人类免疫缺陷病毒感染者免疫功能重建不全的研究进展
2018-03-03吴还梅卢洪洲
吴还梅,卢洪洲,2,3
1. 复旦大学附属公共卫生临床中心感染科,上海 201508; 2. 复旦大学附属华山医院感染科,上海 200040; 3. 复旦大学上海医学院内科学系,上海 200032
人类免疫缺陷病毒(human immunodeficiency virus,HIV)感染引起的获得性免疫缺陷综合征(acquired immunodeficiency syndrome,AIDS)一直是全球范围内的一个难题。据世界卫生组织(World Health Organization,WHO)报道,截至2016年底,全球约有 3 670 万人感染HIV,其中2016年新发感染人数为180万。截至2017年年中,已有超过 2 000 万HIV感染者接受规范化抗反转录病毒治疗(antiretroviral treatment,ART)[1]。ART的目标是通过控制HIV复制,帮助患者实现免疫功能重建。在此过程中,CD4+T细胞计数是评估免疫重建状况的核心指标。
CD4+T细胞计数水平低是HIV感染者发生各种机会性感染、肿瘤乃至死亡的最主要危险因素。多数患者接受ART后,CD4+T细胞水平可恢复正常;但仍有约20%的患者在接受ART后,即使血浆病毒载量已持续数年低于检测下限,其CD4+T细胞计数可能仍<200个/μL,该现象称为免疫功能重建不全。目前,国际上仍缺乏固定统一的界定指标和标准,公认的指标主要为CD4+T细胞计数、血浆HIV载量及病毒抑制持续时间。一般将接受ART后血浆HIV载量持续<50拷贝/mL达12个月以上,且期间CD4+T细胞计数持续<200个/μL或CD4+T细胞回升比例<25%,定义为发生免疫功能重建不全[2]。
HIV感染免疫功能重建不全患者发生机会性感染和肿瘤的风险是免疫功能重建完全患者的 2.6 倍[3]。我国新诊断出的HIV感染者的临床指标显示,>70%的患者在未治疗前CD4+T细胞<200个/μL,是发生免疫功能重建不全的高危人群;且我国高达70%的HIV感染者在明确诊断时已表现出AIDS症状,多数会发生免疫功能重建不全[4]。
1 发生免疫功能重建不全的风险因素
CD4+T细胞来源于胸腺。有研究发现,免疫功能重建不全患者的胸腺功能受到影响,导致体内无法产生足够的CD4+T细胞[5],提示胸腺的分化能力是影响免疫功能重建的因素之一。在胸腺分化能力没有差异的情况下,免疫功能重建不全的HIV感染者中,CXCR4嗜性的HIV毒株比例显著高于CCR5嗜性的毒株[6],表明病毒亚型也是免疫功能重建不全的相关因素。
国外既往队列研究显示,免疫功能重建不全的风险因素包括年龄、启动ART时的CD4+T细胞计数[3,7]、男性同性恋和静脉毒品注射传播,以及从启动治疗到实现病毒抑制的时间等[3,8]。就诊时低CD4+T细胞计数水平是HIV感染者免疫功能重建不全的独立危险因素[9-10]。进一步探索发现,对于ART前CD4+T细胞计数<200 个/μL的HIV感染者,CD4+T细胞绝对数下降的速率与治疗后发生免疫功能重建不全的风险呈正相关[11]。国内研究者从浙江省HIV感染者队列中筛选出初始治疗时CD4+T细胞计数<100个/μL的免疫功能重建不全患者,发现随访时间越长,队列中发生免疫功能重建不全的比例越高[12]。对此类HIV感染者而言,及早开始ART无疑能在一定程度上降低未来发生免疫功能重建不全的风险。
2 免疫功能重建不全的可能机制
2.1 外周循环系统中细胞亚群损伤
与健康志愿者和免疫功能重建完全的HIV感染者相比,免疫功能重建不全的HIV感染者血浆中CD4 IgG抗体水平显著上升。这些IgG能在体外通过抗体依赖的细胞介导的细胞毒作用(antibody-dependent cell-mediated cytotoxicity,ADCC),促发天然杀伤(natural killer,NK)细胞诱导CD4+T细胞发生凋亡和裂解。此效应对初始CD4+T细胞的作用较记忆性CD4+T细胞明显[13],也就是说免疫功能重建不全患者体内因某些原因而产生了自体反应的IgG,攻击自身CD4+T细胞,导致其数量减少。
免疫功能重建不全的HIV感染者外周血记忆性CD4+T细胞的单细胞蛋白质组学分析显示,该细胞亚群免疫应答通路受到抑制[14]。HIV再次侵袭时,记忆性CD4+T细胞有可能减弱,无法正常扩增CD4+T和CD8+T细胞 。分析CD4+T细胞的原始祖细胞发现,免疫功能重建不全患者的CD34+造血祖细胞分化为T细胞的功能受损。其机制为细胞死亡相关受体P2X7表达上调,通过ATP通路阻碍CD34+造血祖细胞分化为T细胞[15]。T细胞耗竭标记——程序性细胞死亡蛋白1(programmed cell death 1,PD-1)的升高与免疫功能重建不全的发生相关[16],高表达PD-1的T细胞在免疫系统活化过程中可能抑制正常T细胞扩增。因此,PD-1无疑对HIV感染者免疫恢复有一定的负面影响。
NK细胞介导的细胞毒作用能直接杀伤被HIV感染的CD4+T细胞。虽然免疫功能重建不全患者体内NK细胞产生γ干扰素(interferon γ,IFN-γ)的能力被削弱,但CD56高表达的NK细胞数量增加,且细胞毒性显著增加,脱颗粒能力也没有受到影响[17]。另有研究显示,免疫功能重建不全患者的NK细胞数量无显著变化,但CD56中度表达的NK细胞被激活,这些活化的NK细胞对离体未感染HIV的CD4+T细胞亦有细胞毒性[18]。免疫功能重建不全患者的天然细胞毒性受体NKp44的配体表达上调,这部分细胞为高度分化的、多功能的、发生凋亡的CD4+T细胞[19]。综上所述,HIV感染的免疫功能重建不全患者体内依然有很强的NK细胞介导的CD4+T细胞杀伤反应,此效应可删除被感染的CD4+T细胞,还累及未感染的CD4+T细胞,从而导致其细胞数量减少。另一方面,细胞产生IFN-γ的能力减弱会导致免疫功能重建不全患者发生机会性感染和肿瘤的风险增加。
2.2 细胞因子的变化
作为免疫系统的第三信使,细胞因子调节细胞的分化和功能。HIV感染导致白细胞介素7(interleukin 7,IL-7)水平升高,理论上能促进T细胞分化;但IL-7受体CD127的表达下调[20],很可能导致T细胞分化不全。研究显示,HIV感染后升高的IL-7在ART后可基本下降至正常水平,但免疫功能重建不全患者中 IL-7水平持续偏高[21],伴随IL-7受体表达减少,导致初始T细胞不能正常扩增。由此可见,IL-7信号通路确实在HIV感染者中产生影响,使部分感染者发生免疫功能重建不全,但具体机制尚不清楚。严重免疫功能重建不全患者中,激活的和发生凋亡的CD8+T细胞比例较高[22],提示体内细胞毒作用仍在持续,可能是引发慢性炎症的原因之一。
但有研究发现,免疫功能重建完全与免疫功能重建不全患者之间血浆细胞因子水平没有显著差异,随访2年后只有IFN-γ诱导蛋白10(interferon γ-inducible protein 10,IP-10)在免疫功能重建不全患者中略有上升[23]。因此,利用细胞因子表达谱不能区分两类感染者。有两项研究显示,免疫功能重建不全患者外周血中的调节性T细胞(regulatory T cell,Treg)数量显著上升,且以活化的Treg为主[24-25],伴有高表达的IL-10。研究者认为,Treg是免疫功能重建的保护性因素[24]。另一项研究则发现,血浆IP-10升高与CD4+T细胞数下降呈正相关[25],推测可能是因为IP-10的高表达可募集与激活T细胞,从而促进CD4+T细胞删除。近期研究显示,炎症小体介导的促炎反应可能是免疫系统持续性激活的途径,细胞焦亡通路则可能是导致CD4+T细胞数下降的机制之一[26]。
2.3 黏膜局部CD4+ T细胞删除
肠道黏膜是HIV感染的主要病灶之一,CD4+T细胞损伤主要发生于淋巴组织,特别是肠道相关淋巴组织[27]。在这些淋巴组织中,HIV仍处于低水平复制状态,接受ART后CD4+T细胞数量恢复较慢[28],可见CD4+T细胞恢复水平与肠道CD4+T细胞数量恢复密切相关。肠道黏膜固有层中的淋巴细胞是HIV在组织中的主要潜伏库,此处HIV DNA或有缺陷的RNA水平是血液中的2倍[29]。ART抑制成熟HIV产生,但在CD4+T细胞发生焦亡和组织局部伴随炎症反应的情况下,大量不完整的HIV DNA或RNA释放。IFN-γ诱导蛋白16(interferon γ-inducible protein 16,IFI16)感受缺陷型DNA或RNA,进一步诱导产生细胞焦亡[30],大量删除CD4+T细胞。另有研究显示,免疫功能重建不全患者的肠黏膜相关淋巴组织归巢受体α4β7的表达显著高于免疫功能重建完全患者,其中β7+Th17和Treg细胞数量有所上升[31]。这一表型或可影响HIV在黏膜局部组织潜伏库的形成和HIV在体内的传播,从而影响患者的免疫重建。
半胱氨酸天冬氨酸特异性蛋白水解酶1(cysteinyl aspartate specific proteinase 1,caspase-1)和caspase-3引起的细胞死亡,均是HIV感染过程中CD4+T细胞删除的重要通路。近期研究发现,ART后患者外周血中发生焦亡的CD4+T细胞比例与活化的CD8+T细胞比例呈正相关,且与未治疗时相比,CD4+T细胞焦亡比例显著下降[32]。被HIV感染的CD4+T细胞发生凋亡,但绝大多数未被感染的CD4+T旁路细胞则通过焦亡途径死亡,超过95%的静息性CD4+T细胞发生caspase-1介导的焦亡[33]。因此,焦亡是HIV感染导致CD4+T细胞数量减少的主要原因,这一通路还伴随IL-1β释放及一系列慢性炎症反应。焦亡的CD4+T细胞释放ATP、IL-1β、caspase-1适配体ASC和NLRP3炎症小体,进一步引诱更多的CD4+T细胞被删除[30]。
HIV通过黏膜途径感染后,首先导致黏膜局部组织中效应CD4+T细胞被大量删除,包括Th17和Th22,进而引发黏膜上皮损伤,进一步发生微生物易位,激活系统免疫反应。免疫功能重建不全患者在治疗后期,肠道黏膜交联结构受损,表现为上皮细胞表面表达交联复合蛋白的水平下降。虽然外周血与肠道组织中CD4+T细胞计数并无差异,但黏膜局部HIV载量升高[34],可见肠道黏膜破损会对机体的免疫应答产生直接负面影响。慢性炎症和Th17细胞删除导致不可逆损伤,微生物易位,使得CD4+T细胞数量恢复较慢。有研究显示,某些肠道菌可使HIV诱导黏膜CD4+T细胞的死亡方式从凋亡转变为焦亡[35]。HIV感染导致部分抗炎性菌群减少,这些肠道菌群可能直接影响外周血中CD4+T细胞数量,从而影响HIV感染进程[36-37]。而某些肠道微生物能促进肠黏膜中HIV复制,增加肠道CD4+T细胞破坏,从而导致疾病进展[38]。由此可见,这些肠道微生物菌群极有可能对HIV感染者接受治疗后CD4+T细胞数量和功能的恢复产生影响。
3 免疫功能重建不全的预防和治疗途径探讨
目前,全球范围内仅有6项关于HIV感染后免疫功能重建不全患者队列的临床试验。药物马拉诺维Ⅳ期临床试验结果显示,CD4+T细胞的恢复能力没有显著提升[39];雷公藤提取物能在一定程度上降低患者免疫激活水平,同时增强CD4+T细胞恢复能力[40],但CD4+T细胞绝对计数仍然<200个/μL;饮食中添加营养补充剂锌和腺苷甲硫氨酸改善免疫功能重建不全,以及吡斯的明Ⅱ期临床试验正在进行;国内部分研究机构也在尝试中医药介入治疗,但基本处于实验室探索阶段。
IL-2和IL-15与T细胞的增殖、分化及激活密切相关,HIV感染者中两者表达下调。临床研究试图使用IL-2皮下注射间歇性给药,以促进免疫系统CD4+T细胞的产生;但对于免疫功能重建不全的HIV感染者,效果并不理想[41]。IL-2虽然能促使免疫系统产生更多的CD4+T细胞,但不能降低患者发生机会性感染和死亡的风险[20]。众所周知,IL-7能促进胸腺产生T细胞,免疫功能重建不全患者血浆中IL-7表达水平虽然较高,但未能使CD4+T细胞计数达到正常水平[21],机制尚未阐明。虽然IL-7对猴免疫缺陷病毒(simian immunodeficiency virus,SIV)感染有一定的保护作用[20],但IL-7是否可作为临床辅助用药用于治疗免疫功能重建不全患者仍有待探讨。综上所述,免疫功能重建不全患者体内CD4+T细胞水平低的根本原因可能不是免疫系统不能产生足够的CD4+T细胞,而是这些CD4+T细胞发生了死亡。虽然IL-15能促进黏膜局部记忆型T细胞的扩增及向外周非淋巴组织迁徙,但研究者在SIV感染的恒河猴模型中采用IL-15与ART联用的方案时,并没有起到对宿主的保护作用,反而促进了CD4+T细胞的删除[42]。
P2X7升高与CD34+造血祖细胞分化为T细胞的功能受损直接相关[15],那么是否可设计P2X7阻断剂来重新解放造血祖细胞的分化功能,诱导其分化出更多的CD4+T细胞。鉴于免疫功能重建不全患者中细胞因子水平与免疫功能重建完全患者没有显著差异,推测影响CD4+T细胞恢复的因素可能局限于细胞水平。因此,激活免疫系统产生更多的CD4+T细胞可能是未来治疗免疫功能重建不全的策略之一。
4 结语
关于免疫功能重建不全的分类标准尚未统一,加上研究队列一般较小,导致目前的研究结果无法支持临床应用。黏膜局部组织中CD4+T细胞减少是HIV感染者免疫功能重建不全的原因之一,但机制仍不明确。免疫功能重建不全患者中CD4+T细胞凋亡和焦亡较为明显,可能的通路为PD-1和caspase-1相互作用。CD4+T细胞焦亡与AIDS进展相关,而免疫功能重建不全导致CD4+T细胞焦亡更为严重。免疫功能重建不全患者中吲哚胺2,3-双加氧酶(indoleamine-2,3-dioxygenase,IDO)活性与caspase-3/9呈明显正相关。IDO可抑制T细胞增殖,免疫功能重建不全患者体内是否发生了多方面的连锁反应,最终导致CD4+T细胞数量减少且难以恢复仍有待确认。
针对HIV感染者免疫功能重建不全的治疗方法,尚没有权威的专家共识或临床指南。从治疗的角度讲,HIV感染免疫功能重建不全患者即使接受ART,免疫系统也无法正常应答,从而无法使CD4+T细胞数量恢复至正常水平。因此,需采取其他途径的治疗策略,如对症联合抗菌药物。在诊断方面,则可以检测毒株亚型、评估造血干细胞的T细胞分化能力等作为辅助。虽然目前研究显示免疫功能重建完全与免疫功能重建不全患者之间肠道菌群的组成及丰度存在差异,但机制尚不清楚,也没有任何药物和治疗手段可帮助患者恢复CD4+T细胞计数水平。因此,通过研究以明确相关机制,将有助于延长HIV感染者的生存时间,改善其生活质量。
[1] World Health Organization. Antiretroviral therapy [EB/OL]. http: //www.who.int/topics/antiretroviral_therapy/en.
[2] Cenderello G, De Maria A. Discordant responses to cART in HIV-1 patients in the era of high potency antiretroviral drugs: clinical evaluation, classification, management prospects [J]. Expert Rev Anti Infect Ther, 2016, 14(1): 29-40.
[3] Engsig FN, Zangerle R, Katsarou O, Dabis F, Reiss P, Gill J, Porter K, Sabin C, Riordan A, Fätkenheuer G, Gutiérrez F, Raffi F, Kirk O, Mary-Krause M, Stephan C, de Olalla PG, Guest J, Samji H, Castagna A, d’Arminio Monforte A, Skaletz-Rorowski A, Ramos J, Lapadula G, Mussini C, Force L, Meyer L, Lampe F, Boufassa F, Bucher HC, De Wit S, Burkholder GA, Teira R, Justice AC, Sterling TR, Crane HM, Gerstoft J, Grarup J, May M, Chêne G, Ingle SM, Sterne J, Obel N; Antiretroviral Therapy Cohort Collaboration (ART-CC) and the Collaboration of Observational HIV Epidemiological Research Europe (COHERE) in EuroCoord. Long-term mortality in HIV-positive individuals virally suppressed for >3 years with incomplete CD4 recovery [J]. Clin Infect Dis, 2014, 58(9): 1312-1321.
[4] Shen Y, Lu H, Wang Z, Qi T, Wang J. Analysis of the immunologic status of a newly diagnosed HIV positive population in China [J]. BMC Infect Dis, 2013, 13: 429. doi: 10.1186/1471-2334-13-429.
[5] Aiuti F, Mezzaroma I. Failure to reconstitute CD4+T-cells despite suppression of HIV replication under HAART [J]. AIDS Rev, 2006, 8(2): 88-97.
[6] Delobel P, Nugeyre MT, Cazabat M, Sandres-Sauné K, Pasquier C, Cuzin L, Marchou B, Massip P, Cheynier R, Barré-Sinoussi F, Izopet J, Isra⊇l N. Naive T-cell depletion related to infection by X4 human immunodeficiency virus type 1 in poor immunological responders to highly active antiretroviral therapy [J]. J Virol, 2006, 80(20): 10229-10236.
[7] Prabhakar B, Banu A, Pavithra HB, Chandrashekhara P, Sasthri S. Immunological failure despite virological suppression in HIV seropositive individuals on antiretroviral therapy [J]. Indian J Sex Transm Dis, 2011, 32(2): 94-98.
[8] Gazzola L, Tincati C, Bellistrì GM, d’Arminio Monforte A, Marchetti G. The absence of CD4+T cell count recovery despite receipt of virologically suppressive highly active antiretroviral therapy: clinical risk, immunological gaps, and therapeutic options [J]. Clin Infect Dis, 2009, 48(3): 328-337.
[9] Negredo E, Massanella M, Puig J, Pérez-Alvarez N, Gallego-Escuredo JM, Villarroya J, Villarroya F, Moltó J, Santos JR, Clotet B, Blanco J. Nadir CD4 T cell count as predictor and high CD4 T cell intrinsic apoptosis as final mechanism of poor CD4 T cell recovery in virologically suppressed HIV-infected patients: clinical implications [J]. Clin Infect Dis, 2010, 50(9): 1300-1308.
[10] Zhang F, Sun M, Sun J, Guan L, Wang J, Lu H. The risk factors for suboptimal CD4 recovery in HIV infected population: an observational and retrospective study in Shanghai, China [J]. Biosci Trends, 2015, 9(5): 335-341.
[11] Darraj M, Shafer LA, Chan S, Kasper K, Keynan Y. Rapid CD4 decline prior to antiretroviral therapy predicts subsequent failure to reconstitute despite HIV viral suppression [J]. J Infect Public Health, 2017. doi: 10.1016/j.jiph.2017.08.001.
[12] He L, Pan X, Dou Z, Huang P, Zhou X, Peng Z, Zheng J, Zhang J, Yang J, Xu Y, Jiang J, Chen L, Jiang J, Wang N. The factors related to CD4+T-cell recovery and viral suppression in patients who have low CD4+T cell counts at the initiation of HAART: a retrospective study of the National HIV Treatment Sub-database of Zhejiang Province, China, 2014 [J]. PLoS One, 2016, 11(2): e0148915.
[13] Luo Z, Li Z, Martin L, Wan Z, Meissner EG, Espinosa E, Wu H, Yu X, Fu P, Westerink MAJ, Kilby JM, Wu J, Huang L, Heath SL, Li Z, Jiang W. Pathological role of anti-CD4 antibodies in HIV-infected immunologic nonresponders receiving virus-suppressive antiretroviral therapy [J]. J Infect Dis, 2017, 216(1): 82-91.
[14] Azzam S, Schlatzer D, Maxwell S, Li X, Bazdar D, Chen Y, Asaad R, Barnholtz-Sloan J, Chance MR, Sieg SF. Proteome and protein network analyses of memory T cells find altered translation and cell stress signaling in treated human immunodeficiency virus patients exhibiting poor CD4 recovery [J]. Open Forum Infect Dis, 2016, 3(2): ofw 37. doi: 10.1093/ofid/ofw037.
[15] Menkova-Garnier I, Hocini H, Foucat E, Tisserand P, Bourdery L, Delaugerre C, Benne C, Lévy Y, Lelièvre JD. P2X7 receptor inhibition improves CD34 T-cell differentiation in HIV-infected immunological nonresponders on c-ART [J]. PLoS Pathog, 2016, 12(4): e1005571.
[16] Grabmeier-Pfistershammer K, Steinberger P, Rieger A, Leitner J, Kohrgruber N. Identification of PD-1 as a unique marker for failing immune reconstitution in HIV-1-infected patients on treatment [J]. J Acquir Immune Defic Syndr, 2011, 56(2): 118-124.
[17] Giuliani E, Vassena L, Di Cesare S, Malagnino V, Desimio MG, Andreoni M, Barnaba V, Doria M. NK cells of HIV-1-infected patients with poor CD4+T-cell reconstitution despite suppressive HAART show reduced IFN-gamma production and high frequency of autoreactive CD56brightcells [J]. Immunol Lett, 2017, 190: 185-193.
[18] Luo Z, Li Z, Martin L, Hu Z, Wu H, Wan Z, Kilby M, Heath SL, Huang L, Jiang W. Increased natural killer cell activation in HIV-infected immunologic non-responders correlates with CD4+T cell recovery after antiretroviral therapy and viral suppression[J]. PLoS One, 2017, 12(1): e0167640.
[19] Sennepin A, Baychelier F, Guihot A, Nel I, Ho Tsong Fang R, Calin R, Katlama C, Simon A, Crouzet J, Debré P, Vieillard V. NKp44L expression on CD4+T cells is associated with impaired immunological recovery in HIV-infected patients under highly active antiretroviral therapy [J]. AIDS, 2013, 27(12): 1857-1866.
[20] Khoury G, Rajasuriar R, Cameron PU, Lewin SR. The role of naïve T-cells in HIV-1 pathogenesis: an emerging key player [J]. Clin Immunol, 2011, 141(3): 253-267.
[21] Leone A, Rohankhedkar M, Okoye A, Legasse A, Axthelm MK, Villinger F, Piatak M Jr, Lifson JD, Assouline B, Morre M, Picker LJ, Sodora DL. Increased CD4+T cell levels during IL-7 administration of antiretroviral therapy-treated simian immunodeficiency virus-positive macaques are not dependent on strong proliferative responses [J]. J Immunol, 2010, 185(3): 1650-1659.
[22] Bai F, Bellistri GM, Tincati C, Savoldi A, Pandolfo A, Bini T, Carpani G, Sinigaglia E, Marchetti G, d’Arminio Monforte A. Reduced CD127 expression on peripheral CD4+T cells impairs immunological recovery in course of suppressive highly active antiretroviral therapy [J]. AIDS, 2010, 24(16): 2590-2593.
[23] Norris PJ, Zhang J, Worlock A, Nair SV, Anastos K, Minkoff HL, Villacres MC, Young M, Greenblatt RM, Desai S, Landay AL, Gange SJ, Nugent CT, Golub ET, Keating SM. Systemic cytokine levels do not predict CD4+T-cell recovery after suppressive combination antiretroviral therapy in chronic human immunodeficiency virus infection [J]. Open Forum Infect Dis, 2016, 3(1): ofw025. doi: 10.1093/ofid/ofw025.
[24] Gaardbo JC, Hartling HJ, Ronit A, Springborg K, Gjerdrum LM, Ralfkiaer E, Thorsteinsson K, Ullum H, Andersen AB, Nielsen SD. Regulatory T cells in HIV-infected immunological nonresponders are increased in blood but depleted in lymphoid tissue and predict immunological reconstitution [J]. J Acquir Immune Defic Syndr, 2014, 66(4): 349-357.
[25] Stiksrud B, Lorvik KB, Kvale D, Mollnes TE, Ueland PM, Trøseid M, Taskén K, Dyrhol-Riise AM. Plasma IP-10 is increased in immunological nonresponders and associated with activated regulatory T cells and persisting low CD4 counts [J]. J Acquir Immune Defic Syndr, 2016, 73(2): 138-148.
[26] Masetti M, Fabbiani M, Biasin M, Muscatello A, Squillace N, Colella E, Clerici M, Gori A, Trabattoni D, Bandera A. Inflammasome and pyroptosis are involved in the lack of immune response during cART [C/OL]. 2017. http: //www.croiconference.org/sessions/inflammasome-and-pyroptosis-are-involved-lack-immune-response-during-cart.
[27] Veazey RS, Demaria M, Chalifoux LV, Shvetz DE, Pauley DR, Knight HL, Rosenzweig M, Johnson RP, Desrosiers RC, Lackner AA. Gastrointestinal tract as a major site of CD4+T cell depletion and viral replication in SIV infection [J]. Science, 1998, 280(5362): 427-431.
[28] Mudd JC, Brenchley JM. Gut mucosal barrier dysfunction, microbial dysbiosis, and their role in HIV-1 disease progression [J]. J Infec Dis, 2016, 214(Suppl 2): S58-S66.
[29] Khan S, Telwatte S, Trapecar M, Yukl S, Sanjabi S. Differentiating immune cell targets in gut-associated lymphoid tissue for HIV cure [J]. AIDS Res Hum Retroviruses, 2017, 33(S1): S40-S58.
[30] Doitsh G, Greene WC. Dissecting how CD4 T cells are lost during HIV infection [J]. Cell Host Microbe, 2016, 19(3): 280-291.
[31] Girard A, Vergnon-Miszczycha D, Depincé-Berger AE, Roblin X, Lutch F, Lambert C, Rochereau N, Bourlet T, Genin C, Paul S. Brief report: a high rate of beta7+gut-homing lymphocytes in HIV-infected immunological nonresponders is associated with poor CD4 T-cell recovery during suppressive HAART [J]. J Acquir Immune Defic Syndr, 2016, 72(3): 259-265.
[32] Cai R, Liu L, Luo B, Wang J, Shen J, Shen Y, Zhang R, Chen J, Lu H. Caspase-1 activity in CD4 T cells is downregulated following antiretroviral therapy for HIV-1 infection [J]. AIDS Res Hum Retroviruses, 2017, 33(2): 164-171.
[33] Doitsh G, Galloway NL, Geng X, Yang Z, Monroe KM, Zepeda O, Hunt PW, Hatano H, Sowinski S, Muoz-Arias I, Greene WC. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection [J]. Nature, 2014, 505(7484): 509-514.
[34] Tincati C, Merlini E, Braidotti P, Ancona G, Savi F, Tosi D, Borghi E, Callegari ML, Mangiavillano B, Barassi A, Bulfamante G, d’Arminio Monforte A, Romagnoli S, Chomont N, Marchetti G. Impaired gut junctional complexes feature late-treated individuals with suboptimal CD4+T-cell recovery upon virologically suppressive combination antiretroviral therapy [J]. AIDS, 2016, 30(7): 991-1003.
[35] Steele AK, Lee EJ, Manuzak JA, Dillon SM, Beckham JD, McCarter MD, Santiago ML, Wilson CC. Microbial exposure alters HIV-1-induced mucosal CD4+T cell death pathways ex vivo [J]. Retrovirology, 2014, 11: 14. doi: 10.1186/1742-4690-11-14.
[36] Harper KN. HIV-altered gut microbiome may be driving disease progression [J]. AIDS, 2017, 31(2): N1. doi: 10.1097/QAD.0000000000001295.
[37] Dillon SM, Frank DN, Wilson CC. The gut microbiome and HIV-1 pathogenesis: a two-way street [J]. AIDS, 2016, 30(18): 2737-2751.
[38] Dillon SM, Lee EJ, Kotter CV, Austin GL, Gianella S, Siewe B, Smith DM, Landay AL, McManus MC, Robertson CE, Frank DN, McCarter MD, Wilson CC. Gut dendritic cell activation links an altered colonic microbiome to mucosal and systemic T-cell activation in untreated HIV-1 infection [J]. Mucosal Immunol, 2016, 9(1): 24-37.
[39] Rusconi S, Vitiello P, Adorni F, Colella E, Focà E, Capetti A, Meraviglia P, Abeli C, Bonora S, D’Annunzio M, Di Biagio A, Di Pietro M, Butini L, Orofino G, Colafigli M, d’Ettorre G, Francisci D, Parruti G, Soria A, Buonomini AR, Tommasi C, Mosti S, Bai F, Di Nardo Stuppino S, Morosi M, Montano M, Tau P, Merlini E, Marchetti G. Maraviroc as intensification strategy in HIV-1 positive patients with deficient immunological response: an Italian randomized clinical trial [J]. PLoS One, 2013, 8(11): e80157.
[40] Li T, Xie J, Li Y, Routy JP, Li Y, Han Y, Qiu Z, Lv W, Song X, Sun M, Zhang X, Wang F, Jiang H. Tripterygium wilfordii Hook F extract in cART-treated HIV patients with poor immune response: a pilot study to assess its immunomodulatory effects and safety [J]. HIV Clin Trials, 2015, 16(2): 49-56.
[41] Farel CE, Chaitt DG, Hahn BK, Tavel JA, Kovacs JA, Polis MA, Masur H, Follmann DA, Lane HC, Davey RJ Jr. Induction and maintenance therapy with intermittent interleukin-2 in HIV-1 infection [J]. Blood, 2004, 103(9): 3282-3286.
[42] Lugli E, Mueller YM, Lewis MG, Villinger F, Katsikis PD, Roederer M. IL-15 delays suppression and fails to promote immune reconstitution in virally suppressed chronically SIV-infected macaques [J]. Blood, 2011, 118(9): 2520-2529.