大尺寸密闭容器内天然气的爆炸超压场*
2018-03-07樊保龙白春华高康华
樊保龙,白春华,王 博,高康华,李 斌,4
(1.北方爆破科技有限公司,北京 100089; 2.北京理工大学爆炸科学与技术国家重点实验室,北京 100081;3.陆军工程大学爆炸冲击防灾减灾国家重点实验室,江苏 南京 210007;4.南京理工大学化工学院,江苏 南京 210094)
当可燃气体、可燃液体的蒸气(或可燃粉尘)与空气混合并达到一定浓度时,遇到火源就会发生爆炸。这个能够发生爆炸的浓度范围,叫做爆炸极限,通常用可燃气体、蒸气或粉尘在空气中的体积分数来表示。可燃气体在空气(氧气)中的爆炸极限范围是众多学者关心的焦点,但关于作为描述可燃气体爆炸后毁伤效果的典型参数,如爆压、爆温、爆速等的报道较少[1-4]。这是因为目前对爆炸极限的研究多局限于两个方面:一方面是因为偏于实际生产应用的缘故,多数测试中只需知道可燃气体在空气中的爆炸极限范围、临界氧含量或者获得爆炸三角形图即可,而对具体的燃烧爆炸过程及其结果并不关心;另一方面是由于测试仪器的局限性,多采用小尺寸容器,如小型激波管、20 L球、圆柱形爆炸罐等,其测试手段较单一,多数只在耐压容器壁面安置一个压力传感器或温度传感器,所得数据有限[5-7]。正因为如此,目前对于气体爆炸的研究多采用放宽条件,改变初始温度、初始压力、当量体积分数等手段,以获得某种可燃气体或气体混合物较全面的爆炸特性参数[8-10]。大尺寸密闭空间内可燃气体爆炸过程更贴合于实际。但由于爆炸容器尺寸大,操作复杂,开展相关研究难度较大。本文中,通过在大尺寸密闭容器中开展天然气爆炸超压场的研究,以期获得大尺寸密闭空间内天然气爆炸超压的发展规律,丰富目前天然气燃爆威力的测试数据,为密闭空间内天然气爆炸危害的预防及毁伤能力评估提供数据支持。
1 实 验
1.1 实验装置
天然气-空气混合物的燃爆过程在容积为10 m3的爆炸罐内进行,爆炸罐示意图见图1。为更清楚地记录爆炸罐内天然气-空气混合物爆炸后超压的发展过程,在爆炸罐内沿罐体轴向典型位置布置4个压力传感器,沿罐体径向典型位置布置3个压力传感器,以获得天然气-空气混合物燃爆后,爆炸罐内部的超压场状态,传感器布置见图2。点火装置选用高能放电器,单次点火,点火能量为40 J;超压测试系统包括压力传感器、信号调理器、数据采集系统、信号线等。压力传感器为PCB公司的113B系列;信号调理器为PCB公司的信号调理器;数据采集系统为南汇科技虚拟仪器系统;高速摄像系统为Photron公司的NX100相机,实验中采样频率为1 000 s-1。
1.2 实验样品
选用华北地区的工业天然气为实验样品,其密度为728.9 g/m3,高位发热量为40.38 MJ/m3。该工业天然气的组分及其体积分数分别为:氧气,0.05%;氮气,1.28%;天然气,92.40%;二氧化碳,1.72%;乙烷,3.62%;丙烷,0.65%;异丁烷,0.11%;正丁烷,0.11%;异戊烷,0.04%;正戊烷,0.02%。
1.3 实验方法
将不同量的天然气在容积为10 m3的爆炸罐内与空气进行均匀混合,测量各点天然气的体积分数,达到罐体内各位置处天然气体积分数相对均匀时,进行点火操作,混合过程见文献[11],利用压力测试系统记录相关测试点的压力数据。
2 实验结果分析
2.1 近爆炸下限处天然气-空气混合物的爆炸超压场状态
超压状态场通常被用来评估受限空间内可燃气体点爆过程中的爆炸效果。对大尺寸密闭空间来说,其超压状态场与可燃气体的体积分数存在对应关系[11]。本次研究主要从近爆炸下限(5.4%)的天然气点爆过程入手,分析不同体积分数下的天然气爆炸超压状态场。
经过系列实验测试后发现,在实际天然气体积分数接近天然气爆炸下限(5.4%)处,开展天然气点爆实验时,能够获得3种超压曲线,且曲线状态随天然气实际体积分数的不断升高发生一系列的变化。在天然气爆炸下限附近选取5.5%、5.8%和6.5%等3种天然气体积分数进行实验,以轴向第一个传感器的信号为典型信号,来研究不同体积分数条件下压力传感器获取的不同超压曲线,如图3所示。
由图3可以看出,图3(a)是天然气-空气混合物点火后典型的冲击波压力曲线,由于点火位置处天然气的体积分数较低,在40 J点火能量的作用下,天然气中可燃组分与空气发生化学反应的速率较低,从时间坐标可以看出整个反应持续了十多秒,是典型的缓慢燃烧反应。当点火位置处天然气体积分数上升至5.8%时,由图3(b)可以看出,测得的压力-时间曲线分成两部分:蓝色椭球框内的初始冲击波压力突跃以及后续的持续燃烧过程。蓝色椭球框内的压力曲线对应着图3(a)中压力曲线的发展状态,不同的是,当初始冲击波过去后的一个豫驰时间后(约4 s),图3(a)中的压力曲线并无继续增长趋势,而是持续下降,而图3(b)中的反应被进一步加速,造成了后续大范围持续燃烧的过程。
当天然气体积分数进一步升高,达到6.5%时,超压时程曲线如图3(c)所示。此时,从作用初期,已无法捕捉到初始冲击波的作用曲线,也无法观察到一个明显的豫驰时间,天然气爆炸后压力直接上升至最高值,前期的冲击波作用和后期的燃烧波发展已形成一个整体。产生这种现象的主要原因是:气体的爆燃过程也是一种化学反应过程,在初始环境参数不变的情况下,可燃气体体积分数越高,单位空间内的可燃气体分子越多,可燃气体分子发生有效碰撞的几率越大,反应速率越高。在点火的瞬间,当可燃气体体积分数较低时,点火源周围局部的可燃气体分子在外界能量的输入下发生反应,但由于可燃气体分子少,反应没有完全传播下去,造成了图3(a)所示的现象,在宏观上表现为点火后产生了前导冲击波,但前导冲击波没有得到能量支持继续发展;当可燃气体体积分数较高时,化学反应速率很高,使得点火瞬间气体分子的反应从局部很快发展到整个空间,宏观上表现为前导冲击波波后气体产物运动速度追上或超过前导冲击波发展速度,使二者形成一个整体,表现为图3(c)所示的形式。而在这二者之间,存在前导冲击波缓慢发展最终形成燃烧波的过程,如图3(b)所示,即存在一定的豫驰时间[11]。
2.2 近爆炸下限处天然气-空气混合物的爆炸超压发展过程
以容积为10 m3的爆炸罐为研究对象,对其轴向的4个压力传感器(距爆源由近至远分别命名为OP1~OP4)的压力数据进行分析,典型结果如图4(a)所示。当天然气体积分数为5.5%时,接近实验测得的爆炸下限(5.4%),因此,此爆炸超压发展曲线图为近爆炸极限时的临界压力发展趋势图。由图4(a)可看出,经过滤波处理后,轴向上的压力传感器随着距离点火位置的远近,其超压峰值分别为82.5、32.9、23.4和15.1 kPa。距爆源最近的传感器测得的压力曲线较接近典型的冲击波超压曲线,其他3个传感器所测得的压力曲线都接近于燃烧波的压力曲线。这主要是由于点火点处天然气的体积分数较低,接近爆炸下限,点火初期,点火位置处的天然气-空气混合物被点燃,初始冲击波产生,但由于能量支持不够,未继续发展,使得后续的轴向传感器测得的压力信号较弱且随距离呈递减趋势。
仍以容积为10 m3的爆炸罐为研究对象,对其径向的3个压力传感器(距轴线由近至远分别为OP4~OP6)的压力数据进行分析,典型结果如图4(b)所示。由图4(b)可以看出,传感器距离爆源中心轴线越远时,爆炸超压峰值越大,但增幅不大。这是由于天然气-空气燃爆发生并沿爆炸罐体轴向传播的同时,也沿爆炸罐体径向传播,呈体积性发展趋势,距爆源一定距离后,整个燃爆体系传播过程已成整体化趋势,同一波阵面的压力数据基本相当,但由于壁面反射的影响,偏离轴线处压力可能略有升高。
在对天然气体积分数为5.5%的天然气-空气混合物燃爆超压曲线分析后,针对3种天然气体积分数情况下的天然气-空气混合物燃爆发展进行研究,得到其燃爆参数随轴向和径向的发展规律,如图5所示。由图5可以看出:当天然气体积分数接近爆炸下限时,天然气-空气混合物燃爆的最高压力即为前导冲击波的超压峰值,其值相对较低;随着天然气体积分数的升高,天然气燃爆的最高压力为前导冲击波过后燃烧波的峰值压力,且此压力值随着初始天然气体积分数的升高而增大。从空间发展角度来看,距爆源距离对天然气爆炸超压峰值影响不大。而对于豫驰时间来说,与超压发展规律类似,燃爆豫驰时间与距爆源距离关系不大,初始天然气体积分数是决定性因素。
3 结 论
天然气爆炸下限附近存在3种典型的超压状态:(1)当可燃气体的体积分数接近爆炸下限时,点火后只存在点火点周边气体燃烧产生的前导冲击波;(2)当可燃气体体积分数略高于爆炸下限时,点火后前导冲击波和后续燃烧波共存;(3)当可燃气体体积分数高于爆炸下限一定程度后,前导冲击波与后续燃烧波重叠。
经过系统实验发现,爆炸下限附近的爆炸超压峰值及燃爆豫驰时间主要取决于初始天然气体积分数,而与距爆源距离关系不大,这主要是由于大尺寸密闭容器内气体燃爆过程的体积性效果。
[1] ZIPF Jr R K, GAMEZO V N, MOHAMED K M, et al. Deflagration-to-detonation transition in natural gas-air mixtures[J]. Combustion and Flame, 2014,161:2165-2176.
[2] INABA Y, NISHIHARA T, GROETHE M A, et al. Study on explosion characteristics of natural gas and methane in semi-open space for the HTTR hydrogen production system[J]. Nuclear Engineering and Design, 2004,232:111-119.
[3] PEDERSEN H H, TOMLIN G, MIDDHA P, et al. Modelling large-scale vented gas explosion in a twin-compartment enclosure[J]. Journal of Loss Prevention in the Process Industries, 2013,26:1604-1615.
[4] LIAO S Y, CHENG Q, JIANG D M, et al. Experimental study of flammability limits of natural gas-air mixture[J]. Journal of Hazardous Materials, 2005,B119:81-84.
[5] ZHENG J J, HU E J, HUANG Z H, et al. Combustion and emission characteristics of a spray guided direct-injection spark-ignition engine fueled with natural gas-hydrogen blends[J]. International Journal of Hydrogen Energy, 2011,36:11155-11163.
[6] MARIANI A, MORRONE B, UNICH A. Numerical evaluation of internal combustion spark ignition engines performance fuelled with hydrogen-natural gas blends[J]. International Journal of Hydrogen Energy, 2012,37:2644-2654.
[7] WANG X, ZHANG H G, YAO B F, et al. Experimental study on factors affecting lean combustion limit of S.I engine fueled with compressed natural gas and hydrogen blends[J]. Energy, 2012,38:58-65.
[8] PARVINI M, KORDROSTAMI A. Consequence modeling of explosion at Azad-Shahr CNG refueling station[J]. Journal of Loss Prevention in the Process Industries, 2014,30:47-54.
[9] BAJCAR T, CIMERMAN F, SIROK B. Model for quantitative risk assessment on naturally ventilated metering-regulation stations for natural gas[J]. Safety Science, 2014,64:50-59.
[10] MA L, CHENG L, LI M C. Quantitative risk analysis of urban natural gas pipeline networks using geographical information systems[J]. Journal of Loss Prevention in the Process Industries, 2013,26:1183-1192.
[11] 樊保龙.大尺度条件下甲烷-空气和煤尘-空气混合及爆炸特性研究[D].北京:北京理工大学,2015:13-41.