany, 2002, 53(368):429-437.

[110] Del C E, Bennett A B. Pedicel breakstrength and cellulase gene expression during tomato flower abscission[J]. Plant Physiology, 1996, 111(3):813-820.

[111] Yuan R. Effects of temperature on fruit thinning with ethephon in ‘Golden Delicious apples[J]. Scientia Horticulturae, 2007, 113(1):8-12.

[112] Kolaric J, Stopar M. Role of ethylene related genes in apple (Malus domestica Borkh.) fruitlet abscission after plant growth regulator application or shading[J]. Acta Horticulturae, 2013, 998(998):67-75.

[113] Eccher G, Begheldo M, Boschetti A, et al. Roles of ethylene production and ethylene receptor expression in regulating apple fruitlet abscission[J]. Plant Physiology, 2015, 169(1):125-128.

[114] Agustí J, Conesa A, Cercós M, et al. Calcium signaling in water stress-induced leaf abscission in citrus plants[M]// Advances in Plant Ethylene Research. Springer Netherlands, 2007:303-304.

[115] Merelo P, Agustí J, Arbona V, et al. Corrigendum: cell wall remodeling in abscission zone cells during ethylene-promoted fruit abscission in citrus[J]. Frontiers in Plant Science, 2017, 8:126-146.

[116] Wang Y, Zou W, Xiao Y, et al. MicroRNA1917 targets CTR4 splice variants to regulate ethylene responses in tomato.[J]. Journal of Experimental Botany, 2018, 69(5):1-26.

[117] 牟望舒, 应铁进. 植物乙烯信号转导研究进展[J].园艺学报, 2014, 41(9):601-608.

[118] Roberts J A, And K A E, Gonzalezcarranza Z H. Abscission, dehiscence, and other cell separation processes[J]. Annual Review of Plant Biology, 2002, 53(1):131-158.

[119] Uthaichay N, Ketsa S, Doorn W G V. 1-MCP pretreatment prevents bud and flower abscission in Dendrobium, orchids[J]. Postharvest Biology & Technology, 2007, 43(3):374-380.

[120] 周文彬, 邱保勝. 植物细胞内pH值的测定[J].植物生理学报, 2004, 40(6):724-728.

[121] Savchenko G, Wiese C, Neimanis S, et al. pH regulation in apoplastic and cytoplasmic cell compartments of leaves.[J]. Planta, 2000, 211(2):246-255.

[122] Osborne DJ.Abscission[J]. Critical Reviews in Plant Sciences, 1989, 8(2):103-129.

[123] Sundaresan S, Philosoph-Hadas S, Riov J, et al. Abscission of flowers and floral organs is closely associated with alkalization of the cytosol in abscission zone cells[J]. Journal of Experimental Botany, 2015, 66(5):1355-68.

[124] Grignon C, Sentenac A, H. pH and Ionic Conditions in the Apoplast[J]. Annu.rev.plant Physiol.mol.biol, 2003, 42(1):103-128.

[125] Fukuda K, Yamada Y, Miyamoto K, et al. Separation of abscission zone cells in detached Azolla roots depends on apoplastic pH[J]. Journal of Plant Physiology, 2013, 170(1):18-24.

[126] Cai S, Lashbrook C C. Stamen abscission zone transcriptome profiling reveals new candidates for abscission control: enhanced retention of floral organs in transgenic plants overexpressing Arabidopsis ZINC FINGER PROTEIN2[J]. Plant Physiology, 2008, 146(3):1305-1321.

[127] Javier A, Paz M, Manuel C, et al. Comparative transcriptional survey between laser-microdissected cells from laminar abscission zone and petiolar cortical tissue during ethylene-promoted abscission in citrus leaves[J]. Bmc Plant Biology, 2009, 9(1):1-20.

[128] Hong Z, Dardick C D, Beers E P, et al. Transcriptomics of shading-induced and NAA-induced abscission in apple (Malus domestica) reveals a shared pathway involving reduced photosynthesis, alterations in carbohydrate transport and signaling and hormone crosstalk[J]. Bmc Plant Biology, 2011, 11(1):138.

[131] Gilamado J A, Gomezjimenez M C. Transcriptome analysis of mature fruit abscission control in olive[J]. Plant & Cell Physiology, 2013, 54(2):244-269.

[130] Corbacho J, Romojaro F, Pech J C, et al. Transcriptomic events involved in melon mature-fruit abscission comprise the sequential induction of cell-wall degrading genes coupled to a stimulation of endo and exocytosis[J]. Plos One, 2013, 8(3):58363-85832.

[131] Meir S, Lers A. Microarray analysis of the abscission-related transcriptome in the tomato flower abscission zone in response to auxin depletion.[J]. Plant Physiology, 2010, 154(4):1929-1956.

[132] 邱棟梁, 刘星辉, 郭素枝. 模拟酸雨对龙眼幼果纤维素酶活性和内源激素含量的影响[J].应用与环境生物学报, 2004, 10(1):35-38.

[133] Bar-Dror T, Dermastia M, Kladnik A, et al. Programmed cell death occurs asymmetrically during abscission in tomato[J]. Plant Cell, 2011, 23(11):4146-4163.

[134] Tariq M, Yasmeen A, Ahmad S, et al. Shedding of fruiting structures in cotton: factors, compensation and prevention[J]. Tropical & Subtropical Agroecosystems, 2017, 20(2):251-252.

[135] Roberts J A, Gonzalezcarranza Z H. Pectinase functions in abscission[J]. Stewart Postharvest Review, 2009, 5(1):1-4.

[136] Levine E, Hall F R. Pectinaes and cellulases from plum Curculio larvae: possible causes of apple and plum fruit abscission[J]. Entomologia Experimentalis Et Applicata, 2011, 23(3):259-268.

[137] Djanaguiraman M, Sheeba J A, Devi D D, et al. Nitrophenolates spray can alter boll abscission rate in cotton through enhanced peroxidase activity and increased ascorbate and phenolics levels[J]. Journal of Plant Physiology, 2010, 167(1):1-9.

[138] Niederhuth C E, Patharkar O R, Walker J C. Transcriptional profiling of the Arabidopsis abscission mutant hae hsl2, by RNA-Seq[J]. BMC Genomics, 2013, 14(1):1-12.

[139] Adouli B, Zamani Z, Fattahi-Mohgadam M R, et al. Effects of alternate bearing and 2,4-D application on fruit growth pattern, abscission enzymes activity, ACC content of calyx and carbohydrates partitioning of fruits in Satsuma mandarin (Citrus unshiu, Marc.) cv. Miyagawa[J]. Scientia Horticulturae, 2018, 238:58-65.

[140] Horton R F, Osborne D J. Senescence, abscission and cellulase activity in Phaseolus vulgaris[J]. Nature, 1967, 214(5093):1086-1088.

[141] 胡安生,林蓓芬,任道順,等.柑桔果实的脱落.三十烷醇对本地早幼果外植体脱落中纤维素酶和果胶酶的作用[J].园艺学报,1985(2):77-82.

[142] Greenberg J, Goren R, Riov J. The Role of cellulase and polygalacturonase in abscission of young and mature shamouti orange fruits[J]. Physiologia Plantarum, 1975, 34(1):1-7.

[143] Qi X, Hu S, Zhou H, et al. A MADS-box transcription factor of 'Kuerlexiangli'(Pyrus sinkiangensis Yu) PsJOINTLESS gene functions in floral organ abscission[J].Gene, 2018, 642:163-171.

[144] 查笑君, 马伯军, 潘建伟,等. 果胶酯酶的研究进展[J].安徽农业科学, 2010, 38(16):8293-8295.

[145] 高欣欣,刘少春,张跃彬,等.植物器官脱落相关激素和酶的研究进展[J].中国农学通报,2013,29(33):17-21.

[146] Yager R E. Possible role of pectic enzymes in abscission.[J]. Plant Physiology, 1960, 35(2):157-162.

[147] Ratner A, Goren R, Monselise S P. Activity of pectin esterase and cellulase in the abscission zone of citrus leaf explants[J]. Plant Physiology, 1969, 44(12):1717-1723.

[148] Tabuchi T, Ito S, Arai N. Development of the abscission zones in j-2in pedicels of Galapagos wild tomatoes.[J]. Engei Gakkai Zasshi, 2000, 69(4):443-445.

[149] Goldentalcohen S, Burstein C, Biton I, et al. Ethephon induced oxidative stress in the olive leaf abscission zone enables development of a selective abscission compound[J]. BMC Plant Biology, 2017, 17(1):87-104.

[150] 寇曉虹, 罗云波. 植物多聚半乳糖醛酸酶功能研究进展[J].生物技术通报, 2003, 24(5):15-18.

[151] 齐明芳,李天来,许涛,曹霞.园艺作物器官脱落相关酶的研究进展[J].北方园艺,2007(06):62-65

[152] Bonghi C, Rascio N, Ramina A, et al. Cellulase and polygalacturonase involvement in the abscission of leaf and fruit explants of peach[J]. Plant Molecular Biology, 1992, 20(5):839-848.

[153] Murayama H, Sekine D, Yamauchi Y, et al. Effect of girdling above the abscission zone of fruit on 'Bartlett' pear ripening on the tree.[J]. Journal of Experimental Botany, 2006, 57(14):3679-3686.

[154] Peng G, Wu J, Lu W, et al. A polygalacturonase gene clustered into clade E involved in lychee fruitlet abscission[J]. Scientia Horticulturae, 2013, 150(2):244-250.

[155] Qi M F, Xu T, Chen W Z, et al. Ultrastructural localization of polygalacturonase in ethylene-stimulated abscission of tomato pedicel explants.[J]. The Scientific World Journal, 2014(1):389896-389905.

[156] 顾雯雯, 胡亚婷, 韩 英,等. 植物过氧化物酶同工酶的研究进展[J].安徽农业科学, 2014(34):12011-12013.

[157] Intapruk C, Yamamoto K, Sekine M, et al. Regulatory sequences involved in the peroxidase gene expression in Arabidopsis thaliana.[J]. Plant Cell Reports, 1994, 13(3-4):123-129.

[158] 尹宝重, 刘 盼, 张月辰. 红小豆花器官脱落对短日照诱导的生理响应[J].作物杂志, 2015(1):78-85.

[159] 赵美荣,李永春, 王 玮. 扩展蛋白与植物抗逆性关系研究进展[J].植物生理学报, 2012, 48(7):637-642.

[160] 徐 筱, 徐 倩, 张 铠,等. 植物扩展蛋白基因的研究进展[J].北京林业大学学报, 2010, 32(5):154-162.

[161] Belfield E J, Ruperti B, Roberts J A, et al. Changes in expansin activity and gene expression during ethylene-promoted leaflet abscission in Sambucus nigra.[J]. Journal of Experimental Botany, 2005, 56(413):817-823.

[162] Tucker M L, Burke A, Murphy C A, et al. Gene expression profiles for cell wall-modifying proteins associated with soybean cyst nematode infection, petiole abscission, root tips, flowers, apical buds, and leaves[J]. Journal of Experimental Botany, 2007, 58(12):3395-3406.

[163] Tsuchiya M, Satoh S, Iwai H. Distribution of XTH, expansin, and secondary-wall-related CesA in floral and fruit abscission zones during fruit development in tomato (Solanum lycopersicum)[J]. Frontiers in Plant Science, 2015, 6(323):323-332.

[164] Sexton R., Roberts J. Cell biology of abscission[J]. Annual Review of Plant Physiology, 1982, 33: 133-162.

[165] Sun L, Bukovac M J, Forsline P L, et al. Natural variation in fruit abscission-related traits in apple (Malus)[J]. Euphytica, 2009, 165(1):55-67.

[166] Mao L, Begum D, Chuang H W, et al. JOINTLESS is a MADS-box gene controlling tomato flower abscission zone development.[J]. Nature, 2000, 406(6798):910-913.

[167] Nakano T, Kimbara J, Fujisawa M, et al. MACROCALYX and JOINTLESS interact in the transcriptional regulation of tomato fruit abscission zone development.[J]. Plant Physiology, 2012, 158(1):439-450.

[168] Nakano T, Fujisawa M, Shima Y, et al. Expression profiling of tomato pre-abscission pedicels provides insights into abscission zone properties including competence to respond to abscission signals[J]. Bmc Plant Biology, 2013, 13(1):40-59.

[169] Wu X M, Yu Y, Han L B, et al. The tobacco BLADE-ON-PETIOLE2 gene mediates differentiation of the corolla abscission zone by controlling longitudinal cell expansion[J]. Plant Physiology, 2012, 159(2):835-850.

[170] Mckim S M, Stenvik G E, Butenko M A, et al. The BLADE-ON-PETIOLE genes are essential for abscission zone formation in Arabidopsis.[J]. Development, 2008, 135(8):1537-1546.

[171] Mayer K F, Schoof H, Haecker A, et al. Role of WUSCHEL, in regulating stem cell fate in the Arabidopsis, shoot meristem[J]. Cell, 1998, 95(6):805-815.

[172] Reinhardt D, Frenz M, Mandel T, et al. Microsurgical and laser ablation analysis of interactions between the zones and layers of the tomato shoot apical meristem.[J]. Development, 2003, 130(17):4073-4083.

[173] Greb T, Clarenz O, Schafer E, et al. Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation[J]. Genes & Development, 2003, 17(9):1175-1187.

[174] Keller T, Abbott J, Moritz T, et al. Arabidopsis REGULATOR OF AXILLARY MERISTEMS1 controls a leaf axil stem cell niche and modulates vegetative development.[J]. Plant Cell, 2006, 18(3):598-611.

[175] Müller D, Schmitz G, Theres K. Blind homologous R2R3 Myb genes control the pattern of lateral meristem initiation in Arabidopsis[J]. Plant Cell, 2006, 18(3):586-597.

[176] Raman S, Greb T, Peaucelle A, et al. Interplay of miR164, CUP-SHAPED COTYLEDON genes and LATERAL SUPPRESSOR controls axillary meristem formation in Arabidopsis thaliana[J]. Plant Journal, 2010, 55(1):65-76.

[177] Fal K, Landrein B, Hamant O. Interplay between miRNA regulation and mechanical stress for CUC gene expression at the shoot apical meristem[J]. Plant Signaling & Behavior, 2015, 11(3):1559-2324.

[178] Tabuchi T, Ito S, Arai N. Anatomical studies of the abscission process in the tomato pedicels at flowering stage[J]. Engei Gakkai Zasshi, 2008, 70(1):63-65.

[179] Busch B L, Schmitz G, Rossmann S, et al. Shoot branching and leaf dissection in tomato are regulated by homologous gene modules.[J]. Plant Cell, 2011, 23(10):3595-3609.

[180] Peaucelle A, Morin H, Traas J, et al. Plants expressing a miR164-resistant CUC2 gene revealthe importance of post-meristematic maintenance of phyllotaxy inArabidopsis[J]. Development, 2007, 134(6):1045-1050.

[181] Malik A U, Singh Z. Abscission of mango fruitlets as influenced by biosynthesis of polyamines[J]. Journal of Pomology & Horticultural Science, 2003, 78(5):721-727.

[182] Xie R J, Deng L, Jing L, et al. Recent advances in molecular events of fruit abscission[J]. Biologia Plantarum, 2012, 57(2):201-209.

[183] Vandenbussche F, Straeten D V D. One for all and all for one: cross-talk of multiple signals controlling the plant phenotype[J]. Journal of Plant Growth Regulation, 2007, 26(2):178-187.

[184] Li J, Yuan R. NAA and ethylene regulate expression of genes related to ethylene biosynthesis, perception, and cell wall degradation during fruit abscission and ripening in ‘Deliciousapples[J]. Journal of Plant Growth Regulation, 2008, 27(3):283-295.

[185] Bangerth F. Abscission and thinning of young fruit and their regulation by plant hormones and bioregulators[J]. Plant Growth Regulation, 2000, 31(1-2):43-59.

[186] Racsko J, Soltesz M, Szabo Z, et al. Fruit drop: II. Biological background of flower and fruit drop[J]. Int.j.hort.sci, 2006, 12:103-108.

[187] Botton A, Eccher G, Forcato C, et al. Signaling pathways mediating the induction of apple fruitlet abscission[J]. Plant Physiology, 2011, 155(1):185-208.

[188] Gomezjimenez M C, Paredes M A, Gallardo M, et al. Mature fruit abscission is associated with up-regulation of polyamine metabolism in the olive abscission zone.[J]. Journal of Plant Physiology, 2010, 167(17):1432-1441.

[189] Parra-Lobato M C, Gomez-Jimenez M C. Polyamine-induced modulation of genes involved in ethylene biosynthesis and signalling pathways and nitric oxide production during olive mature fruit abscission[J]. Journal of Experimental Botany, 2011, 62(13): 4447-4465.

[190] Gil-Amado J A, Gomez-Jimenez M C. Regulation of polyamine metabolism and biosynthetic gene expression during olive mature-fruit abscission[J]. Planta, 2012, 235(6):1221-1237.

[191] 魏海超. 大豆MYB基因的進化机制及功能研究[D].长春:中国科学院研究生院(东北地理与农业生态研究所),2015.

[192] Gubert C M, Christy M E, Ward D L, et al. ASYMMETRIC LEAVES1 regulates abscission zone placement in Arabidopsis flowers[J]. BMC Plant Biology, 2014, 14(1):195-206.

[193] Liao W, Yang Y, Li Y, et al.Genome-wide identification of cassavaR2R3 MYBfamily genes related to abscission zone separation after environmental-stress-induced abscission:[J].Scientific Reports,2016, 6: 32006-32018.

[194] Wang X, Liu D, Li A, et al. Transcriptome analysis of tomato flower pedicel tissues reveals abscission zone-specific modulation of key meristem activity genes.[J]. Plos One, 2013, 8(2):55238-55250.

[195] Wang B H, Sun X X, Dong F Y, et al. Cloning and expression analysis of an MYB gene associated with calyx persistence in Korla fragrant pear[J]. Plant Cell Reports, 2014, 33(8):1333-1342.

[196] 张 凡, 尹俊龙, 郭瑛琪,等. WRKY转录因子的研究进展[J].生物技术通报, 2018, 34(1):40-48.

[197] Chen L, Zhang L, Li D, et al. WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis.[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(21):1963-1971.

[198] Chen L, Song Y, Li S, et al. The role of WRKY transcription factors in plant abiotic stresses[J]. Biochimica et Biophysica Acta, 2012, 1819(2):120-128.

[199] Nakano T, Fujisawa M, Shima Y, et al. The AP2/ERF transcription factor SlERF52 functions in flower pedicel abscission in tomato[J]. Journal of Experimental Botany, 2014, 65(12):3111-3119.

[200] Liao W, Li Y, Yang Y, et al. Exposure to various abscission-promoting treatments suggests substantial ERF subfamily transcription factors involvement in the regulation of cassava leaf abscission[J]. BMC Genomics, 2016, 17(1):538-553.

[201] Ellis C M, Nagpal P, Young J C, et al. AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana[J]. Development, 2005, 132(20):4563-4574.

[202] Wu Z, Burns J K. A β-galactosidase gene is expressed during mature fruit abscission of ‘Valenciaorange (Citrus sinensis)[J]. Journal of Experimental Botany, 2004, 55(402):1483-1490.

[203] Kazokas W C, Burns J K. Cellulase activity and gene expression in citrus fruit abscission zones during and after ethylene treatment[J]. Journal of the American Society for Horticultural Science American Society for Horticultural Science, 1998, 123(5):781-786.

[204] Li J G, Zhu H, Yuan R C. Profiling the expression of genes related to ethylene biosynthesis, ethylene perception, and cell wall degradation during fruit abscission and fruit ripening in apple.[J]. Journal of the American Society for Horticultural Science American Society for Horticultural Science, 2010, 135(5):391-401.

[205] Zhu H, Beers E P, Yuan R. Aminoethoxyvinylglycine inhibits fruit abscission induced by naphthaleneacetic acid and associated relationships with expression of genes for ethylene biosynthesis, perception, and cell wall degradation in 'Delicious' apples[J]. Journal of the American Society for Horticultural Science American Society for Horticultural Science, 2008, 133(6):727-734.

[206] Li Y, Sun Y, Liao S, et al. Effects of two slow-release nitrogen fertilizers and irrigation on yield, quality, and water-fertilizer productivity of greenhouse tomato[J]. Agricultural Water Management, 2017, 186:139-146.

[207] 梁 剛,彭 刚,玉山·库尔班.环割、环剥对灰枣幼树产量和品质的影响[J].落叶果树,2017,49(6):9-11.

[208] 武运霞.葡萄落花落果的原因及预防措施[J].落叶果树,2015,47(4):54-55.

[209] 韩冬梅,郭栋梁,李建光,等.平衡式疏果修剪法对龙眼生长与结果的影响[J].中国农学通报,2018,34(19):62-70.

[210] 杨红花,陈学森,李玉晖,等.利用远缘杂交创造核果类果树新种质的研究I.不同处理对核果类果树远缘杂交亲和性的效应研究[J].中国农业科学,2004,37(7):1034-1034.

[211] Gambino G, Gribaudo I. Genetic transformation of fruit trees: current status and remaining challenges.[J]. Transgenic Research, 2012, 21(6):1163-1181.

[212] 胡春华, 邓贵明, 孙晓玄,等. 香蕉CRISPR/Cas9基因编辑技术体系的建立[J].中国农业科学, 2017, 50(7):1294-1301.

猜你喜欢

果树研究进展机制
GNSS-PPP算法与应用的研究进展
果树夏剪有诀窍
CHI3L1在神经系统相关疾病中的研究进展
中医外治法治疗功能性消化不良的研究进展
近十年国际STEM教育研究进展
一体推进“三不”体制机制
果树为何嫁接后才能结出好果子
FTA中的环境协调机制
FTA中的环境协调机制
皮革机制