APP下载

大型教学系统中的智能大数据关键特征估计方法

2018-06-12王军涛

现代电子技术 2018年12期

王军涛

摘 要: 传统二阶特征估计法在对大数据方差进行估计,预测大型教学系统中的智能大数据关键特征时,存在对多特征的智能大数据关键特征估计效果不明显,估计结果误差累计量大的问题。因此,提出大型教学系统的智能大数据关键特征估计方法,其采用Relief关键特征估计方法获取大数据特征权重,完成智能大数据特征流行学习,通过对特征权重选择后的数据空间进行无监督学习和低维嵌入,实现对多特征的智慧大数据的特征估计。基于大数据关键特征估计结果,采用滚动时间序列估计方法,通过[AR(p)]模型运算大数据特征的模型阶数,依据该阶数向滚动AR算法引入实时数据,解决大数据特征估计中估计结果不同步造成的累计误差问题,实现智能大数据关键特征准确预测。实验结果表明,所提方法可增强对关键特征的估计精度,对关键特征的估计效果也有所提高。

关键词: 大型教学系统; 智能大数据; 关键特征; Relief; 时间序列估计; 累计误差

中图分类号: TN911?34; TP301 文献标识码: A 文章编号: 1004?373X(2018)12?0083?04

Abstract: The traditional two?order feature estimation method has the problems of unobvious key feature evaluation effect of multi?feature intelligent big data and big error accumulation quantity of evaluation results when it is used to estimate the variance of big data and predict the key features of intelligent big data in the large?scale teaching system. Therefore, a key feature estimation method for intelligent big data in the large?scale teaching system is proposed. The weights of big data features are obtained by using the key feature estimation method Relief to accomplish the popular learning of intelligent big data features. The unsupervised learning and low?dimensional embedding are performed for data space after feature weight selection, so as to realize the feature estimation of multi?feature intelligent big data. On the basis of the key feature estimation results of big data, the model order of big data features is calculated by using the rolling time series estimation method and [AR(p)] model. According to the order, real?time data is introduced to the rolling AR algorithm to resolve the accumulated error problem caused by unsynchronization of evaluation results in big data feature evaluation, so that accurate key feature prediction of intelligent big data can be realized. The experimental results show that the proposed method can improve the estimation precision and effect of key features.

Keywords: large scale teaching system; intelligent big data; key feature; Relief; time series estimation; accumulated error

教学系统中包含许多智能的大数据,如何对其中关键的特征进行准确估计成为目前研究的热点之一,专家和学者根据不同教学系统的数据特点已经有一些研究成果[1],但研究还处于初级阶段,传统二阶特征估计法在对大型教学系统中的智能大数据关键特征估计时,存在特征估计效果不明显、特征估计误差累计量大的问题。因此,本文研究大型教育系统的智能大数据关键特征估计方法,来提高关键特征估计结果的精度和效果。

1 智能大数据关键特征估计方法

1.1 Relief关键特征估计方法

针对大型教学系统中的智能大数据,采取Relief特征估计方法对教学系统中的智能大数据的关键特征的权重进行估计[2],Relief方法用于数据关键特征的估计是因为其可以检测一些在统计上与目标属性不相关的关键特征。

3 结 论

本文提出的大型教学系统的智能大数据关键特征估计方法,可有效提高智能大数据的关键特征估计精度,增强特征估计效果。

参考文献

[1] SU H, YANG H, ZHENG S. The large?scale crowd density estimation based on effective region feature extraction method [J]. Lecture notes in computer science, 2010, 6494: 302?313.

[2] 张凯锋,杨国强,陈汉一,等.基于数据特征提取的风电功率预测误差估计方法[J].电力系统自动化,2014,38(16):22?27.

ZHANG Kaifeng, YANG Guoqiang, CHEN Hanyi, et al. An estimation method for wind power forecast errors based on numerical feature extraction [J]. Automation of electric power systems, 2014, 38(16): 22?27.

[3] 李炳乾.对等P2P网络中大数据关键特征挖掘模型仿真[J].计算机仿真,2014,31(11):294?296.

LI Bingqian. Model simulation of big data key characteristics mining for peer?to?peer networks [J]. Computer simulation, 2014, 31(11): 294?296.

[4] 张招亮,陈海明,黄庭培,等.无线网络的差异化比特错误率估计方法[J].計算机研究与发展,2014,51(1):138?150.

ZHANG Zhaoliang, CHEN Haiming, HUANG Tingpei, et al. Differentiated bit error rate estimation for wireless networks [J]. Journal of computer research and development, 2014, 51(1): 138?150.

[5] 樊源泉,伍卫国,许云龙,等.MapReduce环境中的性能特征能耗估计方法[J].西安交通大学学报,2015,49(2):14?19.

FAN Yuanquan, WU Weiguo, XU Yunlong, et al. A power estimation method based on performance features in MapReduce environments [J]. Journal of Xian Jiaotong University, 2015, 49(2): 14?19.

[6] 梁胜杰,张志华,高绍忠,等.基于变点分析思想的高维机械噪声数据本征维估计方法[J].船舶力学,2016,20(11):1485?1493.

LIANG Shengjie, ZHANG Zhihua, GAO Shaozhong, et al. A method of latent characteristic variables dimensionality evaluating of high?dimensional mechanical noise data based change?point analysis [J]. Journal of ship mechanics, 2016, 20(11): 1485?1493.

[7] 唐建生,靳云姬,江向东.目标机动时刻估计的声特征变化显著性检验方法[J].系统工程与电子技术,2016,38(2):270?273.

TANG Jiansheng, JIN Yunji, JIANG Xiangdong. Target maneuver onset time estimation via significance test of acoustic feature variation [J]. Systems engineering and electronics, 2016, 38(2): 270?273.

[8] BI T, NI Y, SHEN C M, et al. An on?line distributed intelligent fault section estimation system for large?scale power networks [J]. Electric power systems research, 2002, 62(3): 173?182.

[9] 徐子伟,王鹏,陈宗海.一种基于Fisher比率和预测风险准则的电信客户流失预测分步特征选择方法[J].中国科学技术大学学报,2017,47(8):686?694.

XU Ziwei, WANG Peng, CHEN Zonghai. A two?stage feature selection method based on Fisher′s ratio and prediction risk for telecom customer churn prediction [J]. Journal of University of Science and Technology of China, 2017, 47(8): 686?694.

[10] SHOJI S, KOYAMA A. A fast classification method of isomorphic polygons in design data of large scale integrated circuit [C]// Proceedings of 10th International Conference on Complex, Intelligent, and Software Intensive Systems. Fukuoka: IEEE, 2016: 204?209.