APP下载

薏苡种质的主要营养组分特征及综合评价

2018-03-24李祥栋潘虹陆秀娟魏心元陆平石明秦礼康

中国农业科学 2018年5期
关键词:薏苡薏米种质

李祥栋,潘虹,陆秀娟,魏心元,陆平,石明,秦礼康



薏苡种质的主要营养组分特征及综合评价

李祥栋1,2,潘虹1,2,陆秀娟1,2,魏心元1,2,陆平3,石明1,2,秦礼康4

(1贵州省薏苡工程技术研究中心,贵州兴义 562400;2贵州黔西南喀斯特区域发展研究院,贵州兴义 562400;3中国农业科学院作物研究所, 北京 100081;4贵州大学食品与酿酒工程学院,贵阳 550025)

【目的】薏苡品质评价是其加工和综合利用的重要环节,建立合理的薏苡品质评价方法,发掘和筛选薏苡优异资源,为薏苡的品质改良提供基础材料。【方法】以86份不同产地的薏苡地方种质为试验材料,测定薏苡籽粒中的淀粉、脂肪、蛋白质和氨基酸主要营养组分指标,采用相关性分析、隶属函数转化和主成分分析,综合评价薏苡的主要营养品质特征。【结果】86份薏苡种质的淀粉、脂肪、蛋白质、必需氨基酸含量均存在一定的差异,14种营养组分的变异系数在5.01%—116.90%;8种必需氨基酸平均含量为0.33%—2.47%,亮氨酸含量最高,赖氨酸为第一限制性氨基酸。糯性种质35份,占所有种质的40.70%;34份种质的脂肪含量≥8%,8份种质的蛋白质含量≥20%,昌黎薏米、昌黎黑川谷的总氨基酸含量高。相关性分析发现,总淀粉含量与直链淀粉含量显著正相关,与支链淀粉显著负相关;支链淀粉与脂肪含量显著正相关,脂肪含量与蛋白质含量、总氨基酸和丝氨酸含量之间呈显著正相关,必需氨基酸之间多存在显著相关关系。主成分分析将14个营养品质指标简化为4个主成分因子,蛋白质、总氨基酸和5种氨基酸组分为第一主成分决定因子,蛋氨酸、赖氨酸、丝氨酸组分为决定第二主成分的决定因子,直链淀粉、支链淀粉和脂肪组分为第三主成分决定因子,总淀粉组分为第四主要决定因子。4个主成分贡献率分别为48.333%、16.571%、16.011%和6.146%,累积贡献率为87.061%,并根据各因子隶属函数值、权重的确定,以计算出综合评价值的大小反映供试材料营养品质综合评价排名。主成分分析将关系复杂的营养成分指标简化为少数彼此独立综合因子,能够比较客观地对薏苡品质进行评价。【结论】薏苡营养组分变异类型丰富,必需氨基酸组分齐全,并存在糯性、高蛋白和高脂肪的种质变异类型,筛选出综合品质评价得分较高的10份种质:昌黎薏米、昌黎黑川谷、义县农家种、台湾花壳、贵州薏苡、安国五谷、辽宁本地薏苡、承德薏苡、盘县五谷和花甲六谷。

薏苡;营养品质;主成分分析;综合评价

0 引言

【研究意义】薏苡属于禾本科(Gramineae)薏苡属(L.)一年生或多年生草本植物,其果实剥壳之后的果仁俗称薏(苡)仁米或薏苡仁。薏苡仁营养价值高并且还有保健滋养成分,药(医)食同源,被称为“生命健康之禾”。现代药理学研究表明,薏苡仁具有促进新陈代谢、抗肿瘤、镇痛、利尿、降血糖、防止皮肤粗糙与美容等功效[1-2]。品质评价是薏苡种质创新利用的前提,也是品种选育的重要环节。薏苡种质资源丰富多样,不同地区的特定环境孕育了当地的特色资源(品种),因此,不同产区的薏仁米品质特性也存在较大差异,通过对薏苡地方种质(品种)的主要营养成分进行剖析,采用多指标、多重分析方法综合评价不同薏苡仁品质特征与营养差异,这对于薏苡的品种选育和综合利用具有重要意义。【前人研究进展】薏苡仁的淀粉、蛋白质、脂肪、氨基酸组成与其加工特性(如耐蒸煮、延展性)和风味特征息息相关。迄今为止,前人研究多见于薏苡资源形态与分类[3-7]、分子细胞遗传[8-10]、栽培技术和产量组成[11-12]等方面。黄士礼等[13]分析了来自台湾、日本的8份材料,其粗蛋白10.7%—11.5%、粗脂肪6.7%—6.8%、粗纤维17.6%—18.8%、灰分6.3%—7.5%、无氮萃取物56.7%—57.5%。苏海兰等[14]分析了福建品种‘蒲薏6号’不同组织器官(果仁、糠皮、果实、叶、茎、根)的脂肪酸组分含量及营养价值。王颖等[15]分析了贵州兴仁县薏苡的不同组织器官的蛋白质、多糖、氨基酸维生素、矿质元素等指标,均为薏苡的综合开发利用提供了指导。陈裕星等[16]从药理学成分出发,通过对3个台湾品种籽粒的药用成分进行深入剖析,建立了不同品种的HPLC化学指纹图谱。杨阳等[17]也发现8个不同产地的薏苡中甘油三油酸酯和薏苡素的含量均存在较大差异,甘油三油酸酯含量为0.53%—1.04%,薏苡素为0.6193—3.4697 mg·g-1。【本研究切入点】前人研究主要是针对少数的育成品种的营养、药用组分进行分析,种质的覆盖范围狭窄、信息量少,对于种质筛选和品种选育的指导均十分有限。【拟解决的关键问题】本研究通过对国内外的地方薏苡种质进行收集和种植,并对其主要营养组分进行分析和特征评价,筛选优异种质,为品质改良和良种选育提供理论支撑。

1 材料与方法

1.1 试验材料

供试材料均为不同地区栽培薏苡,共86份,其中82份种质来自中国贵州、云南、福建、广西、四川、浙江、台湾、江西、河北、山西、山东、安徽、辽宁、吉林各地,此外还有老挝种质3份,韩国种质1份(电子附表1)。所有薏苡种质于2016年5月,在贵州省兴义市黔西南州农业科学研究所试验基地按小区种植,小区面积10 m2,长×宽=5 m×2 m,每小区种植5行,除草、施肥等田间管理按照统一方式进行,成熟期收获籽粒、晒干,以备后续分析。

1.2 指标分析

选取收获后籽粒饱满的种子,剥壳、粉碎,过60目筛,作为供试样品进行分析。测试内容包括:总淀粉、直链淀粉、支链淀粉、脂肪、蛋白质、8种必需氨基酸及总氨基酸含量。

1.3 统计分析

采用Excel 2007进行数据整理和计算隶属函数,采用SPSS 19.0软件进行主成分和相关分析。利用隶属函数与因子分析对甘薯营养品质进行综合评价。运用的主要公式如下:

隶属函数值计算公式:S=(X-X)/(X- X)。式中,S指第个样品第指标的原始数据经转化后的隶属函数值;X指个样品第指标原始测定值,XX为所有参试材料中第指标的最小值和最大值。综合评价值计算公式:=Σ[P×W],,,式中值为供试材料用综合指标评价所得的综合评价值,P为样品第个公因子的分值,W为样品第个公因子的方差贡献率,为公因子的个数。

2 结果

2.1 不同薏苡种质主要营养组分的一般分析

86份供试薏苡种质进行主要营养成分测定结果(表1、电子附表2)显示,总淀粉、直链淀粉、支链淀粉、脂肪、蛋白质、8种必需氨基酸及总氨基酸含量的变异系数在5.01%—116.90%,以直连淀粉含量的变异程度最高。供试薏苡种质籽粒主要营养组成均存在一定的差异。总淀粉、直链淀粉、支链淀粉含量范围分别为57.82%—71.51%、0—25.48%和74.52%—100.00%,支链淀粉含量≥98%种质的有35份,占所有供试种质的40.70%,属于糯性种质。脂肪含量在6.32%—9.13%,有34份种质的脂肪含量≥8%,占全部种质的39.53%;此外,所有薏苡的蛋白质和总氨基酸含量相对较高,分别为17.44%—21.78%,14.02%—20.67%,其中有8份种质的蛋白质含量在20%以上,占所有种质的9.30%,2个河北种质(昌黎薏米、昌黎黑川谷)的总氨基酸含量高,分别为20.07%和20.67%。在薏仁米中存在8种必需氨基酸成分,氨基酸组分比较齐全,8种必需氨基酸的平均含量为0.33%—2.47%,变异系数为7.11%—20.77%;其中以亮氨酸含量最高,变异幅度为1.87%—3.17%,平均为2.47%;赖氨酸含量最低,变异幅度为0.27%—0.38%,平均为0.33%,属于第一限制氨基酸。

2.2 不同薏苡种质主要营养组分间的相关性分析

相关分析表明(表2),总淀粉含量与直链淀粉含量显著正相关(<0.05),但是与支链淀粉、脂肪、蛋白质、总氨基酸及7种氨基酸含量(苯丙氨酸、赖氨酸、亮氨酸、丝氨酸、苏氨酸、缬氨酸、异亮氨酸)呈极显著负相关;直链淀粉含量与支链淀粉含量、脂肪含量之间呈极显著负相关(<0.01),支链淀粉含量与脂肪含量呈极显著正相关关系;脂肪含量与蛋白质含量、总氨基酸和丝氨酸含量之间呈显著正相关;8种氨基酸之间也多存在显著或极显著相关关系。结果表明,总淀粉、直链淀粉、支链淀粉、脂肪、蛋白质、总氨基酸含量及8种必需氨基酸之间大多存在显著或极显著的相关关系;由于薏苡主要营养组分间存在普遍的相关性,各组间既相互独立又关系复杂,需要建立科学合理的综合评价方法。

2.3 不同薏苡种质主要营养品质的主成分分析

以薏苡种质的淀粉(总淀粉、支链淀粉、直链淀粉)、脂肪、蛋白质、总氨基酸和8种必需氨基酸种氨基酸含量的隶属函数值为基础,计算各主成分的因子载荷和贡献率(表3)由此可知,蛋白质、总氨基酸和5种氨基酸组分(苯丙氨酸、亮氨酸、丝氨酸、缬氨酸、异亮氨酸)为第一主成分决定因子,蛋氨酸、赖氨酸、丝氨酸组分为第二主成分决定因子,直链淀粉、支链淀粉和脂肪组分为第三主成分决定因子,总淀粉组分为第四主成分决定因子。前4个主成分的贡献率分别为48.333%、16.571%、16.011%和6.146%,累积贡献率为87.061%。因此,利用前4个主成分即可代表被考查性状的原始数据信息。

表1 薏苡品质数据描述统计

1:总淀粉;2:直链淀粉;3:支链淀粉;4:脂肪;5:蛋白质;6:总氨基酸含量;7:苯丙氨酸;8:蛋氨酸;9:赖氨酸;10:亮氨酸;11:丝氨酸;12:苏氨酸;13:缬氨酸;14:异亮氨酸。下同

1: total starch;2: amylase;3: amylopectin;4: fat,5: protein;6: total amino-acid;7: Phe;8: Gly;9: Lys;10: Leu;11: Ser;12: Thr;13: Val;14: Ile. The same as below

表2 薏苡主要营养组分指标的相关性

**表示在=0.01水平差异极显著;*表示在=0.05水平差异显著

**Represent significant at 0.01 level;*Represent significant at 0.05 level

2.4 不同薏苡种质主要营养品质的综合评价

通过各因子的隶属函数值、权重的确定,利用公式计算出综合评价值(值),并以值的大小反映供试材料营养品质综合评价高低(电子附表3)。得分靠前的10份种质分别为昌黎薏米、昌黎黑川谷、义县农家种、贵州薏苡、台湾花壳、安国五谷、辽宁本地薏苡、承德薏苡、盘县五谷和花甲六谷(表4)。

3 讨论

3.1 薏苡主要营养组分的遗传差异与品质改良

已有学者[18-19]研究表明,薏苡在形态、生长发育等方面均表现出丰富多样性。Ma等[9]利用SSR分子标记对79份来自中国和韩国的薏苡种质进行了多样性评估,结果表明,其多态性指数在0.034—1.13,中国与韩国种质分别聚为一个大的类群,而且中国的种质群体多样性更为丰富。黄亨履等[20]在资源普查过程中分析了28份薏苡的主要营养成分(蛋白质、脂肪、氨基酸酸、脂肪酸),结果表明,薏苡是品质优良、营养价值高的食物,而且不同栽培和野生薏苡的营养组分含量均具有其优势和潜在利用价值。本研究也发现,86份薏苡种质的淀粉、脂肪、蛋白质、氨基酸均存在一定幅度的变异(表1),其中也不乏糯性、高脂肪、高蛋白的资源类型。目前,随着薏仁米加工产品的多样化,不同产品对于薏米品质也提出了不同要求,如蒸煮和烘焙产品的耐蒸煮性、延展性,药用有效成分(薏苡素、甘油三油酸酯等)萃取率等。因此,专用加工品种的选育和利用也势在必行,本研究通过对优异种质进行鉴定和筛选,对于薏苡优异资源发掘、品质改良和利用提供了丰富的变异来源。氨基酸也是薏仁米的重要营养组分,贾青慧等[21]分析薏米及其加工副产物薏米糠的研究也表明,薏米及薏米糠蛋白含量与鸡蛋、核桃相当,高于牛乳;氨基酸种类齐全,包括8种人体必需氨基酸,各必需氨基酸含量和花生相当,高于核桃、大豆和鸡蛋,薏米和薏米糠可作为蛋白源;薏米糠中氨基酸较薏米中氨基酸更接近标准模式,营养价值更高,具有较大开发价值。本研究发现所有供试材料中均有丰富的8种必需氨基酸组分,平均含量为0.33%—2.47%,总氨基酸含量平均为17.38%。赖氨酸作为一种人体必需氨基酸,在多种禾本类作物(玉米、水稻等)中均为第一限制氨基酸,薏苡亦然。让人感兴趣的是,Zhou等[22]在薏苡中发现了与高粱、玉米同源的22-kD α-醇溶蛋白基因,其表现出了序列和功能的保守性;Neto等[23]和Filho等[24]发现编码的转录因子参与α-醇溶蛋白调控,而突变体被证明可以大幅度提高玉米的赖氨酸含量[25]。当前,利用突变基因导入提高玉米赖氨酸等必需氨基酸含量,也对玉米进行品质改良的重要手段。从本研究的检测结果来看,所有供试材料的蛋白质(14.77%—21.78%)和赖氨酸(0.27—0.38)含量均存在较大变异,其内在的基因可能也存在比较稳定的突变位点,因此,通过对深入发掘上述基因的突变体,对于薏苡的品质改良和分子辅助选育将具有重要意义。

表3 各主要性状主成分的因子载荷和贡献率

1)表示某指标在各因子中的最大绝对值

1)Means the biggest absolute value of an index in all factors

表4 筛选薏苡种质的综合得分及营养组分特征

薏苡籽粒的淀粉合成与其他禾谷类作物类似,胚乳具有粳、糯性之分,而且胚乳糯性基因()是野生型颗粒结合型淀粉合成酶(GBSSⅠ)基因隐性突变体,最终导致直链淀粉的极少或终止合成,在小麦[26]、玉米[27]、水稻[28]、高粱[29]等作物均被克隆和鉴定。HACHIKEN等[30]在日本与韩国种质中也克隆出来薏苡的,并且可能存在新的突变体类型。再者,鉴于粳、糯性胚乳与碘试剂表现不同的组织化学显色反应,可作为表型鉴定的一个依据,结合的分子检测可实现糯性的辅助选育。颇具启发性的是,本研究发现薏苡的脂肪含量与支链淀粉、蛋白质、总氨基酸含量呈显著正相关(表2),可以选取胚乳糯性、高蛋白或高脂肪的亲本材料进行提纯或杂交选育,利用不同亲本的正向累加效应,增加了不同组分优势聚合的可能性。

3.2 主成分分析在品质分析评价中的应用

由于品质、产量、抗性等性状大多由多基因控制,且易受环境影响,因此,如何全面有效地对种质资源进行评价,就成为种质筛选和品种改良的关键,特别是在利用多指标进行综合评判时,往往受研究者主观意志的影响,其研究结果常常有所偏颇。主成分分析采用降维的方法,将多个指标(变量)化为少数的几个综合指标(变量),使得这几个综合变量能够尽可能多地反映原始变量的信息,较准确地确定不同变量的权重,并找出数目较少且能控制所有变量的主成分,从而达到简化的目的。因此,主成分分析在品质评价[31]、抗性(如:抗旱等)指标筛选和评价[32]方面均表现出极大的优势。本研究亦采用主成分分析方法将14个品质指标简化为4个主成分并对不同种质的品质特征进行综合评分,并对优良种质进行了初步筛选。值得一提的是,由于薏苡属于异花授粉作物,长期退居或半野生状态、群体杂合度高。因此,在种质资源品质评价的基础上,通过传统育种手段或分子辅助选育进行优异种质的提纯复壮和遗传改良将是今后努力的重要方向。

4 结论

86份供试薏苡种质的淀粉、脂肪、蛋白质、脂肪和氨基酸含量均存在丰富的变异类型,而且氨基酸组分齐全,营养价值高,并发现了糯性、高蛋白、高脂肪的薏苡种质类型,可为专用加工品种选育提供材料。筛选出综合品质较高的10份种质分别为昌黎薏米、昌黎黑川谷、义县农家种、贵州薏苡、台湾花壳、安国五谷、辽宁本地薏苡、承德薏苡、盘县五谷和花甲六谷。

[1] 黄锁义, 李容, 潘勇, 朱晓莹. 薏苡研究的新进展. 食品研究与开发, 2012, 33(11): 223-227.

Huang S Y, Li R, Pan Y, Zhu X Y. Study new progress ofL.., 2012, 33(11): 223-227. (in Chinese)

[2] 杨爽, 王李梅, 王姝麒, 郭晓江, 任冬梅. 薏苡化学成分及其活性综述. 中草药, 2011, 34(8): 1036-1312.

Yang S, Wang L M, Wang S L, Guo X J, Ren D M. Review of chemical components and its medicinal activity in Job’s Tears., 2011, 34(8): 1036-1312. (in Chinese )

[3] 李英材, 覃祖贤. 广西薏苡资源形状分析与分类. 西南农业学报, 1995, 8(4): 109-113.

Li Y C, Qin Z X. Character analysis of Guangxi Job’s Tears resources and their taxonomy., 1995, 8(4): 109-113. (in Chinese)

[4] 陆平, 左志明. 广西薏苡资源的分类研究. 广西农业科学, 1996(2): 81-84.

Lu P, Zuo Z M. Study of taxonomy of Job’s tears resources in Guangxi.,1996(2): 81-84. (in Chinese)

[5] 梁云涛, 陈成斌, 梁世春, 赖群珍, 黄娟, 徐志健. 中、日、韩三国薏苡种质资源遗传多样性研究. 广西农业科学, 2006, 37(4): 341-344.

Liang Y T, Chen C B, Liang S C, Lai Q Z, Huang J, Xu Z J. Research on genetic diversity of Job’s tears (L.) germplasm from China Japan and Korea., 2006,37(4): 341-344. (in Chinese)

[6] 王硕, 张世鲍, 何金宝, 陆光著, 杨志清. 薏苡资源性状的主成分和聚类分析. 云南农业大学学报, 2013, 28(2): 157-162.

Wang S, Zhang S B, He J B, Lu G Z, Yang Z Q. The principal component analysis and cluster analysis ofresource characteristics., 2013, 28(2): 157-162. (in Chinese)

[7] 李春花, 王艳青, 卢文洁, 王梨花. 云南薏苡种质资源农艺性状的主成分和聚类分析. 植物遗传资源学报, 2015, 16(2): 277-281.

Li C H, Wang Y Q, Lu W J, Wang L H. The principal component and cluster analysis of agronomic traits ofgermplasm resources in Yunnan., 2015, 16(2): 277-281. (in Chinese)

[8] Ma K H, Kim K H, Dixit A, Yu J W, Chung J W, Lee J H, Cho E G, Kim T S and Park Y J. Newly developed polymorphic microsatellite markers in Job's tears (L.)., 2006, 6(3): 689-691.

[9] Ma K H, Kim K H, Dixit A, Chuang I M, Gwag J G, Kim T S, Park Y J. Assessment of genetic diversity and relationships amongaccessions using microsatellite markers., 2006, 54: 272-278.

[10] Cai Z X, Liu H J, He Q Y, Pu M W, Chen J, Lai J S, Li X X, Jin W W. Differential genome evolution and speciation ofL. andRoxb. hybrid guangxi revealed by repetitive sequence analysis and fine karyotyping., 2014, 15: 1025.

[11] 周佳民, 彭福元, 赵德全, 朱校奇, 刘朝晖, 黄艳宁. 不同配比施肥对药用薏苡生长特性及生物产量的影响. 农学学报, 2012, 2(7): 5-7.

Zhou J M, Peng F Y, Zhao D Q, Zhu X Q, Liu Z H, Huang Y N. Effects of different ratios fertilization on growth traits and biomass yield ofL.., 2012, 2(7): 5-7. (in Chinese)

[12] 李祥栋, 潘虹, 陆秀娟, 魏心元, 章洁琼, 朱怡, 石明, 陈光能. 不同种植方式与栽培密度对薏苡生长及产量的影响. 贵州农业科学, 2016, 44(8): 32-35.

Li X D, Pan H, Lu X J, Wei X Y, Zhang J Q, Zhu Y, Shi M, Chen G N. Effects of planting pattern and density on growth and yield in Job’s Tears., 2016, 44(8): 32-35. (in Chinese)

[13] 黄士礼, 陈瑶峰, 江文章. 省产薏苡籽实中氨基酸、脂肪酸和一般组成份分析. 食品科学, 1994, 21: 67-74.

Huang S L, Chen Y F, Jiang W Z. Amino acids, fatty acids and proximate composition of seed of adlay., 1994, 21: 67-74. (in Chinese)

[14] 苏海兰, 黄颖桢, 陈菁瑛. 福建浦城薏苡不同器官脂肪酸组分及其含量测定. 福建农业学报, 2012, 27(7): 695-699.

Su H L, Huang Y Z, Chen J Y. The determination of fatty acid composition and content in the different organs ofL. from Pucheng Fujian., 2012, 27(7): 695-699. (in Chinese)

[15] 王颖, 赵兴娥, 王微, 阚建全, 余义筠. 薏苡不同部位营养成分分析及评价. 食品科学, 2013, 34(5): 255-259.

Wang Y, Zhao X E, Wang W, Kan J Q, Yu Y Y. Analysis and evaluation of nutritional components in different tissues of, 2013, 34(5): 255-259. (in Chinese)

[16] 陈裕星, 张嘉伦, 廖宜伦, 林云. 不同品种及产地薏苡籽实之化学指纹图谱建立. 台中区农业改良场研究汇报, 2014, 124: 1-16.

Chen Y X, Zhang J L, Liao Y L, Lin Y. The chemical fingerprints of seed extracts ofof two varieties grown at different locations., 2014, 124: 1-16. (in Chinese)

[17] 杨阳, 杜疏炀, 孙艺琦, 韩婷, 贾敏, 秦路平. 不同产地薏苡中有效成分甘油三油酸酯和薏苡素的测定. 中草药, 2017, 48(3): 578-581.

Yang Y, Du S Y, Sun Y Q, Han T, Jia M, Qin L P. Determination of effective contents triolein and coixol infrom different origins., 2017, 48(3): 578-581. (in Chinese)

[18] Hore D K, Rathi R S. Characterization ofgermplasm in north-east India., 2007, 6(1): 50-54.

[19] 杨志清, 何金宝, 农丕忠. 云南薏苡种质资源形态和经济性状评价. 云南农业大学学报, 2011, 26(2) : 185-189.

Yang Z Q, He J B, Nong P Z. The morphological and economic characteristic appraise ofL. genetic resources in Yunnan., 2011, 26(2): 185-189. (in Chinese)

[20] 黄亨履, 陆平, 朱玉兴, 李英材. 中国薏苡的生态型、多样性及利用价值. 作物品种资源, 1995(4): 4-8.

Huang H L, Lu P, Zhu Y X, Li Y C. ecotype, diversity and utility value in Chinese Job’s Tears., 1995(4): 4-8. (in Chinese)

[21] 贾青慧, 陈莉, 王珍, 何发军. 薏米及薏米糠氨基酸组成分析及营养评价. 食品工业, 2017, 38(4): 185-188.

Jia Q H, Chen L, Wang Z, HE F J. Amino acid composition and nutritional evaluation ofseed and rice bran., 2017, 38(4): 185-188. (in Chinese)

[22] Zhou L L, Huang B B, Meng X Z, Wang G, Wang F, Xu Z K, Song R T. The amplification and evolution of orthologous 22-kDa α-prolamin tandemly arrayed genes in Coix, sorghum and maize genomes., 2010, 74: 631-643.

[23] Neto G C, Yunes J A, Silva M J, Vettore A L, Arruda P, Leite A. The involvement ofon β-prolamin gene regulation in maize andsuggests a more general role for this transcriptional activator., 1995, 27: 1015-1029.

[24] Filho G A S, Silva M J, Vettore A L, Yunes J A, Leite A, Arruda P, Ottoboni M M. Identification of a DNA binding factor that recognizes an α-coixin promoter and interacts with alike protein., 1999, 39: 95-104.

[25] Mertz E T, Bates L S, Nelson O E. Mutant gene that changes protein composition and increases lysine content of maize endosperm., 1964, 145: 279-280.

[26] Vrintin P, Nakamua T, Yamamori M. Molecular characterization of waxy mutations in wheat., 1999, 261: 465-471.

[27] Fan L J, Quan L Y, Leng X D, Guo X Y, Hu W M, Ruan S L, Ma H S, Zeng M Q. Molecular evidence for post-domestication selection in the waxy gene of Chinese waxy maize., 2008, 22: 329-338.

[28] Olsen K M, Purugganan M D. Molecular evidence on the origin, evolution of glutinous rice., 2002, 162(2): 941-950.

[29] Sattler S E, Singh J, Haas E J, Guo L N, Sarath G, Pederson J F. Two distinct waxy alleles impact the granule-bound starch synthase in sorghum, 2009, 24(4): 349-359.

[30] Hachiken H, Yuya Masunaga, Y I, Ishii Y, Ohta T, Ichitani K, Fukunaga K. Deletion commonly found in waxy gene of Japanese and Korean cultivars of Job’s tears (L.)., 2012, 30: 1747-1756.

[31] 唐忠厚, 魏猛, 陈晓光, 史新敏, 张爱君, 李洪民, 丁艳锋. 不同肉色甘薯块根主要营养品质特征与综合评价. 中国农业科学, 2014, 47(9): 1705-1714.

Tang Z H, Wei M, Chen X G, Shi X M, Zhang A J, Li H M, Ding Y F. Characters and comprehensive evaluation of nutrient quality of sweetpotato storage root with different flesh colors., 2014, 47(9): 1705-1714. (in Chinese)

[32] 汪灿, 周棱波, 张国兵, 张立异, 徐燕, 高旭, 姜讷,邵明波. 薏苡种质资源苗期抗旱性鉴定及抗旱指标筛选. 中国农业科学, 2017, 50(15): 2872-2887.

Wang C, Zhou L B, Zhang G B, Zhang L Y, Xu Y, Gao X, Jiang N, Shao M B. Drought resistance identification and drought resistance indices screening of Job’s Tears (L.) germplasm resources at seedling stage., 2017, 50(15): 2872-2887. (in Chinese)

(责任编辑 李莉)

附表1 薏苡种质信息表

table S1 Information of adlay landraces

编号Accession No.名称Name来源Origin编号Accession No.名称Name来源Origin 1金沙薏米jinshayimi中国福建Fujian, China23八达栽培薏苡Badazaipeiyiyi中国云南Yunnan, China 2金沙薏米jinshayimi中国福建Fujian, China24浙江小粒薏苡Zhejiangxiaoliyiyi中国浙江Zhejiang, China 3金沙薏米Jinshayimi中国福建Fujian, China25浙江大粒薏苡Zhejiangdaliyiyi中国浙江Zhejiang, China 4金沙薏米Jinshayimi中国福建Fujian, China26太古2-4Taigu2-4中国山西Shanxi, China 5金沙薏米Jinshayimi中国福建Fujian, China27太古2-14 Taigu2-14中国山西Shanxi, China 6金沙薏米Jinshayimi中国福建Fujian, China28安国薏苡Anguoyiyi中国河北Hebei, China 7金沙薏米Jinshayimi中国福建Fujian, China29承德薏苡Chengdeyiyi中国河北Hebei, China 8金沙薏米Jinshayimi中国福建Fujian, China30川紫薏苡Chuanziyiyi中国四川Sichuan, China 9蒲城薏苡Puchengyiyi中国福建Fujian, China31薏仁Yiren中国贵州Guizhou, China 10盘薏黑壳Panxianheike中国贵州Guizhou, China32本地六谷Bendiliugu中国贵州Guizhou, China 11盘薏白壳Panxianbaike中国贵州Guizhou, China33六谷Liugu中国贵州Guizhou, China 12师薏1号Shiyi 1中国云南Yunnan, China34贵州薏苡Guizhouyiyi中国贵州Guizhou, China 13本地种薏谷Bendizhongyigu中国广西Guangxi,China35薏11 Yi 11中国贵州Guizhou, China 14老挝薏苡Laowoyiyi老挝Laos36薏12 Yi 12中国贵州Guizhou, China 15老挝薏苡Laowoyiyi老挝Laos37陆谷Lugu中国贵州Guizhou, China 16老挝薏苡Laowoyiyi老挝Laos38薏14 Yi 14中国贵州Guizhou, China 17老挝薏苡Laowoyiyi老挝Laos39罗平薏苡Luopingyiyi中国云南Yunnan, China 18宁化薏苡Ninghuayiyi中国福建Fujian, China40六谷Liugu中国云南Yunnan, China 19蒲城薏仁Puchengyiren中国福建Fujian, China41糯六谷Nuoliugu中国云南Yunnan, China 20黑薏米Heiyimi中国湖南Hunan, China42六谷Liugu中国云南Yunnan, China 21安国薏苡Anguoyiyi中国河北Hebei, China43桥头六谷Qiaotouliugu中国云南Yunnan, China 22佛鑫3号Foxin 3中国云南Yunnan, China44糯六谷Nuoliugu中国云南Yunnan, China 续附表1 Continued table S1 编号Accession No.名称Name来源Origin编号Accession No.名称Name来源Origin 45六谷Liugu中国云南Yunnan, China67昌黎薏米Changliyimi中国河北Hebei, China 46六谷Liugu中国云南Yunnan, China68锦屏白薏米Jinpingbaiyimi中国贵州Guizhou, China 47饭六谷Fanliugu中国云南Yunnan, China69昌黎黑川谷Changliheichuangu中国河北Hebei, China 48糯六谷Nuoliugu中国云南Yunnan, China70赣南薏米Gannanyimi中国江西Jiangxi, China 49花甲六谷Huajialiugu中国云南Yunnan, China71通江薏苡Tongjiangyiyi中国四川Sichuan, China 50花甲六谷Huajialiugu中国云南Yunnan, China72店前薏苡Dianqianyiyi中国安徽Anhui, China 51富薏1号Fuyi 1中国云南Yunnan, China73辽宁本地薏苡Liaoningbendiyiyi中国辽宁Liaoning, China 52引韩1号Yinhan 1韩国Korea74薏米8Yimi 8中国贵州Guizhou, China 53通江白薏苡Tongjiangbaiyiyi中国四川Sichuan, China75薏米9Yimi 9中国贵州Guizhou, China 54临沂薏苡Linyiyiyi中国山东Shandong, China76薏米287Yimi 287中国贵州Guizhou, China 55贞丰五谷Zhenfengwugu中国贵州Guizhou, China77黔薏1号Qianyi 1中国贵州Guizhou, China 56平定五谷Pingdingwugu中国山西Shanxi, China78安紫1号Anzi 1中国贵州Guizhou, China 57盘县五谷Panxianwugu中国贵州Guizhou, China79黔薏2号Qianyi 2中国贵州Guizhou, China 58台安农家种Taiannongjiazhong中国辽宁Liaoning, China80云南花壳Yunnanhuake中国云南Yunnan, China 59义县农家种Yixixannongjiazhong中国辽宁Liaoning, China81澜沧小花壳Lancangxiaohuake中国云南Yunnan, China 60广西白薏苡Guangxibaiyiyi中国广西Guangxi, China82隆林薏米Longlinyimi中国广西Guangxi,China 61广西薏苡Guangxiyiyi中国广西Guangxi, China83盘县白壳Panxianbaike中国贵州Guizhou, China 62南河村薏苡Nanhecunyiyi中国辽宁Liaoning, China84遵义小白壳Zunyixiaobaike中国贵州Guizhou, China 63安国五谷Anguowugu中国河北Hebei, China85台湾花壳Taiwanhuake中国台湾Taiwan, China 64吉林小黑壳Jilinxiaoheike中国吉林Jilin, China86贵州薏苡Guizhouyiyi中国贵州Guizhou, China 65盘县五谷Panxianwugu中国贵州Guizhou, China 66隘上五谷Aishangwugu中国湖南Hunan, China

附表2 薏苡主要营养指标的测定结果

Table S2 Results of nutritional indices determination in Job’s Tears

No.X1X2X3X4X5X6X7X8X9X10X11X12X13X14 166.7814.8385.177.2218.2917.620.960.310.342.470.870.520.810.58 267.3411.4588.556.8917.5417.210.950.330.362.340.870.530.790.54 365.730.3899.627.2318.7817.730.960.330.362.420.880.560.830.60 466.410.0799.937.3518.1317.270.920.320.362.340.850.540.840.60 566.933.9496.067.8417.1317.030.930.400.352.470.830.500.850.58 665.0613.3586.657.3618.7117.750.970.300.382.470.860.550.880.65 764.886.7193.297.2817.3916.910.920.320.372.290.820.530.840.61 866.959.5890.427.5317.9017.060.920.310.372.310.830.530.840.61 965.670.00100.007.6717.6916.860.920.280.372.290.830.530.820.59 1067.391.7698.247.8818.1917.350.930.320.342.380.860.540.810.57 1165.779.9490.068.1817.9117.210.910.300.322.380.860.520.810.56 1271.510.00100.007.5214.7714.020.760.260.301.870.690.470.700.47 1368.5410.5489.467.8516.3215.830.850.260.312.190.770.480.780.55 1469.610.00100.007.8916.4715.950.850.300.332.150.770.500.780.57 1568.1415.7084.306.8518.5017.680.970.260.362.460.840.550.880.66 1665.030.0799.937.9317.6417.010.910.300.352.320.810.550.850.61 1763.830.00100.007.7718.3417.400.920.300.362.380.830.570.860.62 1871.0713.1786.836.4517.1716.640.890.250.322.290.800.510.810.61 1965.080.8099.208.0618.6318.461.010.390.352.770.900.520.910.64 2066.260.00100.008.1519.1818.460.990.320.362.550.890.570.890.67 2165.996.8293.188.2918.4117.090.890.300.342.370.820.520.830.61 2267.390.3899.627.6118.5818.471.000.430.322.730.880.520.900.65 2362.186.0493.968.5919.6218.570.980.330.352.610.890.570.900.67 2462.320.4799.537.6219.2118.601.000.280.332.620.880.550.910.67 2565.721.1398.877.3419.4118.741.010.260.332.660.900.550.910.68 2663.442.9497.068.2018.2217.330.900.290.352.330.860.510.840.62 2762.887.3292.688.6419.0417.670.920.280.362.420.870.510.840.64 2865.263.6996.318.8219.0418.230.970.320.342.540.890.550.860.63 2960.766.0094.009.1321.4819.751.040.330.382.730.990.600.870.62 3063.522.0497.968.7819.8218.720.980.310.352.640.930.540.840.63 3166.320.0599.958.1517.7716.990.910.320.342.330.830.530.800.59 3267.4521.1978.817.1118.1617.550.950.300.332.620.850.520.840.64 续附表2 Continued table S2 No.X1X2X3X4X5X6X7X8X9X10X11X12X13X14 3366.760.00100.008.0018.1817.590.930.260.372.560.840.560.840.65 3467.237.7392.277.8118.3017.300.920.280.352.560.860.550.790.61 3565.6525.4874.526.3216.1115.860.840.400.312.270.760.470.800.56 3667.3323.7576.256.6117.6217.000.890.330.322.470.800.520.830.64 3767.257.4892.527.9818.1217.540.910.360.342.590.820.540.870.65 3869.033.3696.647.2917.8617.030.920.330.322.500.800.520.840.64 3967.764.1895.827.9917.9617.060.920.340.322.510.810.510.840.64 4063.203.7796.238.0417.0016.360.880.360.322.330.770.500.810.58 4159.292.9097.107.9516.7716.480.880.360.332.360.780.500.830.59 4263.160.00100.008.2616.5415.720.840.360.322.230.730.480.800.56 4368.522.5997.418.7215.7214.850.810.340.312.090.690.460.770.53 4460.420.0899.927.8716.4116.020.860.370.322.260.750.490.820.58 4566.340.0899.928.4416.8816.740.930.380.312.350.800.480.840.60 4668.880.6999.316.9718.1817.990.970.380.342.490.860.530.900.65 4770.260.6399.377.3015.8015.680.850.400.322.140.740.480.800.57 4866.926.0393.977.0918.8518.080.990.370.352.580.860.520.920.67 4965.314.1095.907.5218.5218.511.070.500.362.650.890.541.000.62 5066.730.00100.007.7317.3816.960.930.540.312.370.810.500.910.53 5168.812.7897.227.5717.9517.270.950.360.312.460.880.430.830.58 5267.129.5290.488.3718.7318.370.980.410.332.690.900.500.870.59 5368.7912.1087.907.4818.2517.981.020.580.292.360.920.420.770.49 5466.243.9496.067.7018.3417.920.980.370.322.560.890.500.860.61 5569.180.7699.246.8517.8217.660.970.350.332.480.870.510.840.60 5658.450.5799.437.5119.1318.581.020.540.302.750.900.500.940.58 5763.580.00100.007.7518.6117.870.980.470.312.640.860.510.980.60 5865.173.8896.128.3417.0316.350.940.480.302.310.780.460.910.54 5961.690.00100.007.7521.2919.541.080.440.342.980.960.531.040.66 6068.889.2890.726.9015.7114.700.840.400.272.100.700.430.870.49 6168.8712.3187.697.0117.2616.470.940.410.302.410.790.480.940.56 6258.384.1795.838.1118.4116.890.960.410.302.510.810.460.950.58 6363.831.7298.288.4020.5619.061.060.460.352.860.930.511.010.64 续附表2 Continued table S2 No.X1X2X3X4X5X6X7X8X9X10X11X12X13X14 6463.075.5694.448.9819.7018.221.020.450.332.700.870.501.010.64 6565.792.5697.447.6420.1618.421.030.460.312.780.880.511.030.64 6668.238.0791.937.5817.8016.780.950.430.302.450.810.470.950.57 6762.222.0897.928.7821.7820.671.120.460.343.171.020.521.080.73 6869.202.5097.508.0017.2016.440.940.450.292.320.780.470.910.53 6964.626.0893.928.6620.5520.071.120.460.343.050.950.501.100.75 7069.161.6598.358.6517.2716.260.930.430.292.330.780.450.880.51 7166.9413.8386.177.3218.4217.110.960.480.312.510.800.460.980.61 7267.1317.0182.998.0018.2416.820.940.470.292.480.790.460.960.61 7360.319.5190.497.7219.7419.301.000.450.352.840.930.510.960.69 7466.120.8099.208.3417.4416.880.880.440.332.390.820.480.850.56 7558.310.00100.009.0118.5918.000.940.440.372.510.880.520.900.59 7658.210.00100.008.1418.2016.500.880.320.332.320.790.520.830.61 7757.820.00100.007.8718.9218.070.980.310.342.620.860.560.920.69 7866.340.00100.008.1318.1417.450.940.280.352.480.860.530.870.65 7966.370.00100.007.8918.3717.750.970.290.352.540.860.530.890.67 8068.253.2996.716.9317.7716.780.860.290.312.440.840.540.930.65 8167.482.8197.197.4418.8016.990.950.430.322.460.780.490.990.61 8269.024.4795.538.0317.2016.110.910.420.312.300.750.450.930.58 8371.116.5693.447.9415.1414.360.830.460.271.960.700.420.780.42 8460.316.1493.868.1317.5016.200.930.410.322.320.750.450.940.58 8558.081.2998.718.4421.1319.301.050.440.312.900.900.511.070.70 8662.220.00100.008.1721.0519.181.070.510.382.750.910.561.020.65 最大值Maximum71.51 25.48 100.00 9.13 21.78 20.67 1.12 0.58 0.38 3.17 1.02 0.60 1.10 0.75 最小值Minimum57.82 0.00 74.52 6.32 14.77 14.02 0.76 0.25 0.27 1.87 0.69 0.42 0.70 0.42 平均Mean(%)65.544.8795.137.8218.1817.380.940.370.332.470.840.510.880.61 标准差SD3.285.695.690.601.361.210.070.080.030.220.060.040.080.06 变异系数CV(%)5.01116.905.987.637.466.957.1120.777.589.037.747.258.889.13

1:总淀粉;2:直链淀粉;3:支链淀粉;4:脂肪;5:蛋白质;6:总氨基酸含量;7:苯丙氨酸;8:蛋氨酸;9:赖氨酸;10:亮氨酸;11:丝氨酸;12:苏氨酸;13:缬氨酸;14:异亮氨酸。上述数据均为百分含量(%)

1: total starch;2: amylase;3: amylopectin;4: fat;5: protein;6: total amino-acid;7: Phe;8: Gly;9: Lys;10: Leu;11: Ser;12: Thr;13: Val;14: Ile. All indices above represent percentage rate (%)

附表3 薏苡种质的主成分得分及综合得分

Table S3 Scores of principal component factor and its comprehensive results

编号No.主成分得分Scores of principal component factor综合得分Total score位次Rank PR1PR2PR3PR4 11.295-0.1410.6580.4070.73337 21.193-0.2950.4930.5490.64053 31.567-0.5270.0970.7110.72939 41.395-0.5280.0630.6910.63954 51.277-0.1620.0880.5360.63755 61.593-0.3790.8390.3410.86323 71.283-0.4480.3430.4550.62959 81.290-0.4090.4800.4330.65950 91.319-0.639-0.0380.5600.56068 101.344-0.427-0.0300.6020.61161 111.208-0.2070.2390.2640.60463 120.100-0.456-0.5490.714-0.07186 130.680-0.2090.1810.3660.34679 140.832-0.460-0.2630.6600.32582 151.429-0.3251.0560.5420.83926 161.354-0.561-0.0200.5080.59064 171.530-0.6290.0620.5000.67648 180.870-0.2350.7140.7570.54271 191.842-0.1650.1610.5830.92515 201.855-0.5230.1760.6160.87621 211.287-0.3500.1700.3020.61062 221.697-0.0010.1460.8120.89319 231.924-0.3590.3470.1980.93813 241.839-0.3810.2460.5490.89917 251.831-0.3880.3900.7610.93014 261.413-0.4470.0260.3000.63258 271.563-0.4130.2010.0870.72440 281.714-0.3620.0940.3280.80431 292.351-0.5040.2780.0471.1008 301.886-0.417-0.0100.2930.85925 311.280-0.472-0.2040.5160.54072 321.2910.0051.0690.3310.81627 331.578-0.7120.0740.5920.69346 341.392-0.4730.2720.4590.66649 350.5800.3321.0000.2000.50875 续附表3 Continued table S3 编号No.主成分得分Scores of principal component factor综合得分Total score位次Rank PR1PR2PR3PR4 361.0250.0791.1620.3270.71441 371.438-0.2290.3760.4660.74636 381.231-0.2410.1920.7770.63456 391.288-0.1920.1020.5570.64152 401.065-0.201-0.1460.2850.47577 411.183-0.244-0.1530.1440.51674 420.887-0.256-0.4320.2800.33480 430.513-0.208-0.4520.3310.16184 441.015-0.240-0.3350.2600.41378 451.156-0.092-0.2680.4920.53173 461.521-0.2260.3060.9540.80529 470.697-0.174-0.1980.8090.32681 481.641-0.1340.5870.7140.90916 491.9100.0960.5640.6781.07110 501.2100.228-0.0960.6920.65051 511.1790.088-0.0090.7240.62760 521.5790.1060.3550.3810.86124 531.1110.7360.0890.5690.70842 541.496-0.0480.1660.6040.77934 551.343-0.2200.1420.9640.69545 561.8330.3850.0230.4400.98112 571.6580.1840.1710.6120.89718 581.0760.315-0.0510.3810.58865 592.3800.1080.4890.6121.2843 600.3360.3770.2420.6200.30283 611.0020.3400.7250.6370.69644 621.4270.2600.1040.1300.75735 632.1770.1290.3740.4941.1646 641.9050.2260.3840.2181.03311 651.8860.2990.5160.7261.0889 661.1620.3400.4680.6090.73038 672.7260.2500.6030.4501.4831 681.0000.2720.0000.6800.57066 续附表3 Continued table S3 编号No.主成分得分Scores of principal component factor综合得分Total score位次Rank PR1PR2PR3PR4 692.4600.3580.8350.4721.4112 700.9570.246-0.2230.5390.50076 711.2690.5360.8260.4760.86422 721.1610.6130.7970.2670.80628 732.0630.1410.6740.2511.1447 741.189-0.052-0.2230.4530.55869 751.810-0.252-0.1870.0170.80430 761.342-0.417-0.2650.1220.54570 771.908-0.4260.1510.2870.89320 781.539-0.5050.0640.5680.70543 791.634-0.4510.1630.6450.78133 801.247-0.2870.4890.8290.68447 811.3670.1500.4000.7260.79432 820.9760.2030.1670.5800.56867 830.1460.373-0.3210.5380.11485 841.1760.1860.1630.1100.63257 852.3020.2710.4140.2711.2414 862.341-0.0590.3780.5031.2135

Characteristics and Comprehensive Assessment of Principal Nutritional Components in Adlay Landraces

LI XiangDong1,2, PAN Hong1,2, LU XiuJuan1,2, WEI XinYuan1,2, LU Ping3, SHI Ming1,2, QIN Likang4

(1Guizhou Adlay Engineering Technology Research Centre, Xingyi 562400, Guizhou;2Southwest Guizhou Institute of Karst Regional Development, Xingyi 562400, Guizhou;3Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081;4School of Liquor and Food Engineering, Guizhou University, Guiyang 550225)

【Objective】Nutritional quality analysis and evaluation is a significant procedure of adlay breeding and comprehensive utilization. In order to providing the base materials for quality improvement breeding, methods for quality evaluation, which can be a essential process in product chain, would be built, the superior adlay landraces were discovered and selected as well.【Method】The indices of nutritional quality were determined and a comprehensive evaluation on nutritional quality of Job’s Tears was obtained with correlation analysis, subordinate function and factor analysis in all 86 landraces.【Result】The results showed that there were differences and rich diversities in contents of starch, fat, protein and amino acid among all of the 86 adlay landraces, with a variable coefficient rate ranged from 5.01%-116.90%. Average contents of 8 essential amino-acid components ranged from 0.33%-2.47%, which leucine possessing a maximum content and lysine was first restricted one. There were 35 waxy accessions with a percentage of 40.70%, 34 accessions with a fat content more than 8%, and 8 accessions with a protein more≥20%, respectively. ‘Changliyimi’ and ‘Changliheichuangu’ accessions had a relatively higher total amino-acid contents as well. Total starch related positively to amylose and negatively related to amylopectin at significant level, while amylopectin significantly related to fat positively, fat positively related to protein, total amino-acid and serine contents. Most of 8 essential amino-acids also related to each other at significant levels, which revealed by correlation analysis. Four principal factors were extracted from the 14 nutritional factors, which contributed 48.333%, 16.571%, 16.011% and 6.146% to all date information, respectively, with a cumulative percentage of87.061%, while the protein, total amino-acid and five essential amino-acids decided the first principal factor and methionine, lysine, serine decided the second principal factor; the second principal factor was decided by amylase, amylopectin and fat, while total starch decided the fourth principal factor. According to weight index and subordinate function value of five principal factors, the comprehensive evaluation of nutritional quality scores were calculated for ranking. The results also showed that factor analysis is a good statistical method for evaluating nutritional quality by simplifying the some correlated variables to minority ones.【Conclusion】It was concluded that the tested adlay landraces had a various diversity, and was full of essential amino acids; the type of waxy in endosperm, higher protein and higher fat were also discovered. Most of indices were related to each other revealed by correlation analysis. Several landraces with a higher score were selected, which were ‘Changliyimi’, ‘Changliheichuangu’, ‘Yixiannongjiazhong’, ‘Taiwahuake’, ‘Guizhouyiyi’, ‘Anguowugu’, ‘Liaoningbendiyiyi’, ‘Chengdeyimi’, ‘Panxianwugu’ and ‘Huajialiugu’, providing fundamental materials for quality improvement and breeding process. Most of indices were related to each other revealed by correlation analysis.

adlay; nutritional component; principal component analysis; comprehensive evaluation

2017-09-13;

2017-11-06

贵州省科技计划(黔科合重大专项字[2014]6023)、薏苡基因的发掘鉴定及新品种选育(黔科合支撑[2016]2608号)、贵州省高层次创新型人才培养(黔科合人才[2015]4016号)、贵州省重点农业技术推广项目(黔财农[2017]106号-黔农技发[2017]9号/Z174029)

李祥栋,E-mail:lixiangdongsiji@163.com。

潘虹,E-mail:ph121014@126.com。通信作者石明,E-mail:shiming1616@126.com

猜你喜欢

薏苡薏米种质
薏苡功能性酒研究进展及工艺优化
华南地区最大农作物种质资源保护库建成
华南地区最大农作物种质资源保护库建成
施肥与种植对薏苡产量的影响探究
贵州薏苡新品种(系)的性状表现
薏米水降尿酸治便秘
四川省桑树种质资源保存与应用
不同水温对2种薏苡种子的萌发及黑穗病的影响
亚麻抗白粉病种质资源的鉴定与筛选
薏仁的挑选方法