重视土壤中微塑料污染研究防范生态与食物链风险
2018-02-08骆永明章海波潘响亮李连祯
骆永明 周 倩 章海波 潘响亮 涂 晨 李连祯 杨 杰
1 中国科学院南京土壤研究所 中国科学院土壤环境与污染修复重点实验室 南京 210008 2 中国科学院烟台海岸带研究所 中国科学院海岸带环境过程与生态修复重点实验室 烟台 264003 3 浙江农林大学 环境与资源学院 浙江省土壤污染生物修复重点实验室 杭州 311300 4 浙江工业大学 环境学院 杭州 310014 5 中国科学院大学 资源与环境学院 北京 100049
微塑料是指环境中粒径小于 5 mm 的塑料类污染物,包括碎片、纤维、颗粒、发泡、薄膜等不同形貌类型。微塑料污染已成为全球性的环境问题,尤其在海洋和潮滩环境中微塑料的来源、丰度、环境行为及生态效应受到普遍关注[1-4]。最近研究表明,陆地尤其是土壤中微塑料污染也应该引起足够重视[5];有的研究者指出,陆地中存在的微塑料丰度可能是海洋的 4—23 倍,农地土壤中每年输入的微塑料就远超过向全球海洋中的输入量[6]。迄今,为数不多的几例调查数据显示,土壤中存在相当高含量的微塑料污染。例如,Fuller 和 Gautam[7]对澳大利亚悉尼某工业区土壤调查表明,微塑料含量达到 0.03%—6.7%;有的研究者甚至认为,一些塑料污染热点地区土壤中微塑料含量可能高达 60%[8,9]。在瑞士的洪泛平原调查也发现,90% 的土壤样品中存在微塑料污染,其污染水平与流域人口密度相关,显示人类活动对土壤微塑料污染的贡献[10]。有报道认为,我国是塑料垃圾的排放大国,仅沿海地区,估计每年排放塑料垃圾高达 132—353 万吨,排放量在全球居首位[1]。目前,在国内虽然对滨海潮滩土壤中微塑料的类型、丰度及分布有调查研究[11,12],但对农田土壤中微塑料污染状况的报道仅有 2 篇[13,14]。因此,亟待加强农用地土壤中微塑料的来源、分布及生态与食物链风险等研究,为我国农田土壤微塑料污染的风险管控与治理提供科学依据。
1 土壤中微塑料的来源
1.1 污泥的土地利用带入微塑料
国际上对污水处理厂中微塑料的调查发现,约 90% 的微塑料在污水处理后积累到污泥中[15]。在美国、德国、芬兰和瑞典等国的一些城市污泥调查也表明,污泥中微塑料含量范围为 1 500—24 000 个/kg[16-18]。Li 等[19]在调查我国 11 个省 28 个污水处理厂 79 个污泥样品中发现,污泥中微塑料的含量范围在 1 600—56 400 个/kg,平均值在 22 700±12 100 个/kg,这与国外情况类似。目前,常规污泥预处理方法(如石灰稳定、厌氧发酵、加热干化等)难以有效去除微塑料[17]。因此,将这些污泥作为肥料施入土壤后会导致土壤中微塑料的积累。根据北美和欧洲污泥农用情况进行估算后认为,北美地区每年通过污泥农用进入土壤中的微塑料量为 6.3—43 万吨,欧洲为 4.4—30 万吨[6]。该数据已经远远高于全球海洋中每年 9.3—23.6 万吨微塑料的输入量。我国每年的污泥产生量约在 3 000—4 000 万吨,农业利用率虽然不到 10%[20],但仍在逐年增加[21]。显然,污水污泥的土地利用是农用地土壤中微塑料的重要来源。以往,对污泥农用过程中重金属、持久性有机物、抗生素、病原菌及寄生虫卵等有毒有害物质在土壤—植物系统中的积累及其危害开展了较多的研究[22-24],但对微塑料的土壤污染问题还缺乏研究与了解。
1.2 有机肥长期施用积累导致土壤微塑料污染
有机肥在农业生产中已经成为不可或缺的肥料,在设施农业中施用量更大。相比于污泥,有机肥中微塑料及其通过农用输入到土壤中的数据更少。目前仅有 3 例关于有机肥中塑料污染的报道。其中,Bläsing 和 Amelung[25]比较了德国波恩某有机肥加工厂的 3 个有机肥样品,发现肉眼可见的塑料碎片(粒径 > 0.5 mm)含量在 2.38—180 mg/kg;而在斯洛文尼亚的调查中发现,有机肥中塑料含量更高,达到 1 200 mg/kg[26]。Weithmann 等[27]观测到粒径大于 1 mm 的约有 14—895 个/kg。上述 3 例报道都是针对有机肥中粒径 0.5 mm 以上的塑料碎片,对关注度更高的更小粒径的微塑料污染状况还不得而知。可以预料,有机肥中粒径 < 0.5 mm 的微塑料特别是微纳米级的微塑料的丰度会更高。我国是有机肥生产和使用大国,仅商品有机肥的年生产量就在 2 500 万吨以上,实际施用量在 2 200 万吨左右[28]。如果按照目前有机肥中调查的微塑料含量来估算,我国农田土壤中每年投入微塑料量在 52.4—26 400 吨,若考虑到粒径 < 0.5 mm 的微塑料含量以及有机肥产量和施用量的逐年增幅,其数量会更高。因而,有机肥施用是农田土壤中微塑料积累的又一个重要途径。
1.3 农用地膜残留分解形成微塑料污染
我国农用塑料薄膜使用量在 2015 年达到 260.36 万吨,其中地膜使用量为 145.5 万吨,约占世界地膜使用总量 90%;地膜覆盖面积达到 1 833 万公顷以上,但农田地膜回收率不到 60%[29]。农用地膜的主要成分是聚乙烯(PE),包括高密度聚乙烯(HDPE)、低密度聚乙烯(LDPE)和线性低密度聚乙烯(LLDPE);聚氯乙烯(PVC)膜因其高毒性在美国已被禁用[30]。总体上,中国使用的农用地膜的厚度与欧洲、日本等发达国家相比要薄得多,个别地区使用地膜厚度甚至小于 0.005 mm,而发达国家通常要求地膜厚度在 0.02 mm 以上。地膜厚度小,一方面带来回收不易,另一方面易老化、碎片化严重;残留的地膜在土壤中更易形成微塑料污染,同时还易释放酞酸酯等增塑剂污染物[31]。残留地膜会分解形成塑料碎片甚至微塑料[30,32]。因此,地膜残留分解是农用地土壤中微塑料的又一个重要来源。
1.4 大气微塑料沉降进入地表土壤
土壤除了可以接纳来自污泥、有机肥和地膜残留的微塑料,还可以接纳通过大气沉降进入的微塑料。周倩等[33]首次报道了我国滨海城市大气环境中微塑料的类型、沉降通量及季节性变化特征,其中大气微塑料沉降通量可达 1.46×105个/(m2a),纤维类达 1.38×105个/(m2a),不同类型微塑料的沉降通量变幅在 0—6.02×102个/(m2d),以纤维类的最高。Dris 等[34]对 2 500 平方公里的巴黎城市聚集区中大气微塑料的调查也发现,微塑料的类型上多是纤维类,每年通过大气沉降到该区域的纤维类微塑料大约在 3—10 吨。因此,大气沉降是表层土壤微塑料的一个污染源。
1.5 地表径流、灌溉将微塑料带入土壤
流域水灌溉、地表径流或渗透也是土壤中微塑料的来源途径。Zhao 等[35]调查发现,在长江口水表面漂浮的微塑料丰度达 4 137.3±2 461.5 个/m3;Di 和 Wang[36]在长江流经的重庆至宜昌江段水体中发现微塑料丰度为 4 703±2 816个/m3;即使在偏远的内陆湖泊沿岸也有大量微塑料的存在[37,38],农用水灌溉及地表径流都会将微塑料带入土壤中。此外,污水中也含有大量的微塑料[39],这些含有微塑料的污水,虽然经过污水处理厂处理后排放,但由于微塑料粒径小,在处理过程中没有起到完全拦截作用。Lares 等[40]报道,污水处理厂的污泥经活性污泥法和生物膜反应器法处理后,水样分别含有 1.0 个 /L和 0.4 个 /L 的微塑料。Gies 等[41]估算,在加拿大温哥华最大的污水处理厂,经处理后的污水中的 97%—99% 微塑料都被截留,但每年仍有 300 亿个微塑料通过污水排放释放到环境中。生活及工业污水的排放会通过地表径流或灌溉等方式进入土壤,造成土壤中微塑料的积累。
2 土壤生态系统中微塑料的降解及环境风险
2.1 土壤生态系统中微塑料的降解特征
土壤中的微塑料在光照、高温氧化、物理侵蚀和生物降解等作用下会发生聚合物分子化学结构变化,包括聚合物分子链断裂、歧化、表面含氧官能团(如酯基团、酮基团等)的增加等。周倩等[11]对潮滩微塑料表面鉴定发现,不同微塑料的表面不仅有微孔、裂纹等聚合物分子链断裂的特征,同时表面含氧、含氮官能团增加;譬如,采用裂解—气相色谱质谱联用仪分析到微塑料风化表面中出现 ɑ-N-去甲基美沙醇、1,1-二苯基-螺[2,3]-己烷-5-羧酸甲酯、棕榈酸十八酯等物质。类似的表面变化也发生在不同类型的潮滩微塑料(LDPE、PET、PVC)上[42]。这些表面变化意味着微塑料发生降解,并可使其变为更小粒径的微塑料甚至纳米塑料。但是,相对于海洋表面和潮滩环境,微塑料在土壤中由于受到光屏蔽效应和低氧化环境作用,降解效率会较低,从而导致更长时间的残留。如聚丙烯(PP)塑料在土壤中培养 1 年后仅有 0.4% 被降解[43],而 PVC 塑料在土壤中 35 年都没有降解[44]。
近年来,陆生生物对微塑料降解作用的研究有明显进展。Yang 等[45]发现黄粉虫(Tenebrio molitor Linnaeus)能够吃掉聚苯乙烯发泡塑料,并进一步通过对黄粉虫的肠道微生物进行研究发现,从黄粉虫肠道中分离出的肠道菌株 YT2(Exiguobacterium sp.)具有降解聚苯乙烯发泡塑料的能力[46]。蚯蚓(Lumbricus terrestris)肠道中也分离出能够降解土壤中低密度聚乙烯塑料的细菌,包括放线菌(Microbacterium awajiense、Rhodococcus jostii、Mycobacterium vanbaalenii 和 Streptomyces fulvissimus)和厚壁菌(Bacillus simplex 和 Bacillus sp.)等革兰氏阳性细菌,并且检测到十八烷烃、二十二烷烃等降解产物[47]。
2.2 土壤生态系统中微塑料的迁移与环境风险
进入土壤后,微塑料在植物根系、生物和机械扰动作用下会发生迁移。目前对生物扰动驱动下微塑料迁移研究较多。例如,土壤中的蚯蚓(L. terrestris)可将 60%以上的聚乙烯小球从表层向下迁移至 10 cm 以下的土层,其中小粒径(710—850 µm)微塑料要比大粒径更容易迁移[48]。Lwanga 等[8]研究也显示微塑料会随蚯蚓迁移至其洞穴中,并且蚯蚓对微塑料的迁移也具有粒径选择性,其中粒径 <50 µm 的 PE 小球要比其他大粒径更容易迁移。除蚯蚓外,弹尾目昆虫白符跳(Folsomia candida)和小原等节跳(Proisotoma minuta)也能将树脂颗粒(100—200 µm)和纤维从表层土壤迁移至下层。微塑料在蚯蚓驱动在土体内部的迁移可能会影响土壤团聚体结构和功能,从而影响土壤水分和养分的运移[8]。
微塑料除了受扰动后在土体内迁移外,还可通过侵蚀、地表径流等形式向土体外迁移至水体,甚至进一步迁移进入海洋环境[49]。Nizzetto 等[50]以伦敦泰晤士河流域为例,采用 INCA- 污染物理论模型首次模拟了通过污泥农用进入到土壤中的微塑料迁移到水体中的比例,发现残留在土壤中的微塑料比例为 16%—38%,其余大部分微塑料最终会从土壤中迁移进入水体,成为水环境中微塑料污染的来源。因此,土壤不仅是微塑料的“汇”,也可以是水环境微塑料的“源”。
3 土壤生态系统中微塑料的生物积累与生态及食物链风险
土壤生态系统中微塑料暴露的生物积累与毒性效应研究刚刚起步。有研究发现,蚯蚓(L. terrestris)可以摄入和排出微塑料,其排出的微塑料具有粒径选择性,如 < 50 µm 的小粒径微塑料更容易被排出[51];同时,蚯蚓在受到高含量(> 28%)PE 微塑料暴露后,其生长受到明显抑制,致死率也显著增加,但繁殖率没有受到影响;而对另一种土壤动物——白符跳的研究发现,受 PVC 微塑料颗粒(80—250 µm)暴露后,其体内肠道菌群发生改变,同时生长和繁殖也受到明显抑制,并且通过 δ15N 和 δ13C 值指示可以看出,其摄食行为发生改变[52]。土壤中的微塑料也可通过食物链发生传递、富集,带来健康风险。Lwanga 等[9]首次报道了微塑料在庭院土壤—蚯蚓和土壤—鸡食物链中的传递,发现微塑料从土壤到蚯蚓粪的富集系数可达 12.7,而从土壤到鸡粪的富集系数更是高达 105。此外,该研究同时也观测到鸡的砂囊中也有微塑料富集,富集系数达 5.1。由于砂囊通常作为食材使用,因此,需要关注该暴露途径下微塑料对人体健康的影响。对土壤中微塑料能否进入植物体内还尚未有报道。Qi 等[53]研究了低密度聚乙烯(LDPE)和可生物降解塑料地膜碎片对小麦生长的影响,表明 2 种塑料膜都会干扰小麦的生长,且可生物降解塑料膜对小麦生长影响更大。Bandmann 等[54]通过对烟草细胞的培养研究表明,纳米级塑料微珠可通过细胞内吞作用进入烟草细胞。这表明小粒径的纳米级塑料有可能通过植物根际吸收进入植物体内,但还需要通过植物培养试验进行证实。
4 未来研究方向与风险防范对策
在 2015 年召开的第二届联合国环境大会上,微塑料作为一种新型环境污染物,其污染被列入环境与生态科学研究领域的第二大科学问题,成为与全球气候变化、臭氧耗竭等并列的重大全球环境问题。在国内,科技部在 2016 年启动了“海洋微塑料监测和生态环境效应评估技术研究”的重点专项。相对于海洋生态系统,土壤及陆地生态系统中的微塑料污染及其生态、食物链及健康风险问题还未受到足够重视。土壤生态系统作为地球表层生态系统中物质交换和能量转换的主要单元和中心枢纽,其在承纳地表系统中的微塑料污染以及向海洋系统输入微塑料等方面都具有重要作用。因此,亟待揭示土壤生态系统中微塑料污染规律,发展土壤微塑料分析、评估方法与管控修复技术,为陆地生态系统微塑料污染治理提供科学依据和技术支撑。
4.1 建立和完善土壤中微塑料的分离和分析方法
由于受到土壤质地、有机质及团聚体结构的影响,因而从土壤中分离和鉴定微塑料要比水和沉积物中更加困难[25,55]。当前,土壤中微塑料的分离主要是借鉴沉积物中分离微塑料的相关方法,比如采用密度分离[56]、气浮[57]等方法。最近,也有研究者提出采用加压流体萃取(PFE)的方法进行土壤中微塑料的分离[7]。该方法尽管能够定量分析土壤等复杂基质中微塑料的含量,但它无法获取样品中微塑料的粒径、形状、表面形貌特征等物理信息。还有研究者使用可见光—近红外光谱[58]、高光谱成像和化学计量方法[59]对土壤中微塑料进行快速的预测和鉴定,但这些方法仍有较多局限性,如存在鉴定范围窄、精度不够高等问题。因此,鉴于土壤性质的多样性和微塑料物理、化学性质的复杂性,有必要针对不同性质土壤开展不同类型微塑料的分离与鉴定的方法学研究,并建立技术规范。
4.2 评估微塑料中化学添加剂在土壤环境中可释放性,防范环境风险
塑料在生产和加工过程中会加入大量的添加剂,比如增塑剂、阻燃剂、抗氧化剂、光热稳定剂等。这些化学物质通常是通过物理混合加入到聚合物结构中,因而非常容易在环境中释放成为新的污染来源。Zhang 等[60]曾经报道从潮滩微塑料样品中提取到多种磷系阻燃剂和邻苯二甲酸酯,其中磷系阻燃剂中的三(氯异丙基)磷酸酯(TCPP)可高达 84.4 μg/g。Jang[61]等也在聚苯乙烯发泡塑料中检测到六溴环十二烷(HBCDs)阻燃剂,含量可高达 5 220 μg/g。许多阻燃剂和增塑剂对人体都具有毒害作用,如:邻苯二甲酸酯类和双酚 A 具有内分泌干扰作用,而含氯的磷系阻燃剂具有致癌作用;HBCDs 由于具有持久性和神经毒性、发育毒性等多种毒性被列为新的持久性有机污染物。这些疏松结合在塑料上的塑料添加剂经过紫外辐射、温度、氧含量、土壤酸碱性及可溶性有机质的影响下会被释放到环境中[62]。在海洋环境中,已有研究发现聚苯乙烯发泡塑料会释放 HBCDs 到环境中,并在贻贝体内富集[61]。因此,在土壤环境中大量存在的微塑料会成为土壤中化学添加剂污染的一个重要来源,但目前微塑料与添加剂的复合污染物对土壤食物链安全、生态系统和人体健康的风险尚未评估。未来研究应重点关注不同土壤环境条件下微塑料化学添加剂的释放规律,并评估它们与微塑料的复合污染对土壤生态系统、食物链和人体健康影响的联合效应。
4.3 系统认识微塑料污染对土壤功能影响,发展源头管控和环境降解修复技术
尽管一些研究表明微塑料对土壤中的蚯蚓、跳虫等具有毒害作用,并且可能通过食物链进行传递、富集。但目前所研究的生物种类还很有限,所获取的生物毒性数据还远未满足暴露风险评估的要求。因此,需要结合土壤生态系统的特点与实际的微塑料污染类型,开展土壤中微塑料环境水平下多层次、多尺度的研究,包括:① 建立土壤中动物、植物和微生物的微塑料剂量—效应关系,为建立土壤微塑料风险评估方法和环境基准提供基础数据;② 揭示土壤微塑料及其表面负载的化学污染物在土壤生态系统、食物链或食物网中的传递与转化规律,了解污染成因,为建立生态风险评估和食物链风险评估提供科学依据;③ 探明微塑料积累对土壤物理、化学和生物学性质的影响,进而分析这些影响对土壤养分和污染物生物地球化学循环的改变的可能性,以评估微塑料对土壤生产功能和环境净化功能的损害;④ 基于上述认识和评估,研发微塑料污染的源头控制与降解修复的材料、方法和技术,构建土壤微塑料污染风险管控与治理的技术支撑体系。