底水油藏压力及流量变化规律研究
2018-05-23刘洪洲吴浩君
姜 永,刘洪洲,王 迪,吴浩君,黄 磊
掌握底水油藏的开发动态变化规律,对合理开发好底水油藏至关重要。底水油藏流体的流动为三维渗流,并且由于水体的大小、油藏的各向异性、油藏边界等都对底水油藏的动态有影响,使渗流规律更加复杂。目前关于底水油藏的研究主要是针对水淹规律[1-3]、见水特征[4-6]、底水锥进理论[7-9]等方面,而关于底水油藏的水体、压力及流量变化研究相对较少。本文研究基于试井理论,建立了底水油藏三维渗流模型,分析了不同水体外边界条件下油藏压力、流量、累计流量的变化规律,所建立的模型可以用来分析常规底水油藏的水体及压力、流量动态预测。
1 数学模型的建立
底水驱动油藏物理模型见图1,半径为Rr圆形油藏上部封闭,底部与水体相连。
图1 底水驱动油藏物理模型
为研究方便,对模型作以下基本假设:①储层具有统一的压力系统,原始压力为ip;②上部储层边界是密封的,底部边界保持在一个常数,压力等于初始压力;③水体为恒定的,水平方向和垂直方向渗透率不等;④不考虑重力影响;⑤流体微可压缩。
根据质量守恒定律,底水驱动油藏无因次渗流模型为:
初始条件:
边界条件:
油藏顶部不流动:
油藏底部定压:
水体外边界无穷大:
累计流量计算:
其中无因次量定义为:
式中:φ为地层孔隙度,无因次;μ为流体粘度,mPa·s;tc为地层流体综合压缩系数,1/MPa;oB为流体体积系数,无因次;Rr为油藏半径,m;vk为垂直方向渗透率,μm2;hk 为水平方向渗透率,μm2;er为水体半径,m;h为油藏厚度,m;q为产量,m3/d;Q为累计产量,m3/d;p为地层压力,MPa;ip为原始地层压力,MPa。
2 渗流特征
2.1 压力变化特征
不同水体外边界条件下流量随时间变化关系见图2,可以看出压降随时间变化可分为三个阶段。在早期的双对数曲线上无因次压降和时间之间为线性关系,由于压力还未波及到底水区域,压力降增加迅速。过渡时期:这一时期开始时垂直方向上底水开始供给,底水开始影响油藏压力,压力下降幅度明显变缓。晚期:对于无限大水体以及定压边界的情况,由于水体能量充足,油藏的压力下降速度几乎为0。而对于含水层密封或封闭外边界(有固定的边界距离), 当压力波传到边界后,由于水体能量有限,压力下降的速度会越来越大。
图2 不同边界条件下底水油藏无因次压降随时间变化关系
2.2 流量变化特征
不同边界条件下流量随时间变化关系见图3,可以看出流量随时间变化可分为三个阶段。早期:主要反映底水锥进之前的流量变化规律,双对数曲线上无因次流量和时间之间近似为线性关系,由于底水作用,存在垂直方向上的流动,产量有一段短暂的上升期;而对于无底水的油藏,由于不存在垂直方向上的流动,初期流量没有上升特征,而是直接呈指数式下降(见图4)。过渡时期:当流量增加到一定程度时,油藏流体流动基本达到平衡,流量不再增加,而是呈缓慢速度下降。后期:主要反映外边界对流量的影响。对于封闭水体外边界,流量呈指数下降;对于恒压水体外边界,流速下降的速度为零,即流速保持稳定,达到系统稳态流;对于无限大外边界后期流量则是缓慢下降。
图3 不同边界条件下底水油藏流量随时间变化关系
图4 不同边界条件下无底水油藏流量随时间变化关系
2.3 累计流量变化特征
不同水体外边界条件下累计流量随时间变化关系见图5,对于底水油藏早期:双对数坐标图上,累积流量快速增加,无因次累计流量和时间之间近似为线性关系;而对于无底水油藏,则不存在这一特征(图6)。过渡时期:当达到一定时间后,累积流量增加速度减缓。当系统进入到后期边界影响流量时,对于封闭边界水体,由于能量有限,累计流量不再增加;对于无限大和定压边界,由于能量充足,累计流量随着时间增加继续增加。
图5 不同边界条件下底水油藏累计流量随时间变化关系
图6 不同边界条件下无底水油藏累计流量随时间变化关系
3 应用实例
M油田X砂体为典型底水油藏,油藏相关参数为:地层孔隙度φ为0.25;流体黏度μ为1.26 mPa·s;地层流体综合压缩系数tc为4.3x10-4;流体体积系数oB为1.257;油藏半径Rr为700 m;垂直方向渗透率vk为10x10-3μm2;水平方向渗透率hk为81.5x10-3μm2;油藏厚度h为 7.9 m;原始地层压力ip为16.91 MPa。通过对压力、流量、累计流量拟合(见图7-9)计算该砂体底水的水体高度为42 m,水体半径为1.4 km,从而计算出水体倍数为33;根据该砂体历年静压测试资料通过物质平衡法计算水体倍数为35,两者非常接近。同时根据拟合的结果,可以预测随着生产时间的延长流量及压力的变化趋势。
图7 压力拟合曲线
图8 流量拟合曲线
图9 累计流量拟合曲线
4 结论
(1)建立了底水油藏三维渗流模型,得到了不同边界条件下底水油藏压力、流量、累计流量的变化规律。
(2)底水油藏压力及流量特征分为3个阶段:早期无因次压降和时间在双对数曲线图上为线性关系,压力降增加迅速,流量、累计流量快速上升。过渡时期压力降缓慢上升;流量呈缓慢速度下降,累计流量缓慢上升。后期反应边界对压力和流量的影响,对于水体无限大外边界,油藏的压力下降速度为 0,流量缓慢下降;对于水体恒压外边界,油藏的压力下降速度为 0,流量保持稳定;对于水体封闭外边界,油藏的压力下降速度越来越快,流量呈指数下降。
(3)所建立的模型可以用来进行常规底水油藏的水体及压力、流量的分析预测。
参考文献
[1] 姜汉桥.底水油藏水平井水淹规律数值模拟研究[J].西南石油大学学报,2009,31(6):172–176.
[2] 周代余,江同文,玛积累,等.底水油藏水平井水淹动态和水淹模式研究[J].石油学报,2004,25(6):73–76.
[3] 郑俊德,高朝阳,石成方,等.水平井水淹机理数值模拟研究[J].石油学报,2006,27(5):99–103.
[4] 刘怀珠,李良川,吴均,等.底水油藏水平井出水规律的实验研究[J].石油化工高等学校学报,2012,25(1):57–60.
[5] 刘振宇.水平井开发研究 [J].大庆石油学院学报,2002,26(4):32–35.
[6] 程林松,张健琦,李春兰.底水油藏水平井开发见水后生产动态预测[J].西南石油学院学报,2002,24(2):12–14.
[7] 王小玮,祁丽莎,幸明刚.底水油藏水平井底水锥进理论研究[J].石油地质与工程,2013,27(1):104–105.
[8] 李传亮.水锥形状分析[J].新疆石油地质,2002,23(1):74–75.
[9] 朱圣举.低渗透无隔板底水油藏油井见水时间预测[J].新疆石油地质,2001,22(2):153–154.
[10] 张艳玉,姚军.现代试井解释原理与方法[ M].北京:中国石油大学出版社,2006:46–48.