Banach空间中平均非扩张集值映射的稳定点
2018-03-24陈丽丽高璐周晶
陈丽丽 高璐 周晶
摘要:集值映射的不动点理论在近代变分问题、最优化问题、经济均衡问题等研究中发挥着极其重要的作用, 已成为非线性泛函分析理论的重要组成部分。为了研究Banach空间中平均非扩张集值映射的稳定点问题, 我们依据集值映射的不动点理论, 利用渐近稳定点序列、渐近中心、渐近半径等给出了平均非扩张集值映射具有稳定点的充分必要条件。
关键词:稳定点; 平均非扩张集值映射; 渐近稳定点序列; 渐近中心; Banach空间
DOI:10.15938/j.jhust.2018.01.025
中图分类号: O177.2
文献标志码: A
文章编号: 1007-2683(2018)01-0137-06
Abstract:The fixed point theory of the setvalued mappings has important applications in many branches such as modern variation problems, optimization problems and economic equilibrium problems, and it has been an essential part of nonlinear functional analysis theory. In order to study the problem of the stationary points of the mean nonexpansive setvalued mappings in Banach spaces, we based on Fixed Point Theory of the setvalued mapping, by use of the asymptotic stationary points sequence, the asymptotic center and the asymptotic radius, the necessary and sufficient conditions for the mean nonexpansive setvalued mappings which have the stationary points are obtained.
Keywords:stationary point; mean nonexpansive setvalued mapping; asymptotic stationary points sequence; asymptotic center; Banach space
0引言
20世纪30年代初, 人们开始关注集值映射的不动点问题, 将Brouwer不动点定理、Schauder不动点定理等结果推广到集值映射的情形。 近四十年来, 集值映射的不动点理论在近代变分问题、最优化问题、经济均衡问题等研究中发挥着极其重要的作用,数学家Debreu正是以集值映射的不动点定理为工具给出Walras完全竞争均衡存在定理的严格证明, 因此于1983年获得诺贝尔经济学奖。 1968年Markin[1]在Hilbert空间中将Brouwer定理推广到非扩张集值映射的情形, 1969年Nadler[2]将Banach压缩映射原理进行了推广, 1974年Lim[3]利用Edelstein方法给出了一致凸Banach空间中非扩张集值映射的不动点定理, 1990年Kirk[4]和 Massa将Lim定理进行了推广, 2003年Benavides利用非紧凸性模研究了非扩张集值映射的不动点等问题[5-7]。
集值映射作为一类特殊的多值映射, 在研究其不动点性质、算法的构造和收敛性条件及不动点序列的选取等问题相比于单值映射更为复杂, 目前对该理论的研究尚不完备, 对于平均非扩张集值映射的稳定点存在性等问题尚未解决。 研究发现稳定点的存在性问题很大程度上都依赖于集值映射是压缩的[8-11], 近年来, 该问题引起了国内外数学学者的关注, 开始尝试利用渐近稳定点序列等方法来解决广义非扩张集值映射的稳定点问题[12-14] (强渐近不动点序列在这里也称为渐近稳定点序列[14]),渐近稳定点序列在寻找稳定点时扮演了十分重要的角色[15-18]。 本文主要借助Banach空间的几何性质, 将非扩张集值映射的稳定点问题推广到平均非扩张集值映射的情形, 利用渐近稳定点序列、渐近中心、渐近半径等概念给出了平均非扩张集值映射具有稳定点的充分必要条件。
1预备知识
3结语
本文主要解決了平均非扩张集值映射的稳定点问题, 讨论了满足各种几何性质的Banach空间中平均非扩张集值映射具有稳定点的充分必要条件。 我们可以在此基础上继续利用Banach空间的几何性质研究平均非扩张集值映射具有稳定点的其它充分必要条件。
参 考 文 献:
[1]MARKIN J. A Fixed Point Theorem for Set Valued Mappings[J]. Bull. Amer. Math. Soc.,1968(74): 39-640.
[2]NADLER S B. Multivalued Contraction Mappings[J]. Pacific J. Math, 1969(30): 475-488.
[3]LIM T C. A Fixed Point Theorem for Multivalued Nonexpansive Mappings in a Uniformly Convex Banach Space[J]. Bull.Amer. Math. Soc,1974(80):1123-1126.
[4]KIRK W A, MASSA S. Remarks on Asymptotic and Chebyshev Centers[J]. Houston J. Math., 1990, 16(3): 357-364.
[5]DOMNGUEZ Benavides T, LORENZO Ramírez P. Fixed Point Theorems for Multivalued Nonexpansive Mappings Without Uniform Convexity[J]. Abstr .Appl .Anal, 2003(6): 375-386 .
[6]DOMNGUEZ Benavides T, LORENZO Ramírez P. Fixed Point Theorems for Multivalued Nonexpansive Mappings Satisfying Inward Ness Conditions[J]. Math. Anal. Appl, 2004, 291(1):100-108.
[7]ESPNOLA R, LORENZO Ramírez P, NICOLAE A. Fixed Points, Selections and Common Fixed Points for Nonexpansivetype Mappings[J]. Math. Anal. Appl., 2001, 382(2): 503-515.
[8]AUBIN J P, SIEGEL J. Fixed Points and Stationary Points of Dissipative Multivalued Mappings[J]. Proc. Amer. Math. Soc., 1980(78): 391-398.
[9]MORADI S, KHOJASTEH F. Endpoints of Fweakand Generalized Fweak Contractive Mappings[J]. Filomat, 2012, 26(4): 725- 732.
[10]WODARCZYK K, KLIM D, PLEBANIAK R. Endpoint Theory for Setvalued Nonlinear Asymptotic Contractions with Respect to Generalized Pseudodistances in Uniform Spaces[J]. J. Math. Anal. Appl, 2008(339): 344-358 .
[11]WODARCZYK K, KLIM D, PLEBANIAK R. Existence and Uniqueness of Endpoints of Closed Setvalued Asymptotic Contractions in Metric Spaces[J]. J. Math. Anal. Appl, 2007(328): 46-57.
[12]BUTSAN T, DHOMPONGSA S, TAKAHASHI W. A Fixed Point Theorem for Pointwise Eventually Nonexpansive Mappings in Nearly Uniformly Convex Banach Spaces[J]. Nonlinear Analysis, 2011,74(5): 1694-1701.
[13]DHOMPONGSA S, NANAN N. Fixed Point Theorems by Ways of Ultraasymptotic Centers[J]. Abstr. Appl. Anal., 2011:1-21.DOI: 826851.
[14]GARCA Falset J, LLORENS Fuster E, MORENO GLVEZ E. Fixed Point Theory for Multivalued Generalized Nonexpansive Mappings[J]. Appl. Anal. Discrete Math, 2012, 6(2): 265-286.
[15]PANYANAK B. Endpoints of Multivalued Nonexpansive Mappings in Geodesic Spaces[J]. Fixed Point Theory and Applications, 2015(147): 1-11.
[16]SAEJUNG S. Remarks on Endpoints of Multivalued Mappings on Geodesic Spaces. Preprint.
[17]RAFA E, MERAJ H, KOUROSH N. On Stationary Points of Nonexpansive Setvalued Mappings[J]. Fixed Point Theory and Applications, 2015(236): 1-13.
[18]KHAMSI M A, KIRK W A. An Introduction to Metric Spaces and Fixed Point Theory[M]. Pure and Applied Mathematics,New York, WileyInterscience, 2001.
[19]AGARWAL R P, OREGAN D, SAHU D R. Fixed Point Theory for LipschitzianType Mappings with Applications[M]. New York,2009.
[20]GOSSEZ J P, LAMI D E. Some Geometric Properties Related to the Fixed Point Theory for Nonexpansive Mappings[J]. Pac. J.Math,1972(40): 565-573.
[21]DHOMPONGSA S, DOMNGUEZ Benavides T, KAEWCHAROEN A, et al. The Jordanvon Neumann Constans and Fixed Points for Multivalued Nonexpansive Mappings[J]. Math. Anal. Appl, 2006,320(2): 916-927.
[22]GOEBEL K. On a Fixed Point Theorem for Multivalued Nonexpansive Mappings[J]. Ann. Univ. Mariae CurieSkodowska Sect. A,1975(29): 69-72.
(編辑:关毅)