APP下载

不同斥水剂作用下土壤斥水度测定及其变化规律

2018-09-03吴珺华周晓宇邓一超艾建凌

农业工程学报 2018年17期
关键词:偶联剂硅烷水剂

吴珺华,周晓宇,林 辉,邓一超,艾建凌,戴 骏



不同斥水剂作用下土壤斥水度测定及其变化规律

吴珺华,周晓宇,林 辉,邓一超,艾建凌,戴 骏

(南昌航空大学土木建筑学院,南昌 330063)

为获得不同斥水剂作用下土壤斥水度的变化规律,分别采用十二烷基硫酸钠、硅烷偶联剂KH-550与二氯二甲基硅烷改性砂土和十八烷基伯胺改性黏土,获得了不同斥水程度的改性土壤,并采用滴水穿透时间法、酒精溶液入渗法和接触角测定法获得了改性后土壤的斥水度及其随时间变化规律。结果表明:1)二氯二甲基硅烷改性砂土表现为极度斥水等级,且斥水性长期稳定,可作为制备斥水砂土的优选;硅烷偶联剂改性砂土的斥水性初期不明显,随着时间增长明显增强,最终可达极度斥水等级;但此类改性砂土易结块,均匀性及分散性较差,不推荐作为制备斥水砂土的优选;十二烷基硫酸钠改性砂土的斥水性不明显,且改性方法复杂耗时,不宜用来制备斥水砂土。2)当十八胺含量分别为0.2%、0.3%和0.6%时,改性黏土分别可达中等、严重和极度斥水等级,斥水性长期稳定,可作为制备斥水黏土的优选。3)将十八胺含量为0.5%的改性黏土掺入天然砂土混合制得的改性混合土,亦有不同程度的斥水性。当改性黏土含量为1%~3%时,改性混合土尚无明显斥水性;当改性黏土含量为3%~10%时,改性混合土斥水等级为中度;当改性黏土含量为10%~50%时,改性混合土斥水等级可达到严重。该成果可为深入研究土壤斥水性及其工程应用提供参考。

土壤;接触角;土壤改性试验;斥水剂;斥水度

0 引 言

非饱和土由土颗粒、孔隙水和孔隙气组成[1]。土颗粒表面可以被水湿润,宏观上表现为亲水;土颗粒表面难以被水湿润,宏观上表现为斥水[2]。在土壤学和农业科学领域,土壤斥水性对地表径流、地表水入渗和蒸发、包气带内水气运移、植被根系水溶液吸附、地下水环境等均具有重要影响[3-4]。土壤斥水性的存在往往不利于农业生产的可持续性发展,并引发了很多土地利用问题。具有斥水性的土壤,其导水率和入渗率比亲水性土壤的要小,入渗能力降低[5];地表更易积水,产生地表径流,加速土壤侵蚀过程[6];水流易借助于大孔隙、裂隙、动物洞穴等通道形成优先流,导致养分流失,加速了化学物质的淋洗,加大了地下水污染的风险[7]。目前关于土壤斥水性的研究成果主要集中在土壤学和农业科学等领域,研究对象为天然斥水性的土壤,重点研究如何减小和消除天然土壤的斥水性,增强土壤的亲水性。然而由于学科的特殊性,很少涉及到重塑土的斥水性的研究。

自然界中的土大都表现为亲水性,在土木工程领域,由土的亲水性引起的工程问题不胜枚举[8-10]。水流过亲水性土中孔隙的现象称为渗流,水在水头差的作用下流经土中孔隙产生渗透力,易出现管涌、流土等渗透破坏现象[11];孔隙水的排出和流入导致土壤孔隙重新分布,产生渗透变形,土壤内部应力重新调整,易出现地面变形[12]、边坡失稳[13]等工程灾害;挡水工程中水的渗流会造成水量损失[14];滨海地区开采地下水导致海水入侵现象[15];污水渗流会引起地表水和地下水的污染[16]等。这些都是由于土壤具有亲水性,在水头差作用下水能够在土中孔隙内自由流动,亦对工程设施带来严重破坏,而且具有长期性。目前常用防水措施只是将部分土壤与水隔离,并未改变土壤亲水性的内在本质,防渗性无法长期保证。一旦水进入土壤内部并长期反复作用,那么看似稳定的工程仍有可能再次失稳。如果能够采用技术手段对土颗粒进行处理,使其由亲水性变为斥水性,那么水分就无法轻易渗入土壤孔隙内部,渗流也就不易发生,进而由渗流引起的工程问题就不易出现,部分防渗措施可不必采用,降低工程造价;其次,通过上述技术手段对其表面进行处理后,使其表面具有斥水性,可直接作为一种防渗材料应用于工程。此外,斥水性土壤可采用部分工程弃土重新利用,使其成为再生资源,同时亦可减小环境污染和堆积占地问题等[17]。

综上所述,本文分别采用十二烷基硫酸钠[18]、二氯二甲基硅烷[19]、硅烷偶联剂KH-550[20]等来制备不同斥水性砂土,采用十八烷基伯胺[21-22]来制备不同斥水性黏土[23]及混合土[24]。然后采用滴水穿透时间法[25-26]和酒精溶液入渗法[27-28]测定不同斥水剂和改性方法作用下土壤斥水度。同时采用接触角测定法[29-30]测定改性砂土的表观接触角,以获得改性前后土壤斥水度及其变化规律,为斥水性土壤的工程应用提供试验基础。

1 改性方案与方法

1.1 试验材料

1)试验用土

试验用土取自南昌市某工程现场,风干碾碎过2.36 mm筛后备用。本文分别选取了砂土及黏土,基本参数为:1)砂土:相对密度2.66,最大干密度1.65 g/cm3,最小干密度1.35 g/cm3,饱和含水率42.3%,天然孔隙比0.45,其粒径级配曲线见图1;2)黏土:相对密度2.72,最大干密度1.81 g/cm3,最优含水率19.5%,塑限20.8%,液限41.6%,塑性指数20.8。

图1 砂土颗粒级配曲线

2)试验材料和辅助设备

为研究不同斥水剂对土壤的改性效果,分别采用十二烷基硫酸钠(C12H25-OSO3Na)、硅烷偶联剂KH-550(H2N(CH2)3Si(OCH2CH3)3)和二氯二甲基硅烷((CH3)2SiCl2)对砂土改性,采用十八胺(CH3(CH2)16CH2NH2)对黏土进行改性。辅助试剂有:正丁醇(CH3(CH2)3OH)、丙酮(CH3COCH3)和去离子水;辅助设备有:恒温水浴锅、电烘箱、烧杯、搅拌器、滴定管及防护材料等。

1.2 改性砂土制备步骤

取天然砂土用清水冲洗烘干后获得的砂土定名为S①号砂土(图2a)。后续改性砂土均为不同斥水剂与S①号砂土按一定方式制备而成。具体如下:

1)十二烷基硫酸钠(SDS)改性

按1 g:10 mL的比例配制十二烷基硫酸钠和丙酮分析纯的混合液,在混合液中多次少量添加去离子水,搅拌至十二烷基硫酸钠完全溶解。将混合溶液与S①号砂土按10 mL:20 g的比例混合置于50 ℃恒温水浴锅中水浴8 h。然后用去离子水清洗烘干,即制得十二烷基硫酸钠改性砂土(图2b,S②号砂土)。

2)硅烷偶联剂KH-550(SCA KH-550)改性

将硅烷偶联剂KH-550、乙醇、去离子水按3:15:2的体积比配制成偶联剂混合液,按100 g砂:25 mL偶联剂溶液的比例称取S①号砂土置于偶联剂混合液并恒温水浴搅拌15 min,待自然冷却后浸泡于去离子水中24 h后烘干,即得硅烷偶联剂KH-550改性砂土(图2c,S③号砂土)。

3)二氯二甲基硅烷(DCDMS)改性

称取S①号砂土于塑料容器中,以二氯二甲基硅烷与砂土按3 mL:100 g的比例加入硅烷后密封混合均匀至少2 h,即得二氯二甲基硅烷改性砂土(图2d,S④号砂土)。

注:S①,天然砂土;S②,十二烷基硫酸钠改性砂土;S③,硅烷偶联剂KH-550改性砂土;S④,二氯二甲基硅烷改性砂土。下同。

1.3 改性黏土和改性混合土制备步骤

将十八胺(OCT)与天然黏土分别按不同质量比混合加去离子水搅拌均匀后烘干碾碎并过2 mm筛,即得十八胺改性黏土(图3)。同时将改性黏土与S①号砂土按不同质量比配制搅拌制成改性混合土,无需加水,直接搅拌即可。

注:数字为十八胺与黏土质量之比。

1.4 前期预试验

前期试验过程中,笔者均采用了上述4种斥水剂进行改性砂土和黏土的配制,发现存在如下现象:

砂土中加入十八胺后,其斥水性很不明显,改性前后基本相同;采用十二烷基硫酸钠、硅烷偶联剂KH-550、二氯二甲基硅烷等三种斥水剂可得到性质均匀的砂土,斥水性有明显变化。故采用了十二烷基硫酸钠、硅烷偶联剂KH-550、二氯二甲基硅烷等3种斥水剂来改性砂土。

十二烷基硫酸钠、硅烷偶联剂KH-550、二氯二甲基硅烷等三种斥水剂改性得到的黏土均成团块状,斥水程度离散性大,无法获得均匀试样。采用十八胺改性后的黏土具有显著斥水性,故只采用了十八胺来改性黏土。

改性混合土是用改性黏土和普通砂土混合制成,主要是考虑改性黏土的配制过程相比改性砂土而言更为简单,且十八胺的性价比要明显优于其他3种斥水剂,因此从工程实用化角度出发,本文的改性混合土选用改性黏土和普通砂土配制而成。

1.5 改性土壤斥水度检测方案

基于上述制备步骤,本文分别制取了4种改性砂土、10种改性黏土和10种改性混合土,并分别采用滴水穿透时间法(WDPT)和酒精溶液入渗法(MED)来测定相应的土壤斥水等级,相应的标准见表1和表2[31]。改性砂土中,S②号斥水剂与纯土的配比为1 g:20 g;S③号斥水剂与纯土的配比为3mL:80g;S④号斥水剂与纯土的配比为3 mL:100 g。改性黏土为N①号黏土与不同十八胺含量配制而成,改性混合土为N⑤号改性黏土与S①号砂土配制而成。具体试验方案见表3和表4。

表1 斥水等级分类标准—滴水穿透时间法

表2 斥水等级分类标准—酒精溶液入渗法

表3 改性黏土制备方案

表4 改性混合土制备方案

接触角是反映土壤亲斥水程度的量化指标,从根本上体现了土壤与水分的相互关系。由于土壤颗粒表面呈现出不均匀性,因此很难确定其本质接触角,只能得到表观接触角。毛细管上升法测得的土壤接触角通常为表观接触角[32],因此本文采用毛细管上升法对改性砂土接触角进行测量。笔者亦尝试采用毛细管上升法开展改性黏土的接触角测定试验。试验中发现,改性黏土和改性混合土难以均匀置于毛细管内,且液体上升高度小,湿润面不明显,尤其是十八胺质量分数超过0.3%的改性黏土。因此针对改性黏土和改性混合土未能直接测定其表观接触角。液体采用正己烷,其表面张力为18.44 mN/m,黏度系数为0.294 mPa·s。改性砂土干密度为1.4 g/cm3。把装有改性砂土的玻璃管垂直浸入正己烷中并固定,浸入深度1cm。每隔一段时间记录液面上升高度,连续观察图5d。对同一土壤而言与为常数,故可用正己烷确定不同改性土壤的与值,进而获得相应的接触角。试样与液体的接触角由Lucas-Washburn方程确定(式(1))。

式中为时刻时液体在试样中的湿润高度,mm;为液体表面张力,mN/m;为土柱有效毛细管半径,mm;为液体黏度,mPa·s;为接触角;为常数;为时间,s。作2-图即可求得改性砂土的接触角。

2 结果与分析

2.1 改性砂土

图4为S①至S④号改性砂土表面水滴形态。为了减小砂样不均匀性的影响,在砂样表面选取3处(正三角形分布,间距4 cm)测定滴水穿透时间,将3处测试的平均值作为该砂样最终结果。采用WDPT法和MED法测定改性砂土的斥水等级结果见表5。结果表明,S①号砂土的水滴入渗时间不足1 s,入渗湿润面迅速呈散开状,表明S①号砂土表现为亲水性;S②号砂土一开始表现为轻微斥水,随着时间推移,其斥水性逐渐消散,最终呈现为亲水性;S③号砂土初期无明显斥水性,但随时间推移斥水性增强较为明显,第5天入渗时间已超过3 600 s,达到极度斥水等级,并稳定不变,水滴呈半椭球状;S④号砂土的滴水入渗时间始终超过3 600 s,呈现出极度斥水状态,并稳定不变,水滴呈近似半球状。

注:黑圈内为水滴形态。 Note: Water shapes in black areas.

和WDPT法测定结果类似,MED法测定结果表明,S①号砂土始终表现为亲水性;初期S②号砂土较S③号砂土斥水性要强,但与S④号相比要弱。随着时间推移,S②号砂土斥水强度逐步减弱,到第5天变为亲水性砂土;S③号砂土斥水性增长趋势与时间成正比,初期表现为亲水性,第5天后达到严重斥水等级,并持续稳定;S④号砂土始终呈现极度程度斥水,在现有评价精度范围里,尚无法确定是否会增强。这表明,采用二氯二甲基硅烷改性砂土具有显著斥水性,且无需对砂土进行前期处理,持续时间稳定,可作为制备斥水砂土的优选;硅烷偶联剂改性砂土虽具有较好斥水性,但砂样易结块,均匀性及分散性较差,不推荐用来制备斥水砂土;十二烷基硫酸钠改性砂土与改性前相比变化不大,且改性步骤复杂,所需材料较多,不宜用来制备斥水砂土。

表5 滴水穿透时间法和酒精溶液入渗法测定改性砂土斥水等级

图5为采用毛细管上升法测定改性砂土接触角的2-关系曲线,代入式(1)可计算出各类改性砂土的表观接触角。计算结果表明,S①号砂土测得的接触角为23.22°,湿润性很好;S②号砂土测得的接触角为35.50°,湿润性较好;S③号砂土测得的接触角为65.99°,湿润性一般;S④号砂土测得的接触角为78.33°,已达到亚临界斥水状态。这与前述斥水度检测结果基本一致,表明硅烷偶联剂KH-550改性砂土和二氯二甲基硅烷改性砂土能达到较好斥水效果,而十二烷基硫酸钠改性砂土几乎无斥水效果。

图5 改性砂土在正己烷中测得的h2-t关系曲线

2.2 改性黏土

图6为十八胺质量分数分别为0%和1.2%时的改性黏土表面水滴形态。可以看出,当液滴滴入普通黏土时,液体立刻呈圆形渗入土壤,呈现出典型的亲水性;滴入掺有十八胺的黏土时,液滴长时间停留在土壤表面,呈半椭球状,表明该土壤已具有一定斥水性。

试验表明,除N②号改性黏土外,其余改性黏土采用WDPT法的测定时间均超过3 600 s,为极度斥水等级;而采用MED法对改性黏土斥水性的测定结果更为精确,相应的测试结果见表6。可以看出,当十八胺含量达0.2%时,改性黏土可达中等斥水等级;当十八胺含量为0.3%时,改性黏土可达严重斥水等级;而当十八胺含量达0.6%时,改性黏土已达到极度斥水等级。十八胺含量的继续增加对改性黏土的斥水性没有影响,始终保持极度斥水等级。从经济合理的角度上看,即其质量分数达到某一值后,改性黏土既具有较好的斥水性能,又能经济效益最大化。根据本文试验结果,笔者建议十八胺含量为0.5%时即可满足上述要求。这为十八胺改性黏土的工程实用化提供了研究基础。

图6 不同十八胺含量的改性黏土入渗效果

表6 酒精溶液入渗法测定改性黏土斥水等级

此外在试验中还发现,若直接在天然黏土中加入十八胺混合均匀放置一段时间,其斥水效果与加水混合均匀后再烘干制得的改性黏土相比有较大差异,远不如后者的斥水程度,且与十八胺的质量分数密切相关。十八胺含量为0.5%时的斥水程度仅为微弱等级,而十八胺含量为1%时的斥水程度可达严重等级。这表明,将十八胺与黏土加水混合均匀再烘干后制得的改性黏土,其斥水程度明显优于直接将十八胺添加至黏土而获得的改性黏土。这对今后提高黏土斥水性提供了重要试验依据。

2.3 改性混合土

笔者将不同十八胺含量的改性黏土与普通砂土混合均匀后制得改性混合土。结果表明,当十八胺含量为0.5%的改性黏土与普通砂土混合制得的改性混合土,表现出较强的斥水特性。十八胺含量越大,斥水性越明显。图7为0.5%十八胺含量的改性混合土的入渗效果。当斥水黏土含量为1%时,液滴滴入后迅速下渗,液面迅速扩散;当斥水黏土含量为5%时,液滴可停留在土壤表面,呈现出斥水性。由于改性黏土颗粒较细,易充填在砂土颗粒之间的空隙内,使砂土颗粒渗透性大大降低,加上十八胺的斥水作用,使得混合土表现出明显的斥水性。

注:数字为N⑤号黏土与S①砂土的质量比。

笔者亦采用了WDPT法和MED法测定了改性混合土斥水等级,结果见表7。结果表明,随着改性黏土含量的增加,改性混合土逐渐表现出斥水性,且斥水性越强烈。WDPT法与MED法对改性混合土斥水等级的测试结果基本一致,从测试精度上来看,MED法更适用于测试改性混合土的斥水等级。当改性黏土含量低于3%时,尚无明显斥水性,但相对于普通砂土而言,液滴入渗时间较长,湿润面较小,说明斥水黏土发挥了一定作用;当改性黏土含量为3%~10%时,改性混合土斥水等级为中度;当改性黏土含量为10%~50%时,改性混合土斥水等级可达到严重。当斥水黏土含量达到一定值时,黏土颗粒能较大范围地充填至砂土颗粒之间的空隙,液体入渗通道受到挤压,同时黏土颗粒具有的斥水性进一步阻碍了液滴入渗,宏观上即表现为斥水特征。当改性黏土含量达到100%时,混合土壤斥水等级为极度,此时空隙基本被黏土充满,液滴在短时间内难以入渗土壤而长期停留,表现出较好的斥水特性。

表7 滴水穿透时间法和酒精溶液入渗法测定改性混合土斥水等级

3 结 论

1)砂土改性中,二氯二甲基硅烷改性砂土制备简单方便,制备时间短,斥水效果最优,属于极度斥水,且斥水性稳定,且无需对砂土进行前期杂质处理,可作为制备斥水砂土的优选;硅烷偶联剂改性砂土制备方便,但砂土颗粒易结块,均匀性及分散性较差,其斥水效果随着时间推移逐渐增长,最后保持稳定,其斥水性低于二氯二甲基硅烷改性砂土的斥水性,不推荐用以制备斥水砂土;十二烷基硫酸钠改性砂土的斥水性较前两者较弱,改性过程繁琐,所需试剂种类多,对试验环境要求高,斥水性随时间的增加而降低,甚至消失,不适合用以制备斥水砂土。

2)黏土改性中,在黏土中掺入十八胺后加水搅拌均匀并烘干后的改性黏土,其斥水效果要明显优于直接将十八胺掺入黏土所制得的改性黏土。十八胺含量越高,改性黏土斥水等级越高,十八胺质量分数达到0.3%时的改性黏土即可达到严重斥水等级,斥水性能长期保持稳定,且十八胺对环境和人体影响很小,可作为制备斥水黏土的优选。十八胺含量的继续增加对改性黏土的斥水性没有影响,始终保持极度斥水等级。从经济合理的角度上看,即其质量分数达到某一值后,改性黏土既具有较好的斥水性能,又能经济效益最大化。本文建议十八胺含量为0.5%时即可满足上述要求。

3)随着改性黏土含量的增加,改性混合土逐渐表现出斥水性,且斥水程度越高。当改性黏土含量低于3%时,尚无明显斥水性,但相对于普通砂土而言,液滴入渗时间较长,说明斥水黏土发挥了一定作用;当改性黏土含量为3%~10%时,改性混合土斥水等级为中度;当改性黏土含量为10%~50%时,改性混合土斥水等级可达到严重,其斥水效果与直接改性砂土的效果基本相同,可为制备斥水砂土提供新的思路。

[1] Fredlund D G, Morgenstern N R. Stress state variables for unsaturated soils[J]. Journal of Geotechnical Engineering Division, 1977, 103: 447-466.

[2] 王中平,孙振平,金明. 表面物理化学[M]. 上海:同济大学出版社,2015:23-42.

[3] 李毅,商艳玲,李振华,等. 土壤斥水性研究进展[J]. 农业机械学报,2012,43(1):68-75.

Li Yi, Shang Yanling, Li Zhenhua, et al. Advance of study on soil water repellency[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(1): 68-75. (in Chinese with English abstract)

[4] Debano L F.Water repellency in soils: A historical overview[J]. Journal of Hydrology, 2000, 231: 4-32.

[5] Doerr S H, Shakesby R A, Walsh R P D. Soil water repellency: Its causes, characteristics and hydro-geomorphological significance[J]. Earth-Science Reviews, 2000, 51(1): 33-65.

[6] Doerr S H, Ferreira A J D, Walsh R P D , et al. Soil water repellency as a potential parameter in rainfall-runoff modeling: Experimental evidence at point to catchment scales from portugal[J]. Hydrological Process, 2003, 17(2): 363-377.

[7] Bauters T W J , Dicarlo D A , Steenhuis T S , et al. Preferential flow in water-repellent sands[J]. Soil Science Society of America Journal, 1998, 62(5): 1185-1190.

[8] Robichaud P R, Wagenbrenner J W, Pierson F B, et al. Infiltraion and interrill erosion rates after a wildfire in western Montana, USA[J]. Catena, 2016, 142: 77-88.

[9] Doerr S H. On standardizing the water drop penetration time and the molarity of an ethanol droplet techniques to classify soil hydrophobicity: A case study using medium textured soils[J]. Earth Surface Processes & Landfroms, 2015, 23(7): 663-668.

[10] Liu H, Ju Z, Bachmann J, et al. Moisture-dependent wettability of artificial hydrophobic soils and its relevance for soil water desorption curves[J]. Soil Science Society of America Journal , 2012, 76(2): 342-349.

[11] Toll D G. Rainfall-induced landslides in Singapore[J]. Proceedings of theInstitution of Civil Engineers: Geotechnical Engineering, 2001, 149(4): 211-216.

[12] 陈建斌,孔令伟,赵艳林,等. 蒸发蒸腾作用下非饱和土的吸力和变形影响因素分析[J]. 岩土力学,2007,28(9):1967-1773. Chen Jianbin, Kong Lingwei, Zhao Yanlin, et al. On influence factors of suction and deformation of unsaturated soil under evaporation and transpiration effect[J]. Rock and Soil Mechanics, 2007, 28(9): 1967-1773. (in Chinese with English abstract)

[13] 李雄威,孔令伟,郭爱国. 膨胀土堑坡雨水入渗速率的影响因素与相关性分析[J]. 岩土力学,2009,30(5):1291-1296. Li Xiongwei, Kong Lingwei, Guo Aiguo. Effects and correlation analysis of infiltration velocity of expansive soil cut slope Rock and Soil Mechanics, 2009, 30(5): 1291-1296. (in Chinese with English abstract)

[14] 陈俊英,刘畅,张林,等. 斥水程度对脱水土壤水分特征曲线的影响[J]. 农业工程学报,2017,33(21):188-193. Chen Junying, Liu Chang, Zhang Lin, et al. Impact of repellent levels on drainage soil water characteristic curve[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(21): 188-193. (in Chinese with English abstract)

[15] 陈俊英,张智韬,汪志农,等. 土壤斥水性影响因素及改良措施的研究进展[J]. 农业机械学报,2010,41(7):84-89. Chen Junying, Zhang Zhitao, Wang Zhinong, et al. Influencing factors and amelioration of soil water repellency[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(7): 84-89. (in Chinese with English abstract)

[16] Durner W, Iden S C. Extended multistep outflow method for the accurate determination of soil hydraulic properties near water saturation[J]. Water Resources Research, 2011, 47(8): 427-438.

[17] Dekker L W, Ritsema C J. How water moves in a water repellent sandy soil: 1. Potential and actual water repellency[J]. Water Resources Research, 1994, 30(9): 2507-2517.

[18] 刘春成,李毅,任鑫,等. 四种入渗模型对斥水土壤入渗规律的适用性[J]. 农业工程学报,2011,27(5):62-67. Liu Chuncheng, Li Yi, Ren Xin, et al. Applicability of four infiltration models to infiltration characteristics of water repellent soils[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(5): 62-67. (in Chinese with English abstract)

[19] 杨松,龚爱民,吴珺华,等. 接触角对非饱和土中基质吸力的影响[J]. 岩土力学,2015,36(3):674-678. Yang Song, Gong Aimin, Wu Junhua, et al. Effect of contact angle on matric suction of unsaturated soil[J]. Rock and Soil Mechanics, 2015, 36(3): 674-678. (in Chinese with English abstract)

[20] 包彩霞,常青,未碧贵. 石英砂滤料表面润湿改性[J]. 环境工程学报,2014,8(5):1915-1920. Bao Caixia, Chang Qing, Wei Bigui. Surface modification of quartz sand filter for wetting property[J]. Chinese Journal of Environmental Engineering, 2014, 8(5): 1915-1920.(in Chinese with English abstract)

[21] 杨松,吴珺华,黄剑峰. 表面张力与接触角对膨胀土干缩开裂影响的试验研究[J]. 岩土工程学报,2017,39(9):1645-1652. Yang Song, Wu Junhua, Huang Jianfeng. Effects of pore water surface tension and contact angle on dry-shrinkage cracking of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1645-1652. (in Chinese with English abstract)

[22] 刘世宾,李毅,Robert Horton. 斥水土壤的水力参数及水平吸渗规律[J]. 排灌机械工程学报,2013,31(11):1000-1006. Liu Shibin, Li Yi, Robert Horton. Hydraulic parameters and horizontal infiltration characteristics of hydrophobic soils[J]. Journal of Drainage and Irrigation Machinery Engineering, 2013, 31(11): 1000-1006. (in Chinese with English abstract)

[23] 成娟,李玲,刘科. 液体表面张力系数与浓度的关系实验研究[J]. 中国测试,2014,40(3):32-34. Cheng Juan, Li Ling, Liu Ke. Study on the relationship between liquid surface tension and concentration[J]. China Measurement & Teat, 2014, 40(3): 32-34. (in Chinese with English abstract)

[24] 葛勇,常传利,杨文萃,等. 常用无机盐对溶液表面张力及混凝土性能的影响[J]. 混凝土,2007 (6):7-9. Ge Yong, Chang Chuanli, Yang Wencui, et al. Effect of inorganic salts on surface tension of solutions and properties of concrete[J]. Concrete, 2007(6): 7-9. (in Chinese with English abstract)

[25] Franco C M M, Tate M E, Oades J. M. Studies on non-wetting sands: I. The role of intrinsic particulate organic matter in the development of water repellency in non-wetting sands[J]. Australian Journal of Soil Research, 1995, 33(2): 253-263.

[26] BDV Woudt. Particle coatings affecting the wettability of soils[J]. Journal of Geophysical Research Atmospheres, 1959, 64(2): 263-267.

[27] Watson C L, Letey J. Indices for characterizing soil water repellency based upon contact angle-surface tension relationships[J]. Soil Science Society of America, 1970, 34(6): 841-844.

[28] 吴延磊,李子忠,龚元石. 两种常用方法测定土壤斥水性结果的相关性研究[J]. 农业工程学报,2007,23(7):8-13. Wu Yanlei, Li Zizhong, Gong Yuanshi. Correlation of soil water repellency measurements from two typical methods[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(7): 8-13. (in Chinese with English abstract)

[29] Wang Z, Wu L, Wu Q J. Water-entryvalue as an alternative indicator of soil water-repellency and wettability[J]. Journal of Hydrology, 2000, 231(6): 76-83.

[30] 赵亚溥. 表面与界面物理力学[M]. 北京:科学出版社,2012:156-198.

[31] 陈俊英. 污灌土壤斥水性的机理研究[D]. 杨凌:西北农林科技大学,2010. Chen Junying. Mechanism Research on Water Repellency of Sewage Irrigation Soil[D].Yangling: Northwest Agriculture & Forestry University, 2010.

[32] Latey J, Osborn J, Pelishek R E. Measurement of liquid-soild contact angles in soil and sand[J]. Soil Science, 1962, 93: 149-153.

Hydrophobic degree measurement and its changes in soils modified by different hydrophobic agents

Wu Junhua, Zhou Xiaoyu, Lin Hui, Deng Yichao, Ai Jianling, Dai Jun

(,,330063,)

In order to analyze the change rule of hydrophobic degree of soils with the addition of different hydrophobic agents, the sandy soils hydrophobized by sodium lauryl sulfate (SDS), silane coupling agent KH-550 (SCA KH-550) and dichlorodimethylsilane (DCDMS) were prepared respectively along with the clays hydrophobized by octadecylamine (OCT) for the soil test in this study. The hydrophobic degree of different hydrophobized soils and the relevant change laws were obtained by water drop penetration time (WDPT), the molarity of an ethanol droplet technique (MED) and the contact angle measurement method (CAM) respectively. The mixtures of sandy soils and DCDMS according to the proportion of 100 g: 3 mL were obtained, which showed an extreme hydrophobicity. The contact angle of these mixed soils was 78.33°, which reached to subcritical hydrophobicity and it can be kept stable for a long time. This modification method can be an optimal way for preparing the hydrophobized sandy soils. A mixed liquid of SCA KH-550, ethanol and deionized water with the volume ratio of 3:15:2 were obtained firstly. Then the mixtures of natural sandy soils and this mixed liquid with the proportion of 100 g: 25 mL were obtained finally. The hydrophobicity of mixed soils was small initially, then was enhanced with the time increasing and reached to the highest finally. The contact angle of these mixed soils was 65.99°. However, these mixed soils were easy to clump and showed a poor uniformity and dispersibility. That meant this modification method was not recommended for preparing the hydrophobized soils. A mixed liquid of SDS and pure acetone with the proportion of 1 g: 10 mL were obtained firstly. Then the mixtures of sandy soils and the liquid with the proportion of 100 g: 50 mL were obtained finally. These mixed soils showed little hydrophobicity all the time. The contact angle of mixed soils was 35.5°. Moreover, the process of modification was complicated and time-consuming. Thus, this modification method was not suitable for preparing the hydrophobized sandy soils. The mixtures of clays and OCT in different ratios were prepared with deionized water together firstly. Then the hydrophobized clays were obtained finally by drying, pulverizing and sifting in an order of particle sizes. The severity ratings of hydrophobized clays were moderate, severe and extreme with 0.2%, 0.3% and 0.6% OCT contents, respectively, and all of them can be kept stable in hydrophobicity all the time. Moreover, the severity ratings of hydrophobized clays can be still high with the increasing of OCT contents. That meant the hydrophobized clays do not need high OCT content and a best content of it was 0.5% content in our test. Besides, OCT had little effect on both environment and humans. It was seen that this modification method can be used as an optimal way for preparing the hydrophobized clays. The mixtures of modified clays with 0.5% OCT content and natural sandy soils in different ratios were prepared. No hydrophobicity was shown in the mixture with less than 3% hydrophobized clays content. However, its penetration time was longer than the natural sandy soils’. That meant the hydrophobized clays played a role in hydrophobicity. The severity ratings of mixtures were moderate with 3% - 10% hydrophobized clays content and severe with 10% - 50% hydrophobized clays content. The results can provide a reference for the further analysis on hydrophobized soil and its application in engineering.

soils; contact angle; soil modification tests; hydrophobic agents; hydrophobic degree

10.11975/j.issn.1002-6819.2018.17.015

S152.7

A

1002-6819(2018)-17-0109-07

2018-03-18

2018-07-09

国家自然科学基金资助项目(51408291,41662021);江西省自然科学基金资助项目(S2018QNJJB0057)。

吴珺华,江西吉安人,副教授,博士,主要从事非饱和土基本性质研究。Email:wjhnchu0791@126.com

吴珺华,周晓宇,林 辉,邓一超,艾建凌,戴 骏. 不同斥水剂作用下土壤斥水度测定及其变化规律[J]. 农业工程学报,2018,34(17):109-115. doi:10.11975/j.issn.1002-6819.2018.17.015 http://www.tcsae.org

Wu Junhua, Zhou Xiaoyu, Lin Hui, Deng Yichao, Ai Jianling, Dai Jun. Hydrophobic degree measurement and its changes in soils modified by different hydrophobic agents[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(17): 109-115. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.17.015 http://www.tcsae.org

猜你喜欢

偶联剂硅烷水剂
疏水剂对硫氧镁水泥混凝土性能影响的研究
硅烷偶联剂原位改性白炭黑/溶聚丁苯橡胶复合材料的流变性能和力学性能研究
新型耐盐性堵水剂的合成及性能研究
二碘硅烷合成与应用研究进展
聚碳硅烷转化碳化硅陶瓷吸波性能的研究进展
生产制造领域新型硅烷偶联剂的现状及应用分析
超支化聚碳硅烷结构、交联方法及其应用研究进展
18%L-草铵膦水剂的制备
草铵膦水剂对柑桔园杂草的防效试验初报
不锈钢金属表面硅烷化处理的应用研究