APP下载

Synthesis of silver and gold nanoparticles from leaf of Litchi chinensis and its biological activities

2018-07-02UzmaMuradBarkatullahShafqatAliKhanMuhammadIbrarSamiUllahUmbreenKhattak

Uzma Murad, Barkatullah, Shafqat Ali Khan✉, Muhammad Ibrar, Sami Ullah, Umbreen Khattak

1Department of Botany, Faculty of Biological Sciences, Islamia College, Peshawar, Pakistan

2Department of Botany, Faculty of Biological Sciences, University of Peshawar, Pakistan

1. Introduction

Plants are among the most common and accessible sources of potentially active drugs for combating various ailments. Therefore,it is imperative to search biological properties of medicinal plants for the development of new drugs. A lot of work has been done on plants but still there is need to work more in this respect. Different bioassays

are suggested for screening out various medicinal plants extracts for different purposes.

Nanotechnology is a growing field with significant potential for improvement of human welfare. Nanoparticles and nano-materials provide a wide range of constantly increasing applications[1]. Green synthesis of noble metals is important because they are environmentally friendly and are beneficial to human health. Therefore, the biological method has a clear advantage over physical and chemical methods[1].Biological synthesis of nanoparticles is of great interest to scientists due to the rising need to decrease toxicity, increase renewable resources, and provide clean and environmentally friendly solvents. These concerns have captured the attention of major corporations in the last few decades[1].

Skeletal muscle relaxants are agents that treat both muscle spasm and spasticity, acting as antispasmodic and antispasticity agents respectively.Antispasmodic agents like cyclobenzaprine are commonly used to treat musculoskeletal conditions. Antispasticity agents like dantrolene are used to relieve muscle hypertonicity. However, both agents are used with caution due to their side effects on human health[2].

Pain and inflammation are unpleasant feelings caused by diverse factors disturbing people all over the world[3]. Analgesics are drugs that relief pain. Plants have compounds that show significant analgesic effect by lessening pain sensation and have very minute or no side effects[4]. The non-steroidal anti-inflammatory drugs decrease rheumatism and pain sensation and produce harmful effects like gastrointestinal tract (GIT)ulceration, bleeding[5,6]. Diarrhea is the frequent release of loose watery faecal matter from the body 2-4 times a day due to GIT infection. It is hazardous disease which causes millions of deaths per year worldwide and affects every type of sex and climatic area[7]. Each year more than 4-9 million deaths occur in newborns and small children mostly at the age below seven, it occurs due to unhygienic conditions, contaminated water and starvation[8].

Litchi chinensis. (L. chinensis) Sonn. Locally known as lychee nut,litchi, lychee is an evergreen tree originated in South China, North Vietnam, and the Malay Peninsula. Now it is currently cultivated in over 20 countries in the tropical and subtropical regions of the world[9].Litchi flower contain phenols, flavonoids, and condensed tannins,showing a strong antioxidative capacities and anti-inflammatory effect[10].L. chinensiswas used as hypoglycemic, anticancer,antibacterial, antihyperlipidemic, antiplatelet, antitussive, antipyretic,diuretic and antiviral activities[11]. The present research was conducted to evaluateL. chinensisisolation of silver and gold nanoparticles and also determine it or its muscle relaxant, analgesic, anti-inflammatory and antidiarrheal potentials.

2. Materials and methods

2.1. Collection of plant parts

L. chinensisfresh leaves were collected in April 2016, from botanical garden Islamia College Peshawar. The leaves were detached from branches. The fresh leaves were utilized for macroscopic and microscopic studies. The leaves were dried under the shade for 15 d,then ground into powder. The powder was preserved for the further research work.

2.2. Extraction process

About 400 g of powder was dissolved in 2 L of 95% methanol leaves and placed at room temperature for 7 d. After 7 d, the extract was filtered off through Whatman No. 1 filter paper. The filtrate was evaporated through a rotary vacuum evaporator (R-300 manufactured by Abbas Scientific Pakistan) under reduced pressure below 50 ℃. The saturated or thick filtrates were collected in a china dish and let to air dry for entire dissipation of methanol. The extract was stored in refrigerator at 4 ℃[12].

2.3. Green synthesis of gold and silver nanoparticles

2.3.1. Preparation of broth

Aqueous extract-broth was prepared by admixing 2 g of leaf extract in 80 mL of distilled water separately in two beakers and well dissolved followed by filtering. The broth was then kept in refrigerator at 4 ℃[13,14].

2.3.2. Preparation of solution

For gold nanoparticles of 1 M stock solution of chloroauric acid, 1 g of HAuCl4took in 3.3 mL of distilled water and was dissolved well, while for silver nanoparticles AgNO3solution was prepared by dissolving 1 g of AgNO3in 5.91 mL of distilled water. From this 1 M stock solution was prepared 2 mM solution of gold chloride and silver nitrate in 250 mL Erlenmeyer flask by dissolving 31 µL from this stock solution in 99.969 µL of distilled water[15,16].

2.3.3. Synthesis of nanoparticles

In descriptive experiment, 2 mM aqueous chloroauric acid (HAuCl4)and silver nitrate solution were added to the methanolic extract of leaf in different ratios of 1:1, 1:10, 10:1, 1:2, 1:3, 1:4, 1:5, 5:2, 5:3 and stirred/stimulated on magnetic stirrer continuously for 15-30 min. In leaf extract the reduction of gold ions to gold nanoparticles was centrifuged by Advanced Equipment & Technologies (Pvt) Ltd. Karachi, Pakistan and was completed within 2 h while that of silver nanoparticles in 2, 24 and 48 h. The nanoparticles formation was confirmed by the modification in color visually and by measuring with UV-visible spectrophotometer in the wavelength range 450-800 nm for gold nanoparticles (AuNPs) and wavelength range of 300-500 nm for silver nanoparticles[17].

2.3.4. Collection of nanoparticles

After 24 h, the mixture was subjected to centrifugation at 15 000 rpm for 15 min. The supernatant was throwaway and the pellet was maintained in centrifuge tubes. The centrifuge tubes were kept in an oven, all night, at 50 ℃, to heat and dry the pellet. Using a small spatula, the desiccated pellets were scratched out and the gold and silver nanoparticles were collected and used for various biological activities[17].

2.4. Biological activities

The following biological activities were performed on nanoparticles and crude methanolic leaf extract ofL. chinensisusing standard methods from the literature.

2.4.1.Muscle relaxant bioassay

The muscles relaxant activity ofL. chinensiswas carried out using traction standard method of Hosseinzadehet al[18]. Previous to the experiment the BALB/c mice were kept on fast for 24 h by keeping away from food. After that the mice were divided into 11 groups. GroupⅠwas treated with normal saline as negative control, group Ⅱwith standard drug diazepam as positive control, groupsⅢ-Ⅴwere treated with 100 mg/kg, 200 mg/kg and 400 mg/kg of the methanolic extract ofL. chinensisand the remaining groupsⅥ-Ⅺwere treated with silver and gold nanoparticles at the doses of 50, 100 and 150 mg/kg body weight(mg/kg b.w) respectively. Experiment was performed in triplicate for each group. All the doses were applied intra-peritoneally using 1 cc syringes.

For traction method twisted wire was used, which was tightly and straight supported by tops of benches. After that forepaws of the mouse were grasped to wire and allow to hang free, if the mice placed at least grasped their one hind foot within five second, the drug was showed to be muscle relaxant and if the mice droped on ground and were unable to grasp their hind feet after five second, it was considered as a failure.

2.4.2. Analgesic activity

The antispasmodic activity was performed following standard method of Ioret al[19]. Previous to the experiment the mice were kept on fast for 24 h. After that the mice were injected by 1% acetic acids intraperitoneally and divided into respective groups GroupⅠ-Ⅺ. Diclofenac sodium (+ve control) 10 mg/kg b.w of mice was used as standard drug. Experiment was performed in triplicate for each group. The writhing’s (contraction of abdomen, turning of trunk and extension of hind limbs) that occurred within the next 10 min following acetic acid administration were counted and recorded for 10 min and the result was expressed as percentage inhibition. The percent decrease in writhes was calculated using the following formula of Mujumdar and Misar[20].

Where A= Mean of writhes in +ve control group, B= Mean number of writhes in tested group.

2.4.3. Anti-inflammatory activity

Anti-inflammatory activity of methanolic extract ofL. chinensiswas carried out using standard method of Elayaet al[21]. Before the experiment the mice were kept on fast for 24 h. After that the mice were divided to 11 groups. All the groups were injected with carrageenan 1% suspension in right hind paw of rats to cause oedema. Initial paw volume after swelling was noted using Plythesmometer. After drug administration paw volume was measured for next 1, 2 and 3 h and the decrease or increase in paw volume was examined. Indomethacin 10 mg/kg was used as standard drug.

2.4.4. Antidiarrheal bioassay

The antidiarrheal activity was performed following standard method of Kalriyaet al[22]. Previous to the experiment the mice were kept on fast for 24 h. After that the concentrated charcoal solution was administered by oral route to all the animals in each group. After 50 minutes of administration the mice were killed by cervical dislocation, which was ethically approved. After killing mice were dissected and small intestine was removed. The percent charcoal meal inhibition was calculated by dividing charcoal movement to the length of total intestine. Atropine sulphate 10 mg/kg was used as standard drug and positive control.

2.5. Statistical analysis

The data was subjected to statistical analysis, mean±SEM was determined through Microsoft excel version 2016, while One-way ANOVA through IBM SPSS Version22 statistical computer software Manufactured by Microsoft company and for multiple comparison between control and tested treatments, Dunnet test was used. The probabilitiesP<0.05 were considered as significant difference andP<0.01 as highly significant difference[23].

3. Results

3.1. Synthesis result of nanoparticles from L. chinensis leaf methanolic extract

The colorless gold chloride solution changed to purple soon after the addition of plant extract which indicated that the reaction took place and gold ions were reduced to gold nanoparticles while colorless silver nitrate solution changed to light and dark brown which indicated that silver ions were reduced to silver nanoparticles. This was only the visual indication about nanoparticles synthesis. which was further confirmed by UV-Vis spectrophotometry. The maximum absorbance peak was seen at 535 nm for gold and at 410 nm for silver nanoparticles. The gold and silver nanoparticles were collected and used in comparison with crude methanolic extract of leaf ofL.chinensisfor the following biological activities.

3.2. Results of biological activities

Following biological activities were performed on nanoparticles and crude methanolic leaf extract ofL. chinensisto check their pharmacological potentials.

3.2.1. Muscle relaxant activity

The present result showed that silver nanoparticles had more significant activity as compared to gold nanoparticles and methanolic extract. The silver nanoparticles showed relatively significant (P<0.01)activity even at low dose 50 mg/kg b.w, while the gold nanoparticles and the methanolic extract showed highly significant activities at high doses 100 and 150 mg/kg b.w as well as 400 mg/kg b.w, respectively(Table 1).

The percent increase in grasping time showed a dose dependent activityi.ethe effect increased with increasing doses in all the test samples. The silver nanoparticles represented highest effect as it increased grasping time followed by the gold nanoparticles at the respective doses, while the leaf methanolic extract exhibited low effect as compared to the standard drug Diazepam which showed 85.85%increase in grasping time (Table 1).

Table 1Percent effect of leaf methanolic extract and nanoparticles of L. chinensis on muscle relaxation (traction) in mice.

3.2.2. Analgesic activity

The analgesic activity showed that among all the groups the gold nanoparticles were most significant. The gold nanoparticles showed significant result (P<0.05) at low dose 50 mg/kg b.w, while highly significant (P<0.01) at high doses 100 and 150 mg/kg b.w. The silver nanoparticles and methanolic extracts demonstrated significant effect at high doses, while at low dose produced non-significant (P>0.05)effect (Table 2).

The percent inhibition of acetic acid induced writhing showed dose dependent result as the diclofenac sodium inhibited writhing up to 75.00% methanolic extract inhibited writhing up to 42.30%, 58.00%and 69.33% at the respective doses of 100, 200 and 400 mg/kg b.w,while the silver and gold nanoparticles inhibited writhing (45.23%,60.00% and 71.50%) and (48.02%, 64.30% and 74.44%) at the doses of 50, 100 and 150 mg/kg b.w respectively (Table 2).

Table 2Analgesic activity of leaf methanolic extract and nanoparticle of L. chinensis.

3.2.3. Anti-inflammatory activity

Among all the groups, the gold nanoparticles showed highest effect as compared to the methanolic extract and silver nanoparticles.ANOVA showed that the gold nanoparticles were highly significant(P<0.01) at very low dose and after one hour of drug administration.The silver nanoparticles were highly significant at high doses 100 and 150 mg/kg after two and three hours of drug administration and was significant at low dose 50 mg/kg as compared to standard drug Indomethacin, while the methanolic extract was non-significant at low dose 100 mg/kg, while highly significant at 400 mg/kg. The percent %decrease in paw volume showed dose dependent results as the most significant effect was observed in gold nanoparticle at the highest dose followed by the silver nanoparticles and methanolic extract (Table 3).

3.2.4. Antispasmodic activity

In the present bioassay, the antidiarrheal of leaf methanolic extracts inhibited (reduced) the percent charcoal motility to 56.66% and 74.55% respectively at higher doses (150 and 200 mg/kg b.w),while silver nanoparticles exhibited 37.4% and 56.77% and gold nanoparticles 21.33% and 24.44% reduction in charcoal meal motility at 100 and 150 mg/kg b.w doses. The one-way ANOVA showed that the effect of leaf methanolic extracts enhanced with gradually increased dose and produced a significant activity (P<0.05) at low dose 100 mg/kg while highly significant (P<0.01) at higher doses 150 and 200 mg/kg as compared to the Atrophine sulpahte. However,silver and gold nanoparticles produced non-significant activity (Table 4).

4. Discussion

The nanotechnology is an advance field and the nanoparticles have significant uses in the field of high sensitivity bio molecular detection,therapeutics, diagnostics, catalysis, micro-electronics and have possible uses as an antimicrobial agent[24].

In the present study, color change indicated presence of silver and gold nanoparticles, which was further confirmed by UV-Vis spectrophotometry. The gold and silver nanoparticles were solidified,collected and used in comparison with crude methanolic extract of leaf ofL. chinensisfor the following biological activities.

Gold nanoparticles have many applications in biomedical sciences including drug delivery, tissue/tumor imaging photo thermal therapy and immune-chromatographic identification of pathogens in clinical specimens. Silver nanoparticles are widely utilized for diagnosis and management of diseases such as cancers, genetic and infectious diseasesetc. They are utilized for elimination of microorganisms on industrial scale[25]. Lots of investigators such as Ripaet al[4];Ranget al[6] and Taufikurohmahet al[9] manufactured gold and silver nanoparticles using plant extracts synthesized fromAloe vera,Couroupita guianensisandRosa rugosarespectively.

In addition, four pharmacological activities of gold and silver nanoparticles have been studied in the present study. The result showed that silver nanoparticles display more significant muscle relaxant activity as compared to gold nanoparticle and methanolic extract. The silver nanoparticle shows highly significant (P<0.01)activity even at low dose 50 mg/kg, while the gold nanoparticle was highly significant only at high doses 100 and 150 mg/kg and the methanolic extract was highly significant only at highest dose 400 mg/kg.

Similar researches were carried out by Elayaet al[21] and Kalriyaet al[22] forAcorus calamus,Colocasia esculentaand recorded that these plants have good skeletal muscle relaxant activity.Srikanth and Muralidharan[23] investigated the muscle relaxant activity of methanolic extract of pericarp ofSapinduse marginatus(Sapindaceae) in Swiss albino mice and revealed that the methanol extract caused reduction in muscle relaxant activity in traction tests. Prakash and Kuppast[24] studied the alcoholic and aqueous extracts ofCardiospermum halicacabumandDodonea viscosa,family Sapindaceae for muscles relaxant activity. The result revealed that motor incoordination activity exhibited by the extracts. Same results were obtained by Ripaet al[25] for methanol extracts of leaf ofNephelium longanat doses of 250 and 500 mg/kg b.w of rats. The use of modern synthetic drugs as muscle relaxant agents heralds a number of complications. The use of cyclobenzaprine causes confusion,lethargy and anticholinergic. Dantrolene causes severe allergicreactions such as rash, hives, itching and breathing complications. The drug Tizanidine is considered responsible for more serious situations like lowering blood pressure, heart problems and paralysis[26]. It is proved natural plant derived drugs have no side effect and also cost effective. The above mention researchers are in analogy with the present work. Hence it is suggested thatL. chinensisshould be used as muscle relaxing agent. And the specific response substances should be identified and isolated fromL. chinensis.

Table 3Anti-inflammatory activity of leaf methanolic extract and nanoparticle of L. chinensis.

Table 4Antispasmodic of leaf methanolic extract and nanoparticle of L. chinensis.

Plants have compounds that prove important analgesic effect by lessening pain sensation and have very minute or no side effects[27].The analgesic activity ofL. chinensisagainst BALB/c mice in acetic acid induced writhing test showed that among all the extracts the gold nanoparticles were most significant.

The comparison of the present work with various earlier researchers on different plants strengthens these present findings having similar results. Kalriyaet al[22] reported the analgesic activity of various extracts of three major species ofSapindus(Sapindaceae) which are one American species,Sapindus saponariaand two Asian species,Sapindus mukorossiand Sapindus trifoliatusand concluded that only the methanolic extract showed analgesic activity. Ripaet al[25] reported methanolic extract of leaf ofNephelium longan(Sapindaceae) showed significant (P<0.01) inhibition of acetic acid induced writhing as 37.4% and 54.43%, 36.075% and 52.53%.Ioret al[19] investigated ethanolic extract of the leaves ofPaullinia pinnataand revealed maximum inhibition by 74.6% and 83.8% acetic acid induced writhing at dose of 200 mg/kg and 400 mg/kg. Other several plants have been reported to have analgesic effect like Nisaret al[27] who documented thatTaxus wallichianaextracts significantly(P<0.05) showed analgesic effect. Roslidaet al[28] reported that thePluchea indicaextracts have the potential to treat analgesia.Various other researchers like Amreshet al[29] carried out similar work on several medicinal plants likePortulaca oleracea, reported similar observation and suggested that these plants have analgesic properties due to presence of phytoconstituents like alkaloids,flavonoids phenolsetc, which are actually pain-relieving agents and are responsible for such effect. The results of these workers strongly support this present work. The non-steroidal anti-inflammatory drugs decrease rheumatism and pain sensation producing harmful effects like GIT ulceration and bleeding. Phytochemicals derived from any parts of the plant are considered to be a new precious source of analgesic, anti-depressant and anti-inflammatory agents[30].

Inflammation is a complicated biotic reaction of vascular tissues beside hostile broker such as pathogens, damaged cells, irritants or pathogens. The typical signs of redness are showed through enhanced blood stream, vasodilatation, raised cellular metabolism,ease dissolvable intermediators, cellular inflow and extravasation of fluids[31].

In the present observation gold nanoparticles showed good antiinflammatory effect followed by the silver nanoparticles and then methanolic extract. Several other researchers such as Reddyet al[31];Kumaret al[5] and Aliet al[32] reported good anti-inflammatory activities of plant likeTyphonium trilobatumL. Schott;Amorphophallus bulbiferandPistia stratiotesand suggested these plants as antiinflammatory agents.

Besraet al[33] tested leaf ofSerjania lethalisandCupania vernalis(Sapindaceae) and reported that these plants contained active compounds at 50 mg/kg of extract and used as anti-inflammatory agents. Ioret al[19] investigated anti-inflammatory activity of ethanolic extract ofPaullinia pinnataleaves and reported that the extract at doses of 200 mg/kg and 400 mg/kg significantly (P<0.05) reduced the induced paw edema in rats. Various researchers such as Reddyet al[31], Kumaret al[5] and Aliet al[32] reported anti-inflammatory activity ofTyphonium trilobatumL.,Amorphophallus bulbiferandPistia stratiotesand suggested that this potential of these plants could be assumed to be related to high levels of phenolic compounds,e.g.,flavonoids, present in these plants. Saiduet al[34] worked on leaf methanolic extracts ofErythrina senegalensisand reported significant(P<0.05) anti-inflammatory activity at low doses while highly significant results at high doses. These studies strongly support present work. Hence, in the comparison and equivalence of these workers,our results also suggested that the methanolic extract ofL. chinensisas well as silver and gold nanoparticle possess a good anti-inflammatory activity. Hence it should be further explored and the respective compounds should be isolated and characterized.

Diarrhea is the numerous release of loose watery faecal matter from the body 2-4 times a day due to GIT infection. It is hazardous diseasecausing millions of deaths per year worldwide and affects every type of sex and climatic area[35]. In the present study, one-way ANOVA showed that leaf methanolic extract were highly significant (P<0.01)at higher doses as compared to the silver and gold nanoparticles.Various other researchers also reported similar activity like Yakubu and Salimon[10] who studied antidiarrheal activity ofMangifera indicathat was comparable with standard drug loperamide. Abubakaret al[12] reported a significant antidiarrheal activity of crude aqueous and diethyl ether saponin and flavonoid fractions of the leaf of Anacardium occidentale. These reports provide a strong support to our present findings.

Other plants have also been reported to have antidiarrheal effects. Suleimanet al[35] studied antidiarrheal bioassay ofAnnona senegalensis. Semwalet al[36] reportedCissampelo spareirapossesses significant antidiarrheal potential. Al-Snafi[37]; Paulet al[38];Shrinivaset al[39]; Rahmanet al[40] reported that various extracts of plantsBeninca sahispida,Alpinia conchigera,Dillenia indica,Cyperus tegetmandHoloptelea integrifoliasignificantly reduced the charcoal induced gastro intestinal motility in Swiss albino mice.

Several other researchers also agree with us as Schumet al[41];Bhogaonkaret al[42] reported significant antispasmodic activities of various plants likeSymploco spaniculata,Myrtus communis,Swertia chirata,Manilkara zapota,Cynanchum viminaleandWithania somniferain custard oil induced diarrhea in mice. Hence in analogywith these workers our current research suggested that theL. chinensispossesses a natural significant antidiarrheal potential.

In conclusion, gold and silver nanoparticles from methanolic extract ofL. chinensis leaf were synthesized and isolated. The comparative pharmacological test showed that nanoparticles exhibited strong muscles relaxant, analgesic and anti-inflammatory activities while crude methanolic extracts possess good antidiarrheal activity.

The results of silver and gold nanoparticle showed good pharmacological activities hence it is suggested that the plant should be explored in future for isolation, quantification and identification of active phytoconstituents responsible for specific effect and will be good source for their pharmacological amplification and an inexpensive effective remedy for various diseases and ailments.Conservation measures are adapted for a long term sustainable use of this valuable medicinal plant, which will also be helpful uplifting economic conditions of local inhabitants.

Conflict of interest statement

The authors declare that they have no conflict of interest.

[1] Kalakonda R, Kadiri SK. Screening of skeletal muscle relaxant activity of plantVicia faba.Int J Pharm2017;4(1): 237-240.

[2] Knollman B, Chabner BA, Brunton LL, Goodman LS.The pharmacological basis of therapeutics.12th Edition. New York: McGraw-Hill; 2016, p. 22-29.

[3] Srineeraja P, Lakshmi T. Antinociceptive activity of traditional Chinese medicinal plants.Pharmacog Phytochem2016;23(1): 53-57.

[4] Ripa FA. Dash PR, Faruk MO. CNS depressant, analgesic and antiinflammatory activities of methanolic seed extract ofCalamus rotangLinn.fruit in rat.J Pharmacog Phytochem2017;3(5): 121-125.

[5] Kumar HKS, Raju MBW, Dinda SC, Sahu SK, Banerjee M. Analgesic,anti-inflammatory and antipyretic activity ofPistia stratiotesL.Rasayan J Chem2015; 4(3): 506-511.

[6] Rang HP, Dale MM, Ritter JM, Moore PK.Analgesic drugs. Pharmacology.5th edition. Churchill, Livingstone, Edinburgh; 2010, p. 562-584.

[7] Tapiero GN, Couvreur P, Tew KD. Polyunsaturated fatty acids (PUFA)and eicosanoids in human health and pathologies.Biomed Pharmacoth2002;56: 215-222.

[8] Onzago RO, Kiama SG, Mbaria JM, Gakuya DW, Githiji CG, Rukenya ZM. Analgesic activity of aqueous extract ofVernonia hymenolepis(A. Rich) a traditional medicine plant used in Kenya for toothache.J Phytopharmacol2015;2(6): 41-45.

[9] Taufikurohmah T, Sanjaya IG, Baktir A, Syahrani A. TEM Analysis of gold nanoparticles synthesis in glycerin: novel safety materials in cosmetics to recovery mercury damage.Res J Pharm Bio Chem Sci2017;5(1): 397-407.

[10] Yakubu MT, Salimon SS. Antidiarrheal activity of aqueous extract ofMangifera indicaL. leaves in female albino rats.J Ethnopharmacol2016;163: 135-141.

[11] Basavegowda N, Kupiec AS, Malina D, Yathirajan HS, Keerthi VR,Chandrashekar N, et al. Plant mediated synthesis of gold nanoparticles using fruit extracts ofAnana scomosus(L.) (pineapple) and evaluation of biological activities.Adv Mat Lett2017;4(5): 332-337.

[12] Abubakar K, Abubakar MR, Ugwah-Oguejiofor JM, Muhammad AA, Usman M, Mshelia HE. Antidiarrheal activity of the saponin and flavonoid fractions ofAnarcadium occidentaleleaves in albino rats.Adv Med Plant Res2015;3(1): 23-28.

[13] Havagiray R, Ramesh C, Sadhna K. Study of antidiarrheal activity ofCalotropis giganteaR. B. R. in experimental animals.J Pharmaceut Sci2004;7: 70-75.

[14] Ghai OP, Paul VK, Arvind B.Ghai essential pediatrics. 7th edition. India,New Delhi: CBS Publishers & Distributors; 2009, p. 559-561.

[15] Sahayaraj K, Rajesh S. Bio nanoparticles: synthesis and antimicrobial applications. In: Mendez-Vilas A, editor.Science against microbe pathogen.Spain: Formatex Research Center; 2011, p. 228-244.

[16] Elia P, Zach R, Hazan S, Kolusheya S, Porat Z, Zeiri Y. Green synthesis of gold nanoparticles using plant extracts as reducing agents.Int J Nanomed2014;9(1): 4007-4021.

[17] Geetha R, Ashokkumar T, Tamilselvan S, Govindaraju K, Sadiq M,Singaravelu G. Green synthesis of gold nanoparticles and their anticancer activity.Cancer Nanotechnol2013;4(4): 91-98.

[18] Hosseinzadeh H, Ramezanib M, Namjob N. Muscle relaxant activity ofElaeagnus angustifoliaL. fruit seeds in mice.J Ethnopharmacol2017;84(3): 275-278.

[19] Ior LD, Uguru MO, Olotu PN, Ohemu TL, Ukpe A. Evaluation of analgesic and anti-inflammatory activities and phytochemical screening of the leaves extract ofPaullinia pinnata(Sapindaceae).J Chem Pharm Res2011;3(4): 351-356.

[20] Mujumdar AM, Misar AV. Anti-inflammatory activity ofJatropha curcasroots in mice and rats.J Ethnopharmacol2016;90(1): 11-15.

[21] Elaya RA, Vijayalakshmi M, Devalarao G.Acorus calamusL.: chemistry and biology research.Res J Pharm Tech2015;2: 256-261.

[22] Kalriya M, Ospondpant D, Ruktanonchai U, Lourith N. Biological activity assessment and phenolic compounds characterization from the fruit pericarp ofLitchi chinensisfor cosmetic applications.Pharm Biol2015;50(11): 1384-1390.

[23] Srikanth J, Muralidharan P. CNS activity of the methanol extracts ofSapindus emarginatusVahl in experimental animal models.J Sci Res2009;1(3): 583-593.

[24] Prakash KC, Kuppast IJ. CNS activities of few species of sapindaceae.Euro J Exp Bio2014;4(5): 101-104.

[25] Ripa FA, Haque M, Bulbul IJ, Afsana A, Begum Y, Habib A. Screening of central nervous system (CNS) depressant, muscle relaxant and antinociceptive activities of methanolic extracts of the peel and seed ofNephelium longanfruits.Afr J Pharm Pharmacol2012;6(11): 848-854.

[26] Akuodor GC, Muazzam I, Usman-Idris M, Megwas AU, Akpan JL,Chilaka JK, et al. Evaluation of the antidiarrheal activity of methanolic leaf extract ofBombax buonopozensein rats. IbnosinaJ Med Biomed Sci2011;3(1): 15-20.

[27] Nisar M, Khan I, Simjee SU, Gilani AH, Obaidullah, Perveen H.Anticonvulsant, analgesic and antipyretic activities ofTaxus wallichianaZucc.J Ethnopharmacol2008;116: 490-494.

[28] Roslida AH., Erazuliana AK, Zuraini A. Anti-inflammatory and antinociceptive activities of the ethanolic extract ofPluchea indica(L) less leaf.Pharmacol online2017;2: 349-360.

[29] Amresh G, Singh PN, Rao CO. Antinociceptive and antiarthritic activity ofCissampelo spareiraroots.J Ethnopharmacol2016;111: 531-536.

[30] Meliani LF, Nielsen OH, Andersen HP, Girardin PH. Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1beta generation.Clin Exp Immunol2017;147(2): 227-235.

[31] Reddy SK, Kumar SA, Kumar VD, Ganapaty S. Anti-inflammatory and analgesic activities ofAmorphophallus bulbifer(Roxb) Kunth whole plant.Trop J Pharm Res2012;11(6): 971-976.

[32] Ali K, Ashraf A, Biswas NN. Analgesic, anti-inflammatory and antidiarrheal activities of ethanolic leaf extract ofTyphonium trilobatumL.Schott.Asian Pac J Trop Biomed2012;2(9): 722-726.

[33] Besra SE, Sharma RM, Gomes A. Anti-inflammatory effect of petroleum ether extract of leaves ofLitchi serjanialethalisandCupania vernalis.(Sapindaceae).J Ethnopharma2016;54(1): 1-6

[34] Saidu K, Onahc J, Orisadipeb A, Olusolaa A, Wambebea C, Gamaniela K.Antiplasmodial, analgesic, and anti-inflammatory activities of the aqueous extract of the stem bark ofErythrina senegalensis.J Ethnopharmacol2016;71(2): 275-280.

[35] Suleiman MM, Mamman M, Naidoo V, Tauheed M, Eloff JN. Antiinflammatory and antinociceptive activities ofLoxos tylisalataA.SPRENG. EX Rchb (Anacardiaceae).Amer J Res Communi2015;2(7):227-246.

[36] Semwal DK, Semwal RB, Vermaak I, Viljoen A. From arrow poison to herbal medicine-The ethnobotanical, phytochemical and pharmacological significance ofCissam pelos(Menispermaceae).J Ethnopharmacol2014;155: 1011-1028.

[37] Al-Snafi AE. The pharmacological importance ofBeninca sahispida. A review.Int J Pharma Sci Res2013;4(12): 165-171.

[38] Paul S, Saha D. Evaluation of antimotility effect ofAlpinia conchigeraGriff on charcoal induced gastrointestinal motility in mice.Asian J Pharm2012;2(2): 71-74.

[39] Shrinivas S, Lakshmi LS, Rajesh T. Evaluation of antidiarrhoeal potentials of ethanolic extract of leaves ofHoloptelea integrifoliain mice model.Int J Pharm Tech Res2009;1(3): 832-836.

[40] Rahman MM, Hasan MN, Das AK, Hossain MT, Jahan J, Khatun MA,et al. Effect ofDelonix regialeaf extract on glucose tolerance in glucose induced hyperglycemic mice.Afr J Tradit Complement Altern Med2015;8(1): 34-36.

[41] Schum K, Boakye-Gyasi E, Amidu N, Ansah C, Duwiejua M. Anxiolytic and antidepressant effects of a leaf extracts ofPalisota hirsuta.Int J Pharmacol2010;6(1): 1-17.

[42] Bhogaonkar PY, Chavhan VN. Pharmacognostic studies onCadaba fruticosa(L.) Druce leaves.Int J Adv Life Sci2015;8(1): 31-37.