干湿交替灌溉和施氮量对水稻内源激素及氮素利用的影响
2018-04-11徐国伟陆大克刘聪杰王贺正陈明灿李友军
徐国伟,陆大克,刘聪杰,王贺正,陈明灿,李友军
干湿交替灌溉和施氮量对水稻内源激素及氮素利用的影响
徐国伟1,2,陆大克1,刘聪杰1,王贺正1,陈明灿1,李友军1
(1. 河南科技大学农学院,洛阳 471003; 2. 扬州大学江苏省作物遗传生理重点实验室,扬州 225009)
为探讨干湿交替灌溉与施氮水平对水稻根系内源激素水平及氮肥利用的影响,以连粳7号为材料,采用防雨棚土培试验,研究3个灌溉方式:浅水层灌溉、轻度干湿交替灌溉、重度干湿交替灌溉与3个氮肥水平(0、240 和360 kg/hm2)对水稻根系内源激素(玉米素及玉米素核苷(Z+ZR)、生长素(IAA)、脱落酸(ABA))、叶片氮代谢酶活性(硝酸还原酶(NR)、谷氨酰胺合成酶(GS)、谷氨酸合成酶(GOGAT))、植株氮素累积量及氮肥利用效率的影响及其耦合效应。研究结果表明:在相同施氮水平下,轻度干湿交替灌溉促进根系Z+ZR、IAA合成,提高叶片中NR、GS及GOGAT活性,氮肥吸收利用率显著提高(<0.05);重度干湿交替灌溉则抑制根系Z+ZR、IAA合成,降低叶片NR、GS及GOGAT活性,植株氮素累积量及氮肥利用效率显著降低(<0.05),而根系ABA含量则明显增加(<0.05);在相同灌溉方式下,根系Z + ZR、IAA含量、叶片氮代谢酶活性及氮肥累积量在保持水层及轻度干湿交替下随着施氮量的增加而增加,而在重度干湿交替灌溉下则随着施氮量的增加先增加后降低,中氮处理明显提高氮肥利用效率(<0.05)。相关分析表明:根系合成的Z + ZR、IAA及叶片中氮代谢酶活性与氮肥吸收利用率呈显著(<0.05)或极显著(<0.01)的正相关关系,而脱落酸含量则与氮肥吸收利用率呈极显著的负相关关系(<0.01)。根系合成的Z + ZR、IAA及叶片中氮代谢酶供氮效应为正效应,抽穗后,轻度干湿交替灌溉供水效应及耦合效应为正效应,而重度干湿交替灌溉则为负效应。该研究对探索水氮耦合机理,为水稻高产高效栽培实践提供理论及科学依据。
灌溉;氮肥;作物;水稻;干湿交替灌溉;水氮耦合;内源激素;氮代谢酶
0 引 言
随着人口的增加、工业的迅猛发展、环境污染的加重以及全球气候的变化,用于灌溉的水资源将会愈加匮乏,严重威胁作物特别是水稻的生产[1-2]。为应对水资源短缺问题,科学家发明了众多水分高效利用技术,其中干湿交替灌溉即是一项行之有效的节水灌溉技术。干湿交替灌溉田间水分状况由淹水转变为相对轻度水分胁迫,土壤含氧量增加,有利于产量的形成及水资源的高效利用[3-6]。该技术已在亚洲主要水稻生产国大面积推广应用,具有良好的经济与生态效益[7-10]。至2015年,中国化肥的使用量已经达到6022万t,其中氮肥的使用量为2362万t[11]。过高的施氮量已经引起严重的环境污染、土壤恶化、病虫害发生及稻米品质下降[12-13]。如何进一步提高水氮资源利用率已经成为当前研究的热点。施氮水平、施氮时期和灌溉方式等对作物生长发育的影响可通过作物体内激素含量变化而起作用,通过调节根系形态生理及构型[14],从而影响地上部作物生长发育及养分吸收利用。水稻的氮代谢开始于根细胞对土壤中硝酸盐和铵盐的吸收,通过其特定的转运蛋白吸收矿质营养元素进入表皮细胞,对于谷粒充实与氮的利用至关重要[15-17]。Wang等[18]研究表明,随土壤含水率的降低,作物根系迅速感知,并通过内源激素调节作物地上部生理功能,如:叶片气孔导度和光合速率降低、作物叶片的生长缓慢等。Takei等[19]表明,根系中激素合成受到氮素营养水平的调控,养分充足有利于根系分生组织和地上部生长,促进养分吸收,延缓植株衰老。李洪娜等[20]研究表明,随着施氮量的增加,植株体内促进型激素显著增加,但ZR/GA(玉米素核苷与赤霉素比值)、ABA/GA(脱落酸与赤霉素比值)比值逐渐减低,氮肥利用率显著降低。前人对根系内源激素变化及叶片氮代谢活性的影响较多的集中在水、肥、品种等单因子上,关于水氮互作对于根系激素及氮代谢酶活性的影响及其与氮肥吸收利用的关系研究不够深入,且大多集中在苹果、烟草、棉花等旱作作物及果树上[20-23],这些植物养分及水分运筹方式与水稻完全不同。本试验通过对土壤水分的严格控制,研究全生育期不同干湿交替灌溉与施氮条件对水稻根系激素含量、叶片氮代谢酶活性的影响及其耦合效应,以此探索水氮耦合机理,阐明这些差异与氮素吸收利用之间的关系,这对于资源高效利用和生产管理技术体系均具有十分重要的理论和实际意义。
1 材料与方法
1.1 材料与试验地点
试验于2015—2016年5—10月在河南科技大学试验农场进行。供试品种为常规粳稻品种连粳7号。试验地年降水量640 mm,年平均温度15.1 ℃,年日照时数2300~2600 h,年辐射量491.5 kJ/cm2,气候属温带半湿润半干旱大陆性季风气候。试验采用土培池栽种方式,塑料大棚挡雨。每个土培池长9 m、宽1.5 m、深0.4 m,土壤为黏壤土,其有机质质量分数14.9 g/kg,碱解氮65.3 mg/kg,有效磷5.9 mg/kg,速效钾115.6 mg/kg。
1.2 试验设计
试验设3种灌溉方式:保持浅水层(分蘖末期进行晒田,收获前一周断水,其余生育期保持1~2 cm浅水层)、轻度干湿交替灌溉(分蘖末期进行晒田,收获前一周断水,其余生育期先灌1~2 cm水层,至土壤水势降到﹣20 kPa再灌浅水层,如此反复)、重度干湿交替灌溉(分蘖末期进行晒田,收获前一周断水,其余生育期先灌1~2 cm水层,至土壤水势降到﹣40 kPa再灌浅水层,如此反复),土培池内用负压计监测土壤水势,陶土头底部置于15 cm土层处,生育期间用塑料大棚挡雨。全生育期氮肥设置为3个水平(分别为0、240和360 kg/hm2,即:0N、MN、HN),氮肥运筹为基肥:分蘖肥(移栽后7 d):穗肥(幼穗分化始期)= 4∶1∶5,各处理磷、钾肥均一致,300 kg/hm2过磷酸钙(含P2O513.5%)和195 kg/hm2氯化钾(含K2O 52%)分别于移栽前一次性施入。试验共设9个处理,每个处理重复3次,共27个小区,随机区组排列。试验采用大田育秧:每年5月8日播种,6月10移栽,株行距均为20 cm,每穴栽插2个基本苗。全生育期严格监控水分及病虫草害,其余管理同当地高产田一致。
1.3 测定项目与方法
1.3.1 根系激素含量测定
取根时期及方法参考徐国伟等[16],根系中Z+ZR、IAA和ABA的提取与测定参照何钟佩[24]与Bollmark等[25]介绍的酶联免疫法,激素含量的计算按Yang等[26]方法。
1.3.2 叶片氮代谢酶活性测定
于不同生育期,各处理取20张叶片(生长基本一致的主茎完全展开的顶叶),用于氮代谢酶活性测定。硝酸还原酶活性(NR)测定参照李合生[27]离体法;谷氨酰胺合成酶(GS)测定参照王小纯等[28]方法;谷氨酸合酶(GOGAT)测定参照Zhang等[29]方法。
1.3.3 氮含量测定及氮肥利用率的计算
于不同生育期,各处理取5穴,剪去根后,按不同器官分成叶片、茎鞘和穗(抽穗后),烘干称质量后粉碎,用浓H2SO4-H2O2消煮,凯氏法测定不同器官氮含量[27],参照张自常等[30]、Xue等[31]等方法计算氮素累积量及氮肥的利用效率。
1.3.4 各因素效应的计算公式[32-33]
供氮效应是指同一水分下氮肥的效应;控水效应指同一氮肥下水分处理后效应;耦合效应是不同水分及氮肥处理后效应:
供氮效应=[(土壤水分胁迫与氮肥处理–土壤水分胁迫与无氮肥处理)+(正常水分与氮肥处理–正常水分与无氮肥处理)]/2
控水效应=[(土壤水分胁迫与氮肥处理–正常水分与氮肥处理)+(土壤水分胁迫与无氮肥处理–正常水分与无氮肥处理)]/2
耦合效应=[(土壤水分胁迫与氮肥处理–正常水分与无氮肥处理)–(正常水分与氮肥处理–正常水分与无氮肥处理)–(土壤水分胁迫与无氮肥处理–正常水分与无氮肥处理)]/2
1.4 数据处理与分析
用SAS/STAT (version 6.12,SAS Institute,Cary,NC,USA)统计分析,LSD法多重比较数据,SigmaPlot 10.0进行图表绘制。
2 结果与分析
2.1 水稻根系激素含量及叶片氮代谢酶活性的处理效应
在2015和2016年试验中,根系激素含量及叶片氮代谢酶活性在灌溉方式、氮肥水平间存在极显著差异(<0.01),灌溉方式与施氮水平间存在互作效应(表1)。其余指标年度间均无差异,故文中数据以2 a试验结果的平均值表示。
表1 干湿交替灌溉耦合施氮下根系激素含量及叶片氮代谢酶活性的方差分析
注:NS表示差异不显著(>0.05)。*与**分别表示﹤0.05与﹤0.01。所有指标均为抽穗期测定数据。Y表示年度间,W表示不同灌溉方式,N表示氮肥水平。
Note: NS, not significant (>0.05). * and** represents<0.05 and P<0.01 respectively. The indicator data were determined at heading stage. Y, W and N represents year, irrigation regime and nitrogen level, respectively.
2.2 干湿交替灌溉耦合施氮对根系内源激素及耦合效应的影响
2.2.1 干湿交替灌溉耦合施氮对根系玉米素及玉米素核苷、生长素含量的影响
根系中玉米素及玉米素核苷(Z + ZR)和生长素(IAA)含量随着生育进程表现为先增加后降低的趋势,在抽穗期达到峰值(图1a和图1b)。在相同施氮水平下,与保持浅水层相比,轻度干湿交替灌溉根系Z + ZR和IAA含量显著增加,如抽穗期,根系中Z + ZR和IAA含量平均增加8.7%和13.5%(<0.05),而重度干湿交替灌溉则显著性降低根系Z + ZR和IAA含量,如抽穗期Z + ZR和IAA含量平均降低25.1%和27.9%(<0.05),说明轻度干湿交替灌溉有利于根系Z + ZR和IAA含量的提高,而重度干湿交替灌溉则抑制Z + ZR和IAA的合成。在相同水分管理下,不同氮肥水平对根系Z + ZR和IAA含量的影响不同:根系Z + ZR和IAA含量在保持水层及轻度干湿交替下随着施氮量的增加而增加,而在重度干湿交替灌溉下,根系Z + ZR和IAA含量随着施氮量的增加先增加后降低,说明高氮并不能显著性提高根系Z + ZR和IAA含量。从分析可知,采用轻度干湿交替灌溉与增施氮肥可以提高根系Z + ZR和IAA含量。
注:0N:不施氮肥;MN:施N 240 kg·hm–2;HN:施N 360 kg·hm–2;0kPa:保持浅水层;-20kPa:轻干湿交替灌溉;-40kPa:重干湿交替灌溉;同一生育期不同小写字母表示各处理在0.05水平上差异显著,下同;
2.2.2 干湿交替灌溉耦合施氮对根系脱落酸含量的影响
根系ABA含量随生育进程而逐渐提高(图2)。在相同的施氮水平下,根系中ABA含量在轻度干湿交替灌溉下有所增加,但与对照保持水层无显著差异(>0.05),而重度干湿交替灌溉则显著提高根系ABA含量(<0.05),如抽穗期,ABA含量分别增加162.1(0N)、147.1(MN)及360.2 nmol/g(HN);在相同水分管理下,不同氮肥水平对根系ABA含量的影响不一:在保持水层及轻度干湿交替下,根系ABA含量随着施氮量的增加而降低。值得注意的是,在重度干湿交替灌溉下,适度增施氮肥(MN)能够起到“以肥调水”的作用,降低根系ABA含量,而重施氮肥(HN)则加剧了土壤水分胁迫,根系ABA含量显著性提高(<0.05)。
图2 干湿交替灌溉耦合施氮对根系脱落酸含量的影响
2.2.3 干湿交替灌溉耦合施氮对根系内源激素耦合效应的影响
连粳7号根系Z+ZR及IAA的供氮效应均表现为正效应(表2),说明施用氮肥有利于根系细胞分裂素及生长素的合成;轻度干湿交替灌溉的控水效应为正效应,说明其促进根系Z+ZR及IAA含量的增加,而重度干湿交替灌溉的控水效应则为负效应,说明其抑制根系Z+ZR及IAA的合成,不同生育期表现一致;根系Z+ZR及IAA在分蘖中期及穗分化期的耦合效应整体表现为正效应(重度干湿交替灌溉耦合高氮除外),在抽穗期及成熟期轻度干湿交替灌溉表现为正效应,而重度则表现为负效应,说明适宜的水氮耦合有利于根系Z+ZR及IAA的合成。
连粳7号根系ABA的供氮效应在不同氮肥间表现不一,MN下供氮效应为负效应,说明不同灌溉方式下增施适宜氮肥能够降低根系中ABA含量,HN下轻度干湿交替供氮效应为负效应,而重度干湿交替灌溉则为正效应,说明重度水分胁迫下增施高氮促进根系ABA的合成;根系ABA的耦合效应与供氮效应一致;根系ABA的控水效应均为正效应,说明水分胁迫促进根系ABA含量的增加,水分胁迫的程度越高,控水效应越明显。
2.3 干湿交替灌溉耦合施氮对叶片氮代谢酶活性及耦合效应的影响
2.3.1 对叶片氮代谢酶活性的影响
从图3可以看出,叶片氮代谢酶活性随着生育进程先提升后降低,但3种酶达到峰值的时间不一:叶片GS与GOGAT活性在抽穗期最高,而NR在幼穗分化始期达到峰值。
表2 干湿交替灌溉耦合施氮对根系激素耦合效应的影响
注:同一生育期同一行不同小写字母表示各处理在0.05水平上差异显著,下同。
Note: Values within the same growth period and the same line followed by different lowercase letters are significantly different at 0.05 level, the same below.
在相同施氮水平下,与保持水层相比,轻度干湿交替灌溉提高了3种酶的活性,如幼穗分化始期:在0N、MN、HN水平下,叶片中NR活性分别增加了26.5%、15.2%及14.7%;GS活性分别增加了9.1%、15.2%、24.1%;GOGAT活性分别增加了5.8%、17.1%、14.8%;而重度干湿交替灌溉则抑制3种酶的活性,如抽穗期:在0N、MN、HN水平下,叶片中NR活性分别降低了6.0、2.6、12.7g/h×g;GS活性分别降低了36.1、25.3、41.6g/h×g;GOGAT活性分别降低了1.4、2.7与5.9g/h×g。
在同一灌溉方式下,不同施氮量对叶片氮代谢酶活性的影响不同:在保持水层及轻度干湿交替下叶片氮代谢酶活性随着施氮量的提高而增加,但3种代谢酶活性在MN与HN间无显著差异(>0.05),而在重度干湿交替灌溉下,3种代谢酶活性随着施氮量的增加先增加后降低,如抽穗期:与MN相比,HN处理叶片中NR、GS与GOGAT分别降低了0.8、13.1、1.8g/h×g,说明高氮降低了叶片氮代谢酶活性。从分析可知,轻度干湿交替灌溉促进叶片氮代谢酶活性的提升,而重施氮肥降低了3种代谢酶活性。
图3 干湿交替灌溉耦合施氮对叶片氮代谢酶活性的影响
2.3.2 对叶片氮代谢酶耦合效应的影响
连粳7号叶片氮代谢酶的供氮效应均表现为正效应(表3),说明施用氮肥有利于叶片中氮代谢酶活性的提高;叶片氮代谢酶的控水效应在不同水分处理间并不一致:轻度干湿交替灌溉的控水效应在均为正效应,说明其促进叶片中氮代谢酶活性的提高,而重度干湿交替灌溉的控水效应在抽穗后则为负效应,说明其抑制氮代谢酶活性的大小;叶片氮代谢酶的耦合效应与控水效应一致,说明适宜的水氮耦合有利于叶片氮代谢酶活性的提升。
表3 干湿交替灌溉耦合施氮对叶片氮代谢酶耦合效应的影响
2.4 干湿交替灌溉耦合施氮对水稻氮素吸收利用的影响
2.4.1 对水稻氮素吸收的影响
不同水氮处理对水稻氮素积累量的影响不一(表4)。随着生育进程,植株氮素积累量逐渐提高。在保持浅水层及轻度干湿交替灌溉下,水稻植株中氮素的积累量随着施氮量的提高而显著增加,如:抽穗期,MN与HN处理氮肥积累量比对照0N平均增加144.3%(MN)及164.0%(HN),而重度干湿交替灌溉下,植株中氮素积累量则先增加后有所降低,说明重度水分下重施氮肥并不能明显增加植株氮素积累;在相同氮肥水平下,成熟前轻度干湿交替灌溉氮素累积量与对照保持水层无明显差异,而成熟期则显著性增加(0N除外);重度干湿交替灌溉显著降低各个生育期植株中氮素累积量。
表4 干湿交替灌溉耦合施氮对水稻氮素积累量的影响
注:同一生育期不同小写字母表示各处理在0.05水平上差异显著,下同;
Note: Values within the same growth period followed by different lowercase letters are significantly different at 0.05 level, the same below.
2.4.2 对水稻产量及氮肥利用效率的影响
在同一施氮条件下,轻度干湿交替灌溉后连粳7号产量有所增加(表5),而重度干湿交替灌溉则显著降低,平均降低28.8%;同一水分条件下,施氮明显增加连粳7号的产量,但在MN与HN处理间无明显差异(重度干湿交替灌溉除外),说明高氮并不能显著增加水稻产量。从分析可知,轻度干湿交替灌溉耦合中度施氮下连粳7号水稻产量最高。
表5 干湿交替灌溉耦合施氮对水稻产量及氮肥利用效率的影响
随着施氮量的增加,水稻氮肥利用效率(吸收利用率、农学利用率及偏生产力)显著降低(表5)。与保持水层相比较,轻度干湿交替灌溉显著提高氮肥吸收利用率,而重度干湿交替灌溉则显著降低氮肥利用效率,氮肥吸收利用率、农学利用率及偏生产力分别降低51.2%、63.0%及36.5%,从分析可知,轻度干湿交替灌溉耦合中氮有利于氮肥利用率的提高。
2.5 根系激素含量及叶片氮代谢酶活性与氮肥吸收利用率的相关性分析
不同生育期根系合成的玉米素及玉米素核苷、生长素含量及与氮肥吸收利用率呈显著或者极显著的正相关关系(= 0.621*~0.806**,表6),同样叶片中氮代谢酶活性(NR、GS、GOGAT)与氮肥吸收利用率呈显著或者极显著的正相关关系(= 0.629*~0.831**,NR抽穗期除外),而脱落酸含量则与氮肥吸收利用率呈极显著的负相关关系(= –0.849**~ –0.825**),表明根系激素含量及叶片氮代谢酶活性与氮肥吸收利用关系密切。
表6 根系激素含量及叶片氮代谢酶活性与氮肥吸收利用率的相关分析
注:*与**分别表示<0.05与<0.01。
Note: * and** represents<0.05 and<0.01 respectively.
3 讨 论
3.1 干湿交替灌溉耦合施氮对水稻内源激素含量的影响
激素在作物的生长发育中起着重要的调控作用,它作为信号分子通过输导组织在时空上调控作物发育的众多过程[14]。一般认为IAA、Z和ZR为促进型激素,ABA为抑制型激素。作物根系能够感知土壤水分变化状况,当作物根系处于水分胁迫时,根系迅速感知,以合成化学信号的形式向地上部传递,调控作物地上部生理功能[34-35]。较多研究认为,随土壤含水率的降低,根系及叶片脱落酸含量增加,玉米素及玉米素核苷、生长素含量明显减少,叶片气孔导度和光合速率降低[18-19]。也有研究认为,水分胁迫下作物根系及叶片内源激素含量与品种类型有关[36]。本研究表明,轻度干湿交替灌溉增加根系Z+ZR、IAA含量、抑制ABA合成,而重度干湿交替灌溉则相反。一方面适度干湿交替后,土壤氧气浓度增加,减少H2S等还原性有毒物质对根系的毒害作用,另外,适度干湿交替灌溉后,水稻地上部叶片光合质(叶片光合速率、叶绿素荧光参数、光合氮素利用率等)得到明显的改善[30, 36-37],能为地下根系的生长发育提供较多的同化物,水稻根系活力明显增强[16],有利于根系Z+ZR、IAA的合成,而Z+ZR量的提高可以拮抗根系合成ABA,从而降低根系ABA含量[34-36],重度干湿交替灌溉后根系活性则显著性降低,说明根系生理功能受到明显影响,抑制Z+ZR、IAA的合成。
赵平等[38]研究认为,氮钾营养充足能够促进根系分生组织和地上部的生长,促进细胞分裂素的合成,加快分解ABA含量,从而延缓植株衰老,而养分供应不足则相反,而熊溢伟等[39]研究认为,宁粳1号和两优培九在主要生育期,根系激素含量在高施氮量情况下反而有所降低,可见研究结论并不一致。本研究表明,根系Z + ZR和IAA含量在保持水层及轻度干湿交替下随着施氮量的增加而增加,而ABA含量则减少,根系中激素的合成及其向上运转可能受到氮素营养水平的调控,合成的激素是传递植株地下和地上部氮素营养状况的信号[33-34]。本试验表明,在重度干湿交替灌溉下,根系Z + ZR和IAA含量随着施氮量的增加先增加后降低,重施氮肥反而降低根系Z + ZR和IAA含量,促进ABA显著性提高,说明在重度干湿交替灌溉下,降低氮肥“以肥调水”的作用[16, 30],重施氮肥反而使得土壤水势进一步降低,根系合成大量ABA以减少气孔的开度,降低叶片的蒸腾,从而减少水分的进一步散失,以维持正常的生理活动。张岁岐等[40]在玉米上也观察到相同的现象。
3.2 干湿交替灌溉耦合施氮对水稻叶片氮代谢酶活性的影响
水稻的氮代谢开始于根细胞对土壤中硝酸盐和铵盐的吸收,通过特定转运蛋白吸收的氮素必须经过一系列代谢酶参与的反应与转化,才能被作物吸收与利用[41]。NR是氮素还原同化过程中的限速酶及第一个酶,GS- GOGAT循环是氮代谢的中心,是作物体内NH4+同化为酰胺态氮的主要途径[41-43]。增施氮肥能够提高氮素同化关键酶硝酸还原酶、谷氨酰胺合成酶、谷氨酸合成酶及谷氨酸脱氢酶的活性,降低蛋白质水解酶的活性,显著促进功能叶和茎秆的氮素运转[16-17,41-43]。本研究在保持水层及轻度干湿交替灌溉下也得到相同的结论,但值得注意的是在重度干湿交替灌溉下,氮代谢酶活性在中氮(240 kg/hm2)下最高,高氮(360 kg/hm2)反而显著降低氮代谢酶活性,主要是由于重度干湿交替灌溉下水稻根系活性明显降低[16],水稻根系氧化力、根系吸收面积及根系细胞分裂素含量均与叶片中氮代谢酶活性呈极显著正相关[44],限制其向地上部输送水分、养分的能力,抑制叶片中酶的活性,水稻不同生育期氮素积累量明显减少,氮素利用率严重降低,这提示我们在生产实践中,适宜的土壤水势下增施氮肥可以维持氮代谢关键酶活性、促进稻株氮代谢水平,有利于氮素的高效吸收与利用。
旱地作物氮代谢酶的活性随灌水量的增加而显著升高[44-46]。不同灌溉方式下水稻叶片氮代谢酶活性有何差异?本研究表明,轻度干湿交替灌溉后叶片氮代谢酶活性显著增强,而重度干湿交替灌溉下则相反,表明氮代谢酶活性与土壤水分状况密切相关,适度土壤水势下,根际含氧量提高,根系氧化力较高,其吸收养分水分的能力较强,有利于氮代谢酶活性的维持,促进各器官氮素大量累积与运转,氮素利用率明显提高。重度干湿交替则不利于根系活性的提高,根系早衰严重[16],降低其吸收养分的能力,不利于氮素的积累与运转,抑制氮肥的高效利用。可见在生产实践中,通过适宜的干湿交替灌溉,保持较高的根系活性,提高叶片氮代谢酶活性,对于水稻氮素高效利用具有重要的意义。
3.3 根系激素含量及叶片氮代谢酶活性与氮肥吸收利用的关系
如何进一步提高氮肥利用效率?国内外学者从稻田氮素损失的途径及机理着手,提出了众多的技术途径[47-49]。能否选用直接的指标来评价氮肥利用率?Sun等[17]认为,可将抽穗期剑叶氮代谢活性作为评价水稻氮效率高低的综合指标,李敏等[50]研究表明提高抽穗后单茎根系质量,将是水稻高产和氮高效协调统一的可靠途径,刘立军等[51]表明根系伤流量、根系活跃吸收表面积及根系活力高的水稻品种将更有利于氮肥利用效率的提高。本研究通过不同氮肥水平及干湿交替灌溉处理,研究根系内源激素水平及叶片氮代谢酶活性差异与氮素利用之间的关系,结果表明根系合成的细胞分裂素、生长素含量及叶片中氮代谢酶活性(NR、GS、GOGAT)与氮肥吸收利用率呈显著或极显著正相关,而脱落酸含量则与氮肥吸收利用率呈极显著负相关。由此可见,适度促进地上部叶片氮代谢酶活性与地下部根系促进型激素的合成,能够延缓植株衰老,进一步提高植株氮素吸收、积累及同化,从而提高氮肥的利用效率。在生产实践中,可以通过适宜的水肥调控,协调植株地上与地下部生长发育,对于水稻氮素高效利用具有重要意义。
4 结 论
适度促进地上部叶片氮代谢酶活性与地下部根系促进型激素的合成,可提高植株氮素积累及同化,将有利于氮肥利用效率的提高。
1)不同干湿交替灌溉耦合施氮处理显著影响水稻根系内源激素含量。轻度干湿交替灌溉耦合中氮促进根系生长素、玉米素及玉米素核苷合成,抽穗期含量平均增加8.7%和13.5%(<0.05),协同植株地上地下部生长,氮肥利用效率最高,农学利用率及偏生产力分别为15.3与43.5 kg/kg;重度干湿交替灌溉则降低根系生长素、玉米素及玉米素核苷含量,抽穗期含量平均降低27.9%和25.1%和(<0.05),显著降低氮肥利用率,农学利用率及偏生产力分别为3.4与17.6 kg/kg。
2)不同干湿交替灌溉耦合施氮处理显著影响水稻叶片氮代谢酶活性。轻度干湿交替灌溉提高叶片氮代谢酶活性,与保持水层相比,如幼穗分化始期:叶片中NR活性分别增加了26.5%(0N,施氮0)、15.2%( MN,施氮240 kg/hm2)及14.7%(HN,施氮360 kg/hm2);而重度干湿交替灌溉则抑制3种酶的活性,如抽穗期:叶片中NR活性分别降低了6.0(0N)、2.6(MN)、12.7(HN)g/h×g。
3)根系合成的细胞分裂素、玉米素及玉米素核苷含量及叶片中氮代谢酶活性与氮肥吸收利用率呈显著(<0.05)或极显著(<0.01)正相关(= 0.621*~0.831**),而脱落酸含量则与氮肥吸收利用率呈极显著(<0.01)负相关(= –0.849**~ –0.825**);
[1] 康绍忠. 崭新的农业科技革命与21世纪我国节水农业的发展[J]. 干旱地区农业研究,1998,16(1):11-17Kang Shaozhong. New agricultural sci-technological revolution and development of Chinese water-saving agriculture in 21st century[J]. Agricultural Research in the Arid Areas, 1998, 16(1): 11-17 (in Chinese with English abstract)
[2] 姚锋先. 不同水氮管理对水稻生长和水氮效率影响的生理机制研究[D]. 武汉:华中农业大学,2011 Yao Fengxian. Studies on Physiological Mechanism of Rice Growth and Water and Nitrogen Use Efficiency under Different Water and Nitrogen Regimes[D]. Wuhan: Huazhong agriculture university, 2011 (in Chinese with English abstract)
[3] Peng S B. Water resources strategy and agricultural development in China [J]. Journal of Experimental Botany, 2011, 6: 1709-1713
[4] Nalley L, Linquist B, Kovacs K, et al. The economic viability of alternative wetting and drying irrigation in Arkansas rice production [J]. Agronomy Journal, 2015, 107(2): 579-587
[5] 钟楚,曹小闯,朱练峰,等. 稻田干湿交替对水稻氮素利用率的影响与调控研究进展[J]. 农业工程学报,2016,32(19):139-147 Zhong Chu, Cao Xiaochuang, Zhu Lianfeng, et al. A review on effects and regulation of paddy alternative wetting and drying on rice nitrogen use efficiency[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(19): 139-147 (in Chinese with English abstract)
[6] Wang Z Q, Zhang W Y, Beebout S S, et al. Grain yield, water and nitrogen use efficiencies of rice as influenced by irrigation regimes and their interaction with nitrogen rates [J]. Field Crops Research, 2016, 193, 54-69
[7] Kukal S S, Aggarwal G C. Pudding depth and intensity effects in rice-wheat system on a sandy loam soil: II water use and crop performance [J]. Soil Tillage Research, 2003, 74, 37-45
[8] Bouman B A. A conceptual framework for the improvement of crop water productivity at different spatial scales [J]. Agricultural Systems, 2007, 93, 43-60
[9] Rahman M R, Bulbul S H. Effect of alternate wetting and drying (AWD) irrigation for Boro rice cultivation in Bangladesh [J]. Agriculture, Forestry and Fisheries, 2014, 3(2): 86-92
[10] Pan J F, Liu Y Z, Zhong X H, et al. Grain yield, water productivity and nitrogen use efficiency of rice under different water management and fertilizer-N inputs in South China [J]. Agricultural Water Management,2017, 184, 191-200
[11] 中华人民共和国国家统计局. 国家数据[Z]. 2015. http: //data.stats.gov.cn/easyquery.htm?cn=C01
[12] Zhang W F, Dou Z X, He P, et al. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China [J]. Proceedings of the National Academy of Sciences, 2013, 110(21): 8375–8380
[13] 朱兆良,金继运. 保障我国粮食安全的肥料问题[J]. 植物营养与肥料学报,2013,19(4):259-273 Zhu Zhaoliang, Jin Jiyun. Fertilizer use and food security in China[J]. Plant Nutrition and Fertilizer Science, 2013, 19(4): 259-273 (in Chinese with English abstract)
[14] 鲍娟,刘金鑫,陈范骏,等. 植物激素在氮磷养分调节根形态建成中的作用[J]. 植物生理学通讯,2009,45(7):706-710Bao Juan, Liu Jinxin, Chen Fanjun, et al. Roles of phytohormones in nitrogen and phosphorus-regulated root morphogenesis[J]. Plant Physiology Communications, 2009, 45(7): 706-710 (in Chinese with English abstract)
[15] Tabuchi M, Abiko T, Yamaya T. Assimilation of ammonium ions and reutilization of nitrogen in rice (.) [J]. Journal of Experimental Botany, 2007, 58: 2319-2327
[16] 徐国伟,王贺正,翟志华,等. 不同水氮耦合对水稻根系形态生理、产量与氮素利用的影响[J]. 农业工程学报,2015,31(10):132-141Xu Guowei, Wang Hezheng, Zhai Zhihua, et al. Effect of water and nitrogen coupling on root morphology and physiology, yield and nutrition utilization for rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(10): 132-141 (in Chinese with English abstract)
[17] Sun Y J, Ma J, Sun Y Y, et al. The effects of different water and nitrogen managements on yield and nitrogen use efficiency in hybrid rice of China[J]. Field Crops Research, 2012, 127: 85-98
[18] Wang C R, Yang A F, Yin H Y, et al. Influence of water stress on endogenous hormone contents and cell damage of maize seedlings[J]. Journal of Integrative and Plant Biology, 2008, 50(4): 427-434
[19] Takei K, Takahashi T, Sugiyama T, et al. Multiple routes communicating nitrogen availability from roots to shoots: A signal transduction pathway mediated by cytokinin[J]. Journal of Experimental Botany, 2002, 53(370): 971-977
[20] 李洪娜,许海港,任怡华,等. 不同施氮水平对矮化富士苹果幼树生长、氮素利用及内源激素含量的影响[J]. 植物营养与肥料学报,2015,21(5):1304-1311 Li Hongna, Xu Haigang, Ren Yihua, et al. Effect of different N application rates on plant growth,15N-urea utilization and hormone content of dwarf apple trees[J]. Plant Nutrition and Fertilizer science, 2015, 21(5): 1304-1311 (in Chinese with English abstract)
[21] 李洪娜,季萌萌,彭玲,等. SH6中间砧不同埋土深度对苹果幼树内源激素和氮素利用的影响[J]. 植物营养与肥料学报,2014,20(6):1460-1467 Li Hongna, Ji Mengmeng, Peng Ling, et al. Effect of different SH6 buried depths on hormone and15N-urea utilization of dwarf apple trees[J]. Plant Nutrition and Fertilizer Science, 2014, 20(6): 1460-1467 (in Chinese with English abstract)
[22] 王国英. 不同形态氮素及植物激素对烟草生长、养分吸收和分配的影响[D].石家庄:河北农业大学,2002 Wang Guoying. Effects of Different Nitrogen Forms and Combined with Plant Hormone on Growth, Nutrient Uptake and Their Distribution in Tobacco Plants[D]. Shijiazhuang: Hebei agriculture university, 2002 (in Chinese with English abstract)
[23] 陈德华,何钟佩,徐立华,等. 高产棉花叶片内源激素与氮磷钾吸收积累的关系及其对棉铃增重机理的研究[J]. 作物学报,2000,26(6):659-665 Chen Dehua, He Zhongpei, Xu Lihua, et al. Studies on the relationship between endogenous hormone of leaf and accumulation of nitrogen, phosphorus and potassium of plant as well as the cause of boll weight raised in high yield cotton[J]. Acta Agronomy Sinica, 2000, 26(6): 659-665 (in Chinese with English abstract)
[24] 何钟佩. 农作物化学控制实验指导[M]. 北京:北京农业大学出版社,1991.
[25] Bollmark M, Kubat B, Eliasson L. Variations in endogenous cytokinin content during adventitious root formation in pea cuttings [J]. Journal of Plant Physiology, 1988, 132: 262-265
[26] Yang J C, Zhang J H, Wang Z Q, et al. Hormones in the grains in relation to sink strength and postanthesis development of spikelets in rice[J]. Plant Growth Regulation, 2003, 41: 185-195
[27] 李合生. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社,2000.
[28] 王小纯,熊淑萍,马新明,等. 不同形态氮素对专用型小麦花后氮代谢关键酶活性及籽粒蛋白质含量的影响[J].生态学报,2005,25(4):802-807 Wang Xiaochun, Xiong Shuping, Ma Xinming, et al. Effects of different nitrogen forms on key enzyme activity involved in nitrogen metabolism and grain protein content in speciality wheat cultivars[J]. Acta Ecologia Sinica, 2005, 25(4): 802-807 (in Chinese with English abstract)
[29] Zhang C F, Peng S B, Benneti J. Glutamine synthetase and its isoforms in rice spikelets and rachis during grain development[J]. Journal of Plant Physiology, 2000, 156(2): 230-233
[30] 张自常,李鸿伟,曹转勤,等. 施氮量和灌溉方式的交互作用对水稻产量和品质影响[J]. 作物学报,2013,33(4):84–82 Zhang Zichang, Li Hongwei, Cao Zhuanqin, et al. Effect of interaction between nitrogen rate and irrigation regime on grain yield and quality of rice[J]. Acta Agronomy Sinica, 2013, 33(4): 84–82 (in Chinese with English abstract)
[31] Xue YG, Duan H, Liu L J, et al. An improved crop management increases grain yield and nitrogen and water use efficiency in rice[J]. Crop Science, 2013, 53: 271-284
[32] 陈新红. 土壤水分与氮素对水稻产量和品质的影响及其生理机制[D]. 扬州:扬州大学,2004Chen Xinhong. Effects of soil Moisture and Nitrogen Nutrient on Grain Yield and Quality of Rice and Their Physiological Mechanism[D]. Yangzhou: Yangzhou university, 2004 (in Chinese with English abstract)
[33] 徐国伟,陆大克,孙会忠,等. 干湿交替灌溉与施氮耦合对水稻根际环境的影响[J]. 农业工程学报,2017,33(4):186-194Xu Guowei, Lu Dake, Sun Huizhong, et al. Effect of alternative wetting and drying irrigation and nitrogen coupling on rhizosphere environment and coupling effect[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(4): 186-191 (in Chinese with English abstract)
[34] Ha S, Vankova R, Yamaguchi-Shinozaki K, et al. Cytokinins: Metabolism and function in plant adaptation to environmental stresses[J]. Trends in Plant Science, 2012, 17:172-179
[35] Peuke A D, Jeschke W D, Hartung W. The uptake and flow of C, N and ions between roots and shoots in Ricinus communis L. III. Long-distance transport of abscisic acid depending on nutrition and salt stress[J]. Journal of Experimental Botany, 2003, 45(275): 741-747
[36] 周宇飞,王德权,陆樟镳,等. 干旱胁迫对持绿性高粱光合特性和内源激素 ABA、CTK含量的影响[J]. 中国农业科学,2014,47(3):655-663 Zhou Yufei, Wang Dequan, Lu Zhangbiao, et al. Effects of drought stress on photosynthetic characteristics and endogenous hormone ABA and CTK contents in green-stayed sorghum[J]. Scientia Agricultura Sinica, 2014, 47(3): 655-663 (in Chinese with English abstract)
[37] 徐国伟,陆大克,王贺正,等. 干湿交替灌溉与施氮量对水稻叶片光合性状的耦合效应[J]. 植物营养与肥料学报,2017,23(5):1225-1237Xu Guowei, Lu Dake, Wang Hezheng, et al. Coupling effect of wetting and drying alternative irrigation and nitrogen application rate on photosynthetic characteristics of rice leaves[J]. Plant Nutrition and Fertilizer Science, 2017, 23(5): 1225-1237 (in Chinese with English abstract)
[38] 赵平,林克惠,郑毅. 氮钾营养对烟叶衰老过程中内源激素与叶绿素含量的影响[J]. 植物营养与肥料学报,2005,11(3):379-384 Zhao Ping, Lin Kehui, Zheng Yi. Effect of N and K nutrition on chlorophyll content and endogenous hormones in the process of tobacco senescence[J]. Plant Nutrition and Fertilizer Science, 2005, 11(3): 379-384 (in Chinese with English abstract)
[39] 熊溢伟. 氮肥对不同水稻品种根系形态生理与产量的影响[D]. 扬州:扬州大学,2016 Xiong Yiwei. Effects of Nitrogen Fertilizer on Grain Yield and Root Morphology Physiology in Different Rice Varieties[D]. Yangzhou: Yangzhou university, 2016 (in Chinese with English abstract)
[40] 张岁岐,山仑. 土壤干旱条件下氮素营养对玉米内源激素含量影响[J]. 应用生态学报,2003,14(9):1503-1506 Zhang Suiqi, Shan Lun. Effects of nitrogen nutrition on endogenous hormone content of maize under soil drought conditions[J]. Chinese journal of applied ecology, 2003, 14(9): 1503-1506 (in Chinese with English abstract)
[41] Han M, Okamoto M, Beatty P H, et al. The genetics of nitrogen use efficiency in crop plants. Annual review of Genetics, 2015, 49(1): 269-289
[42] 王月福,于振文,李尚霞,等. 氮素营养水平对冬小麦氮代谢关键酶活性变化和籽粒蛋白质含量的影响[J]. 作物学报,2002,28(6):743-748 Wang Yuefu, Yu Zhenwen, Li Shangxia, et al. Effect of nitrogen nutrition on the change of key enzyme activity during the nitrogen metabolism and kernel protein content in winter wheat[J]. Acta Agronomy Sinica, 2002, 28(6): 743-748 (in Chinese with English abstract)
[43] 谷岩,胡文河,徐百军,等. 氮素营养水平对膜下滴灌玉米穗位叶光合及氮代谢酶活性的影响[J]. 生态学报,2013,33(23):7399-7407 Gu Yan, Hu Wenhe, Xu Baijun, et al. Effects of nitrogen on photosynthetic characteristics and enzyme activity of nitrogen metabolism in maize under-mulch-drip irrigation[J]. Acta Ecologica Sinica, 2013, 33(23): 7399-7407 (in Chinese with English abstract)
[44] 储光. 不同水分、养分利用效率水稻品种的根系特征及其调控技术[D]. 扬州:扬州大学,2016 Chuang Guang. Roots Traits for Rice Varieties with Different Water and Nitrogen Use Efficiencies and Their Regulation Techniques[D]. Yangzhou: Yangzhou university, 2016 (in Chinese with English abstract)
[45] Kaur A, Sheoran I S and Singh R. Effect of water stress on the enzymes of nitrogen metabolism in mung bean (Vignaradiata Wilczeck) nodules[J]. Plant, cell and Environment, 1985, 8(3): 195-200
[46] 曹慧,王孝威,邹岩梅,等. 外源NO对水分胁迫下平邑甜茶幼苗中几种氮代谢酶的影响[J]. 园艺学报,2009,36(6):781-786 Cao Hui, Wang Xiaowei, Zou Yanmei, et al. Effects of exogenous nitric oxide on chlorophyll fluorescence parameters and photosynthesis rate inseedling under water stress[J]. Acta Horticul Sin, 2009, 36(6): 781-786 (in Chinese with English abstract)
[47] Liu L J, Chen T T, Wang Z Q, et al. Combination of site-specific nitrogen management and alternate wetting and drying irrigation increases grain yield and nitrogen and water use efficiency in super rice[J]. Field Crops Research, 2013,154 (8): 226–235
[48] Wang Z Q, Zhang W Y, Beebout S S, et al. Grain yield, water and nitrogen use efficiencies of rice as influenced by irrigation regimes and their interaction with nitrogen rates[J]. Field Crops Research, 2016,193 (3): 54–69
[49] Xue YG, Duan H, Liu L J, et al. An improved crop management increases grain yield and nitrogen and water use efficiency in rice[J]. Crop Science, 2013, 53: 271-284
[50] 李敏,张洪程,杨雄,等. 水稻高产氮高效型品种的根系形态生理特征[J]. 作物学报,2012,38(4): 648-656 Li Min, Zhang Hongcheng, Yang Xiong, et al. Root morphological and physiological characteristics of rice cultivars with high Yield and high Nitrogen use efficiency[J]. Acta Agronomy Sinica, 2012, 38(4): 648-656 (in Chinese with English abstract)
[51] 刘立军,王康君,卞金龙,等. 水稻产量对氮肥响应的品种间差异及其与根系形态生理的关系[J]. 作物学报,2014,40(11):1999-2007 Liu Lijun, Wang Kangjun, Bian Jinlong, et al. Differences in yield response to nitrogen fertilizer among rice cultivars and their relationship with root morphology and physiology[J]. Acta Agronomy Sinica, 2014, 40(11): 1999-2007 (in Chinese with English abstract)
Effect of alternate wetting and drying irrigation and nitrogen coupling on endogenous hormones, nitrogen utilization
Xu Guowei1,2, Lu Dake1, Liu Congjie1, Wang Hezheng1, Chen Mingcan1, Li Youjun1
(1.471003,; 2.225009,)
Soil moisture and nitrogen nutrient are the main factors affecting rice (L.) production.Grainyield of rice has steadily increased worldwide in the past years, partly owing to the enhancement in nutrient inputs from fertilizer, especially nitrogen fertilizer application. Irrigationof alternate wetting and dryingis an effective water-saving irrigation technique, which has provided idealeconomic and ecological benefits. It is widely applied in major rice-producing countries in Asia, suchas China, Philippines, Vietnam, India, and Bangladesh. The inefficient use of freshwater and nitrogen resources is a major problem in rice production in China. Thus, it is significant to improve the efficiency of water and fertilizer resourcesutilization in agricultural production.In order to investigate the effects of irrigationof alternate wetting and drying and nitrogen coupling on endogenous hormones in root, nitrogen utilization and coupling effect,a soil-grown experiment with mid-seasonrice cultivar of Lianjing 7was conducted in 2015 and 2016 with 3 nitrogen application rates, namely, 0 (no nitrogen applied), 240 (normal amount, MN), and 360 kg/ha(high amount), and 3 irrigation regimes, namely, submerged irrigation (0 kPa), alternate wetting and moderate drying (−20 kPa), and alternate wetting and severe drying (−40 kPa). Our data revealed a significant interaction between irrigation regimes and nitrogen applications, with a similar result in 2015 and 2016. Under the same nitrogen levels, alternate wetting and moderate drying promoted the contents of Z+ZRand IAA in roots,which were significantly enhanced by 8.7% and 13.5% at heading stage respectively, and also increased the activities of NR (nitrate reductase), GS (glutamine synthetase) and GOGAT in leaves at main growth stages in comparison with submerged irrigation;and meanwhile nitrogen absorption and utilization was increased significantly, N accumulation under the MN and HN treatments was significantly enhanced by 144.3% and 164.0% at heading stage respectively, when compared with no nitrogen. By contrast, alternate wetting and severe drying inhibited Z+ZRand IAA contents in root, whichwere significantly reduced by 25.1% and 27.9% at heading stage respectively, and depressedNR, GS and GOGAT activity in leaves and nitrogen accumulation;and meanwhile nitrogen use efficiency decreased remarkably, and recovery efficiency, agronomic efficiency and partial factor productivity of nitrogen fertilizer decreased by 51.2%, 63% and 36.5% respectively, while the ABA content in roots increased significantly, and consistent performance could be observed at the different growth stages. MN treatment significantly increased the nitrogen use efficiency, and recovery efficiency, agronomic efficiency and partial factor productivity of nitrogen fertilizer were 52.6%, 15.3 kg/kg and 43.5kg/kg under the alternate wetting and moderate dryingrespectively. Under the same irrigation regime, the contents of Z+ZRand IAA in roots and nitrogen metabolism enzyme in leaves were increased with nitrogen application under submerged irrigation and irrigation of alternate wetting and moderate drying, while promoted firstly and then reduced under alternate wetting and severe drying. MN treatment obviously increased nitrogen use efficiency, which indicated that heavy nitrogen application decreased nitrogen utilization efficiency. Correlation analysis indicated that there was significant or extremely significant positive correlation between the content of Z+ZRand IAA in roots, nitrogen metabolism enzyme activity in leaves and nitrogen use efficiency, while remarkably negative correlation was found between ABA content in roots and nitrogen utilization efficiency. Nitrogen effect was positive in Z+ZRand IAA content in roots, nitrogen metabolism enzyme activity in leaves, and water supply and interaction effects were positive under alternate wetting and moderate drying after heading stage, while negative effect was found under alternate wetting and severe drying after heading stage. This study will explore the mechanism of water-nitrogeninteraction, which will provide theoretical and scientific evidence for the rice cultivation of high yield and high efficiency.
irrigation; nitrogen; crops; rice; alternate wetting and drying irrigation; water and nitrogen interaction; endogenous hormones; nitrogen metabolism enzyme
徐国伟,陆大克,刘聪杰,王贺正,陈明灿,李友军. 干湿交替灌溉和施氮量对水稻内源激素及氮素利用的影响[J]. 农业工程学报,2018,34(7):137-146. doi:10.11975/j.issn.1002-6819.2018.07.018 http://www.tcsae.org
Xu Guowei, Lu Dake, Liu Chongjie, Wang Hezheng, Chen Mingcan, Li Youjun. Effect of alternate wetting and drying irrigation and nitrogen coupling on endogenous hormones, nitrogen utilization[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(7): 137-146. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.07.018 http://www.tcsae.org
2017-10-26
2018-02-28
国家自然科学基金项目(U1304316);江苏省作物栽培生理重点实验室开放基金(027388003K11009);河南省教育厅科学技术研究重点项目(13A210266);河南科技大学学科提升计划A (13660002)资助
徐国伟,男,汉族,博士,副教授,主要从事作物栽培生理研究。Email:gwxu2007@163.com
10.11975/j.issn.1002-6819.2018.07.018
S511
A
1002-6819(2018)-07-0137-10