APP下载

继电保护电力系统的短路保护

2018-05-28杨跃

电子技术与软件工程 2018年8期
关键词:熔断器相电流三相

文/杨跃

近几年,由于我国各个地区对资源的需求逐渐的增多,电力系统的建设力度不断提升,建设环境和运行环境也日趋复杂,这样若是系统保护力度不够的话,很容易出现短路故障,进而影响电力系统运行的稳定性和安全性,也会消耗大量的电力能源。因此,为了保证店电力系统运行的稳定性,加强继电保护电力系统保护的力度是非常重要的,主要是利用预防为主,并且针对继电保护电力系统运行的状态,制定相应的保护装措施,以此保证继电保护电力系统运行的稳定性,避免短路故障的发生,也对电力能源进行了有效的节约,提升了电力企业的经济效益。

1 引发继电保护电力系统短路故障的主要因素

在继电保护电力系统运行的过程中,引发短路故障的因素有很多,主要体现在绝缘体、三相系统、电力用户等方面,下面就针对这几个方面,对引发继电保护电力系统短路故障的主要因素,进行了简要的分析和阐述:

1.1 绝缘体

从电力系统的方面来分析,短路故障发生主要表现在横向系统和纵向系统等方面,主要

是因为由于导体的不同,并且保护力度相对较差,进而导致短路故障的发生。导体出现短路故障的因素主要是因为电力系统内部绝缘体,出现受损的现象,进而影响横向系统和纵向系统运行的稳定性。其实,绝缘体是属于一种的不容易导电的物质,那么在电流穿过的时候,绝缘体主要是根据自身的性能,利用较强的电阻将电流和其它物质进行绝缘。但是,若是绝缘体若是受到损坏,绝缘体的自身行性能就会消失,这样电流就会任意的穿过,在这个过程中,一旦电流相对较大,就会导致继电保护电力系统短路故障的发生。另外,电力人员在电力作业的过程中,若是出现存在误差,或者违反规定的作业行为,都会引发继电保护电力系统短路故障的发生,影响了系统供电的稳定性和安全性。

1.2 三相系统

从三相系统的角度分析,三相系统短路故障主要是指电力系统中的横向故障,具体来说,三相系统短路故障主要体现在三相短路、两相短路、单相接地短路以及两相接地短路等方面,并且三相系统短路故障主要是因为三相阻抗产生异常,发生短路的时候电流和电压是处于相等的状态,一般都是以单相短路为主,三相短路产生的概率不是很高。但是,一旦发生三相短路的话,其影响范围是非常大的,继电保护电力系统安全性和稳定性随之下降。

1.3 电力用户方面

由于地区的发展程度和经济程度等方面的不同,人口密度也有着很大程度上的不同,和对电力需求的程度也是不相同。针对人口密集的城市,用电量是非常大,因此对继电保护电力系统的建设也相对较大,电缆线路交叉重叠,并且由于继电保护电力系统相关设备和电缆线的长时间使用,经常出现设备老化、电缆线绝缘受损的现象,若是不及时的进行有效解决,就会影响继电保护电力系统的正常运行。另外,针对人口较少的地区,由于技术跟不上,工作人员也不够专业,这样很难定期展开继电保护电力系统安全检验工作,其中所存在的安全隐患便不能有效消除,增加了继电保护电力系统短路故障发生的概率。

图1:补偿器安装网络图

2 继电保护电力系统短路的防治措施

要想降低继电保护电力系统短路故障发生的概率,主要是以“防治”手段为主。下面就对是继电保护电力系统短路的防治措施,进行了简要的分析和阐述:

2.1 避雷针的安装

雷击很容易对继电保护电力系统内部和外部等方面进行损坏,若是情况相对严重的话,

很容易产生起火、停电、设备损坏等方面。因此,在变电站各项设备安装的过程中,需要根据实际情况安装避雷针,来避免雷击对继电保护电力系统的损坏。另外,在避雷针安装的过程中,一定要根据运行状态,选择合适的避雷针类型,保证两者处于一致的状态。同时,在避雷针安装的过程中,一定要做好各个线路的连接,避免引发其它故障的发生。

2.2 故障点电源的切断

在继电保护电力系统内部,各个方面之间都是有着联系的,也就是说其中的一个方面差出现问题,就会影响整个电路系统导致短路故障的产生,若是不及时的处理,就会造成严重的损失。因此,在继电保护电力系统运行防治的过程中,一定根据故障发生的状态,查找短路故障点以及故障点锁定,并且需要对继电保护电力系统短路故障产生的类型,进行分析和判断。同时,在各个方面确定以后,需要切断故障点电源,这样可以在最大程度上保证工作人员检修维护工作的顺利展开,也避免影响不断的扩大。另外,工作人员也可以利用万能表对短路状态下的电流,进行详细、全面的记录,为后期运行调整,提供了重要的参考依据。

表1:SFSZQ7-40000/110 型变压器阻抗技术参数

2.3 日常维护

日常维护是保证继电保护电力系统稳定、安全运行的关键,主要在固定的周期对继电保护电力系统进行维护,降低短路故障的发生。那么,在日常维护的过程中,一定要从以下几个方面展开:

(1)在日常维护的过程中,一定要提升工作人员的专业性,避免发生操作错误的现象发生,尤其是在电网密集的区域。

(2)针对继电保护电力系统日常的运行状态,需要编制短路故障日常维护方案,对其中存在的不确定因素进行分析,并且做好相应的预防措施,降低继电保护电力系统短路故障发生的概率。

(3)在日常维护的过程中,一定要利用有效的监控技术 ,加强对继电保护电力系统运行的实时控制,并且与网络系统进行有效的联系,这样一旦发生短路故障,可以及时的传输到监控中心,根据传输的参数进行处理,避免继电保护电力系统短路的故障的发生。

3 继电保护分析

在继电保护电力系统运行的过程中,做好相应的保护方案是非常必要的,主要是从熔断器保护、相电流保护、零序电流保护等方面,

具体的内容如下:

3.1 熔断器保护

其实,最早短路保护一般是以电源端的电流增大造成线路发热而设计的,熔断器就是其中的一个,是起到发热和自熔的功能。在系统运行的过程中,若是电流足够大的话,熔断器的温度会先于系统其他部分而升高到将自身熔断的临界点,从而切断电流。同时,熔断器属于一种一次性保护的组件,是不可重复使用的,主要是因为熔断器在切断故障一相电流后,这样还会保证功供电的稳定性,但是还会隐藏故障隐患。另外,随着电流系统的不断发展,三联装熔断器逐渐应用到其中,在运行的过程中若是其中一个发生熔断,另外两相卡死机构中会有一个被弹簧锁死的机构收回,导致另外两相的熔断器一起跌落。但是,熔断过程是需要一个周期的,在这个周期可以通过相应技术进行调整,避免影响继电保护电力系统的正常运行。

3.2 相电流保护

相电流保护主要是在短路电流故障计算原理和电流互感器的基础之上,并且利用机械方式作为继电保护电力系统线路切断保护的一项形式。在相电流保护的过程中,最开始的保护形式主要是在互感器上面取出电流,直接流经继电器吸合保持回路上的一个常闭节点,并且在电流足够大的时候,这样常闭节点的电磁力将抵消常闭节弹簧压力,常闭节点可以将主接触器的吸合电流拿掉,进而实现保护的目的。

3.3 零序电流保护

短路故障现象的发生,都会直接影响继电保护电力系统运行的稳定性,内部电流相位紊乱,也就是零序电流保护。因此,为了保证继电保护电力系统运行的稳定性,一定要对该方面给予足够的重视。同时,在固定的时间内部,可以将零序电流整定的短路继电保护取代相电流保护,并且一定要对其内部电流系统进行梳理,这样才能尽最大可能保证电流运行的有序性,避免发生紊乱的现象,降低继电保护电力系统短路故障现象发生的概率。

3.4 智能化保护

在上个世纪90年代,单片机技术和 PLC技术得到了广泛的应用,并且在程序化保障的智能综合保护模块基础之上,实现继电保护电力系统智能化保护的模式。同时,智能化保护的过程中,一定要正确安装探头,这样工作人员将继电保护电力系统的运行参数输入到其中,这样可以对继电保护电力系统进行综合性的保护,降低漏电、短路、过热、过负荷、缺相、欠压等现象的发生。

4 短路电流计算分析

继电保护电力系统短路电流计算主要是为保护措施的选择,以及保护方案的编制,提供重要的参考数据。其实,在继电保护电力系统短路电流计算的过程中,所包括的内容有很多,例如:补偿器安装、主变压器电阻、系统线路、负荷线路等方面,下面就以110kV为例,对继电保护电力系统短路电流计算的相关内容,进行了简要的分析和阐述。

4.1 补偿器安装

在继电保护电力系统短路电流计算的过程中,需要对补偿器安装的位置进行分析,就以110kV继电保护电力系统为例,选择10kV补偿器, 将基准容量定位为100MVA,并且电压所选取的标准为:Ub=Uav=1.05Ue。同时,基准电压选取一般情况下为三档,其中主要包括有:10.5kV、37kV、115kV,其基准电流也分为三档,主要有:5.5KVA、1.56KVA、0.5KVA等,只有对各个方面进行明确,才能保证短路电流计算的准确性,图1所示。

4.2 变压器阻抗计算

变压器阻抗计算是继电保护电力系统短路电流计算的一项种重要内容,因此一定要对变压器技术参数进行明确,并且通过利用相应的计算公式,进行变压器阻抗分析,在110kV继电保护电力系统中,选用SFSZQ7-40000/110 型变压器,技术参表1所示,具体内容如下:

根据表1中的参数,其计算过程为:

并且将这个-0.5%可以约等于0,根据这两个步骤展现下面的计算,

所以所得出的结论为:

为继电保护电力系统短路保护方案的编制,提供了重要的参考依据。

4.3 系统线路计算

在110kV中,若是将系统电流设置为50KM的话,那么需要将SB设置为100MWA,VB1设置为110kV的话,那么通通过相应的计算,系统电压平均参数为115kV,所得到的线路阻抗为:X1=0.4/km,其计算公式为:

最终为判断出系统线路短路电流为0.165。

4.4 负荷线路计算

负荷线路电流计算,是继电保护电力系统短路电流计算中不可缺少的一个方面,若是在110kV继电保护电力系统中,设置35kV的一侧VB2为37kV,其计算公式为

。另外,在计算的过程中,若是电流为10kV一侧的VB3位10.5kV的话,那么根据同样的计算公式,可以判断短路电流为7.256。

5 结束语

综上所述,本文在引发继电保护电力系统短路故障的基础之上,提出了一些保护措施,并且以110kV继电保护电力系统为例,对短路电流计算的一些相关内容,进行了阐述和分析,其主要目的就是保证继电保护电力系统运行的稳定性和安全性,避免短路故障发生概率,提升电力行业经济效益的同时,也为电力行业的发展,给予一定的支持。

参考文献

[1]巩凡.电力系统中短路故障与继电保护的措施探讨[J].电工文摘,2016(04).

[2]侯龙龙.探讨电力系统短路电流及继电保护整定计算[J].电子技术与软件工程,2015(22):163-165.

[3]刘焕宇.电力系统中短路故障与继电保护的措施探究[J].现代盐化工,2017,44(04):57-58.

[4]成娇英.电力系统发生短路故障与继电保护措施探讨[J].电子技术与软件工程,2014(06):184-185.

[5]李龙好.对电力系统继电保护技术若干问题的研究[J].工程技术:文摘版:00295-00295.

[6]高强.超导限流器与电力系统继电保护配合问题的研究[D].中国科学院研究生院(电工研究所),2016.

猜你喜欢

熔断器相电流三相
地铁牵引逆变器输出电流传感器测试策略优化分析
轮毂电机控制器相电流重构方法
三相异步电动机保护电路在停车器控制系统中的应用
乘用车熔断器选型设计方法
新老型10kV户外跌落式熔断器防污闪能力分析与对比
10kV杆上跌落式熔断器故障分析及改进措施
汽车熔断器的正确选用与规范检测
三相PWM整流器解耦与非解耦控制的对比
异步电机SVM-DTC系统中的相电流检测研究
基于DSP和FFT的三相无功功率测量