基于连通性方法的缝洞型油藏优势窜流通道识别
2018-07-30沈文洁赵辉刘伟许凌飞廖茂林
沈文洁,赵辉,刘伟,许凌飞,廖茂林
(长江大学石油工程学院,湖北 武汉 430100)
0 引言
油藏优势窜流通道识别对油层注水的开发效果起直接作用。根据以往地质学家采样实验结果分析,缝洞型碳酸盐岩油藏的储存渗流空间主要为规模不同的溶洞、缝洞和裂缝等,构造一般为多缝洞分布,缝洞大小规则不一,迂曲度较高[1],因此,该类油藏井间连通方式较为复杂[2-3]。目前,塔河缝洞型油藏仍以注水开发为主要驱油方式,沿裂缝水淹水窜是注水开发中存在的主要问题。传统的窜流通道识别方法[4-6]有含水指数特征曲线方法、霍尔曲线方法、灰色关联分析方法、油藏动态关联法以及模糊综合评判法等。这些方法对于早期油藏开发有一定的借鉴指导作用,但后期油田为控水稳油,实施了酸化压裂、掺稀降黏、调剖堵水等措施,破坏了地层的渗流走向,改变了地层导流能力,使得计算结果产生了不同程度的误差,降低了油藏窜流通道识别的准确性。本文针对该问题提出了基于可模拟油水动态的连通性模型[7-11],这是一种不依赖于复杂地质建模的模型。其主要思想是:利用油水井的日常注采动态数据,基于简化表征的油藏注采系统,通过动态参数反演出传导率和连通体积;结合示踪剂资料更新不同阶段地层流动特征参数,得到实时反映油藏模型的连通关系场图;同时考虑井间干扰和注采受效时滞性等因素,对油藏区块进行井史和注采关系分析,通过对比结果,最终实时反映油藏井间窜流通道及注水驱油效率。
1 连通性模型
井间连通性概念早在1997年就已提出,其计算模型主要包括多元回归模型[8]、电容模型[9]和系统分析模型[10]。这些模型计算简单,但考虑因素较少,特别是无法计算转注后的产液参数。针对该问题,本文提出了一种基于赵辉等[10]研究的连通性模型。该模型主要以传导率和连通体积来表征单元流动能力和物质基础,具体求解计算参见文献[7,11],本文仅详述含水率的求解过程。
1.1 饱和度追踪-含水率求解
基于建立的连通性模型,可以得到连通单元物质平衡方程:
式中:Tij为第 i井和第 j井间的传导率,m3/(s·MPa);m为第i井的所有上游井点总数;pi,pj分别为第i井和第j井泄油区内的平均压力,MPa;α为单位换算系数(取值 9.8×10-6);ρl为流体密度,kg/m3;g为重力加速度(取值9.8 m/s2);Dij为第 i井和第 j井的中部深度差,m;dt为生产时间变化量,d;qi为第 i井流量(注入为正,产出为负),m3/s;Ct为综合压缩系数,MPa-1;Vi为第i井网格孔隙体积,m3。
对式(1)隐式差分离散,可得到压力求解方程[7]。求出各井点压力后,井点间连通单元内流量为
式中:qij为从第j井流向第i井的流量,m3/s。
考虑油藏存在边底水,结合前缘推进理论[11]进行推导。取x的某一上游位置xu(即xu 式中:f′w(Swu)为 xu处含水率导数;QDn为 n 时刻流入 xu到x形成单元的无因次累积注入量;f′w(Sw)为油层x位置的含水率导数。 进一步整理得到n时刻第j井追踪至下游的第i井含水率导数 f′w(Swnij): 式中:f′w(Swnj),f′w(Swzi)分别为 n,z时刻第 j,i井处的含水率导数;QDnij,QDnji分别为n时刻第j井流向第i井的无因次累积流量和第i井流向第j井的无因次累积流量;QDzji为z时刻第i井流向第j井的无因次累积流量。 式(4)的修正保证了计算稳定性[10]。通过式(4)插值求出第i井来自第j井方向的含水率,再依次求出各上游方向上的含水率,最终求出第i井的综合含水率: 式中:fw(Swni)为第 i井的综合含水率。 将连通性模型计算出的示踪剂时刻劈分结果与现场给的劈分结果作对比。前者通过历史拟合模型参数反演后计算得到,其值随工作制度的改变而改变,反映了井间平面动态响应。假设第i井为水井,则其与周围油井j间的流量分配系数αnij为 利用上述信息可进一步精确计算水井注水驱油效率,即注水井向周边油井供水驱替出的原油总量与该井在该方向劈分过去的注水量比值: 式中:ηi为第i井注水效率;fwni为n时刻第i井含水率。 基于随机扰动和投影梯度类算法[10-11],通过不断优化和调整油藏模型特征参数——传导率和连通体积,使计算出的单井含水率、日产油量等结果与单井日常动态参数相吻合。换句话说,就是如何求解特征参数矩阵b,以使目标函数O(b) 取得最小值。 式中:b为油藏参数矩阵(这里主要指传导率和连通体积);br为先验油藏模型估计;为模型参数的协方差逆矩阵;kobs为实际观测数据;为先验模型参数的协方差矩阵;h(b)为由数值模拟器计算得到的油藏观测数据初值。 求解此类优化问题,就是在满足约束条件的同时,尽可能使目标函数值最小,最终得到对应的b。 为此,对约束条件采用了梯度投影方法进行迭代求解。求解公式为 式中:bl+1为第l+1步的迭代控制变量;ζ为搜索步长;T为Nu维投影矩阵;I为单位矩阵;B为由油藏参数b形成的矩阵;▽l(bl)为O(b)的随机扰动梯度。 O(b)的随机扰动梯度计算公式[10]为 式中:εl为扰动步长;Δl为 Nu维随机扰动向量(其中所包含元素 Δlξ(ξ=1,2,…,Nu)为服从多元高斯分布的扰动向量)。 塔河缝洞型油藏Z区块属于碳酸盐岩油藏,该区块2000年投产,油水井共计30口,其中关停井9口。截至2017年2月,累计产油量301.210×104t,累计注水量80.518×104t。目前采用传统的注水驱油模式。该油藏中后期注水愈加频繁,导致注入水无效循环严重,沿主流通道窜流,油井含水率快速上升,产量递减快,整体采收率低。目前,该区块5口井处于水淹状态,7口井供液不足,9口井关停。在不改变主要开发方式和不影响高产稳产井当前状况的生产条件下,对区块优势窜流通道进行判别,是该区块亟待解决的问题。 应用井间连通性模型[11],结合实际地质参数对该油藏进行生产动态自动历史拟合,反演结果如图1所示。 为验证该模型的可靠性,以D63井组和D12井组为例(见图2)。 图1 反演结果 图2 井组井位示意 分析示踪剂时刻注水劈分和本模型劈分结果,并以注水受效结果补充验证。D63井示踪剂测试时间为2007年7月。选取现场数据,基于连通性模型,计算示踪剂时刻劈分系数(见图3)。可以看出,B26CX,B35,B36H井示踪剂时刻注水劈分和连通性模型注水劈分级别相当,且未劈分比例较多,存在外溢情况。对D12井组,采取了同样的分析措施(见图4)。 图3 D63井组注水劈分结果对比 图4 D12井组注水劈分结果对比 注水井 D12 井,周围油井有 B15,B44,B47,B07井。D12井示踪剂测试时间为2011年8月。由图4可以看出,B47,B07,B15,B44 井数值相当,B11 井数值存在差异。原因是,在模型建立期间,只对Z区块各井建模,而B11井不属于该单元内井,故该方向劈分系数无法给出。同时,结合注采井之间的动态响应,认为D12井的注水对B47,B07井的影响较大,劈分较多。 从2个井组中分别选取2口油井进行注采响应分析,并对历史措施进行总结归纳(见表1)。 表1 各井组注水受效情况分析 上述井组示踪剂分析结果及模型计算基本一致,说明该模型准确程度较高;同时,结合井史,对井组间注水受效进行分析,再一次验证该模型的合理性。基于前期动态响应分析,结合示踪剂结果,利用连通性计算模型,最终得到表2中各单井数据,并据此给出潜力分析。 由表2分析可知,D63井注水,主要流向为B35,B26CX,B80,B11井,其次是 B36H,B14 井,最后是B25井。生产潜力分析认为:1)B14,B35井剩余油较多。B14井水淹与D63井注水没有直接关系,目前处于低产、低含水率生产中,驱油效率高,建议提液;B35井间开生产,含水率下降,建议适当提液。2)B11,B36H井剩余油较多。D63井强注,使得2口井水淹,且B11井关井压锥无效,属于优势窜流通道,建议维持当前状态生产或靶向调堵。3)B26CX,B25,B80井剩余油较少。D63井注水,使得B80井含水率异常,驱油效率较低,说明该方向存在优势窜流通道,建议维持当前生产;B26CX井未水淹,建议提液;B25井自身提液水窜,提液存在风险,建议维持当前生产。 D12井组主要流向B47,B07,B48井等,其次是B44,B15 井。生产潜力分析认为:1)B44,B47,B48 井剩余油较多。D12井注水,使得B44井水淹,该方向属于窜流通道,建议降液或维持当前生产或调剖堵水;B47井交替提液降液,含水率上升或下降,建议维持当前生产;B12井注水时,B48井交替提液降液,含水率波动较大,受水体和注入水共同作用,建议维持当前生产。2)B07井剩余油较高。D12井注水,未水淹,但驱油效率较低,建议维持当前状态生产。3)B15井剩余油较少。B15井水淹与D12井注水没有直接关系,可能是底水作用,目前转层生产,驱油效率低,建议维持当前状态生产。 表2 井组注水评价 1)可模拟油水动态下的井间连通性模型,不及传统地质建模复杂,且在反演传导率和连通体积等问题时,需要参数少,计算速度快,一定程度上可以反映某个方向上的渗流能力,为识别优势通道提供参考,有利于指导现场应用。 2)基于井间连通性模型,结合Z油藏开发动态特征,反演后的传导率实时变化,与注采响应、示踪剂结果相吻合,验证了模型的准确性;在此基础上计算出的注水井向周围油井的注水劈分,反映了井间的注水流向,即优势通道,为下一步注水策略调整提供了依据。 3)采用该方法计算出的注水效率,能反映出该渗流通道的类型。注水效率高,说明驱油效果好,可以保持注水速度;反之,该方向易发生水窜,建议停注或减少注水量。1.2 特征参数反演
2 实例应用
3 结论