佳木斯地块北部早古生代沉积建造的时代与物源:来自岩浆和碎屑锆石U-Pb年龄及Hf同位素的制约
2018-01-25栾金鹏许文良王志伟
乔 健,栾金鹏,许文良,王志伟,赵 硕,郭 鹏
吉林大学地球科学学院, 长春 130061
0 引言
佳木斯地块位于中亚造山带和环太平洋构造域叠加与转换的关键部位,该地块南北两侧分别延入俄罗斯远东的兴凯地块和布列亚地块,前人称之为布列亚—佳木斯—兴凯地块。在古生代期间,该地块经历了古亚洲洋构造域演化,以及微陆块之间复杂的拼贴演化过程。因此,佳木斯地块的古生代构造演化对揭示中亚造山带东段古生代构造演化历史具有重要意义[1-4]。
近年来,随着对佳木斯地块研究的不断深入,国内外学者对其演化历史达成了一些共识。比如基于佳木斯地块东南部广泛出露的花岗质岩石以及火山岩年代学的研究结果,可将佳木斯地块南部的古生代岩浆作用划分为4期:晚寒武世(~492 Ma)、晚泥盆世(~388 Ma)、早二叠世(~288 Ma)和晚二叠世(~259 Ma)[2-3, 5-7]。然而,佳木斯地块北部古生代地质体研究程度较低,尤其是缺少关于古生代地层的研究。佳木斯地块古生代地层主要分布在佳木斯地块东南缘,尤以晚古生代地层发育为特征。泥盆纪到石炭纪,以一套稳定的被动陆缘海相碎屑岩和碳酸盐岩建造沉积为主[8]。二叠纪期间,该区形成了一套具有活动陆缘背景的钙碱性火成岩建造[9]。与晚古生代地层研究相比,对佳木斯地块上早古生代地层的研究几乎处于空白。首先,佳木斯地块上是否存在早古生代地层,目前仍然是一个存在争论的问题;其次,前人根据岩石组合,将佳木斯地块北部的金银库组确定为早古生代沉积,但仍然缺乏年代学证据[8]。为了解决上述问题,本文选择出露于佳木斯地块北部的金银库组和侵入其中的火成岩脉体为研究对象,通过LA-ICP-MS / SIMS锆石U-Pb定年以及Hf同位素分析,查明了金银库组和侵入其中的花岗细晶岩以及辉绿岩脉体的形成时代,结合野外地质证据和前人研究成果,探讨了金银库组的沉积物源与环境。
1 地质背景与样品描述
中国东北地区位于中亚造山带的东段,由多个微陆块(自西向东包括额尔古纳地块、兴安地块、松嫩—张广才岭地块、佳木斯地块和兴凯地块)组成[1, 10-12]。佳木斯地块是其中的微陆块之一。佳木斯地块西部和南部分别以嘉荫—牡丹江断裂、敦化—密山断裂为界,主要由先前被认为代表古老基底的麻山群和黑龙江群以及古生代花岗岩及火山岩所组成[13-19]。此外,区内还出露有大面积的中生代晚期—新生代火山-沉积岩系[4, 8](图1)。然而,近年来的研究表明:麻山群实则是与泛非事件相联系的花岗片麻岩,并不能代表该陆块的古老基底[14-15, 20];而出露于地块西缘原定下元古界的黑龙江群也并非为一套连续沉积地层,而是由一系列变质-火山岩于早--中侏罗世构造就位的“构造混杂岩”[5]。
前人通过古生物地层学以及少量的同位素年代学研究认为,佳木斯地块上古生代地层主要包括:早寒武世金银库组,泥盆纪黑台组、老秃顶子组和七里嘎山组,石炭纪北兴组、光庆组、珍子山组、塔头河组,二叠纪二龙山组、平阳镇组、城山组[8]。古生代地层主要分布于该区中部和南部(图1),大致可分为两种地层类型:一是浅海相碎屑-碳酸盐岩建造夹少量基性和酸性火山岩;二是超覆于产出的浅海相或海陆交互相碎屑-碳酸盐岩建造。佳木斯地块中的古生代岩浆作用主要分布于地块中部和西南部,可划分为4期:晚寒武世、晚泥盆世、早二叠世和晚二叠世[2, 4-5, 21]。
本文研究的变沉积岩位于佳木斯地块北部萝北县,为前人确定的寒武纪金银库组和侵入其中的花岗细晶岩和辉绿岩脉岩(130°55′25.45″E,47°37′8.05″N),采样位置如图2所示。
佳木斯地块北部石灰窑地区金银库组以浅海相碳酸盐岩沉积为主,并夹有陆源细碎屑岩,可同毗邻俄罗斯兴凯地块含化石的普罗霍拉组对比,前人认为该地层形成于震旦纪或早寒武世。石灰窑地区金银库组,岩性主要为灰色大理岩夹少量炭质石英岩和绢云母片岩,总厚度为134.8 m,出露面积约0.008 km2 [8]。样品(16XH15-1)为大理岩夹层中的绢云母片岩,呈灰白色,鳞片变晶结构,片状构造,矿物成分包括绢云母、白云母、石英、斜长石(图3a)。样品(HYC15-2)为侵入金银库组的花岗细晶岩,全晶质细粒结构,块状构造,主要矿物为斜长石、碱性长石和石英,副矿物可见黑色不透明磁铁矿和锆石等,碳酸盐化强烈(图3b)。样品(HYC15-3)为侵入金银库组的辉绿岩,暗绿色,辉绿结构,块状构造,主要矿物成分为斜长石和单斜辉石,碳酸盐化强烈(图3c,d)。
据文献[8]修编。图2 石灰窑地区金银库组地质剖面图Fig.2 Geological cross-section of the Jinyinku Formation in the Shihuiyao area
2 分析方法
本文锆石U-Pb定年样品均在河北省廊坊区域地质调查研究所采用常规方法进行粉碎,并用浮选和电磁选方法进行分选;然后在双目镜下挑选出不同晶形、颗粒大小、磨蚀程度以及颜色的锆石颗粒,进而确保所选锆石的代表性。在此基础上,将锆石粘在双面胶上,用无色透明的环氧树脂浇灌固定,待环氧树脂充分固化后抛光,使锆石暴露出内部结构,从而进行透射光、反射光和阴极发光扫描电镜显微照像;根据锆石阴极发光(CL)图像,尽量选择包裹体较少且吸收程度均匀的区域进行分析测试。
图a、b和d为正交偏光,图c为单偏光。Af.碱性长石;Ms.白云母;Pl.斜长石;Q.石英;Px.辉石。图3 金银库组中代表性岩石的镜下显微照片Fig.3 Photomicrographs of selected samples from the Jinyinku Formation
样品HYC15-3中的锆石U-Pb同位素分析在中国科学院地质与地球物理研究所CAMECA IMS-1280二次离子质谱仪(SIMS)上进行,详细分析方法见文献[22]。样品16XH15-1和HYC15-2中的锆石U-Pb同位素分析在中国地质大学地质过程与矿产资源国家重点实验室利用激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)完成,详细仪器操作条件及步骤见参考文献[22-23]。实验获得的同位素比值数据利用ICPMSData Cal软件(版本号: 7.0)进行处理,具体处理过程见参考文献[22-23],年龄采用ISOPLOT软件(版本号3.0)计算[24]。实验获得的数据采用Andersen 方法进行同位素比值的校正[25],以扣除普通Pb的影响。所给定的同位素比值和年龄的误差(标准误差)在1σ水平。锆石的LA-ICP-MS U-Pb分析结果见表1。
锆石Lu-Hf同位素测试在中国地质大学( 武汉) 地质过程与矿产资源国家重点实验室的 Neptune Plus ( Thermo Fisher Scientific,德国) 多接收等离子质谱和Geo Las 2005 (Lambda Physik, 德国) 激光剥蚀系统(LA-MC-ICP-MS)上进行,分析点与U-Pb定年分析点为同一位置或为附近。仪器运行条件、详细分析流程、数据校正方法及锆石标准参考值详见文献[26]。
3 分析结果
本文对上述3个代表性样品中的112颗锆石做了详细的锆石U-Pb年代学工作。为了保证统计的准确性,年龄小于1 000 Ma的锆石采用其206Pb/238U年龄,年龄大于1 000 Ma的锆石采用其207Pb/206Pb年龄,不一致性大于±10%的测试点被排除在外。除样品HYC15-3中锆石呈他形晶外,其余样品中代表性锆石大多呈自形晶或半自形晶,颗粒的长宽分别为80~250 μm和40~80 μm(图4)。在阴极发光图像中,样品16XH15-1中的锆石内部结构清晰,发育有明显的震荡环带,结合其高的Th/U值(0.10~1.12,表1),暗示了它们均为典型的岩浆成因锆石[27-30]。
3.1 锆石U-Pb年龄
样品16XH15-1采自大理岩夹层中的绢云母片岩。70个有效测点的年龄值为(457±7)~(1 955±85)Ma(图5a,表1),形成4个206Pb/238U年龄峰值:463 Ma(457~466 Ma,n=3);491 Ma(486~507 Ma,n=21);757 Ma(751~764 Ma,n=9);814 Ma(809~823 Ma,n=32)(图5b)。最小年龄组给出了(463±8)Ma(MSWD=0.52,n=3)的206Pb/238U加权平均年龄,另有5颗锆石具有561、583、718、1 288和1 955 Ma的年龄(表1)。
样品HYC15-2采自侵入金银库组的花岗细晶岩。21个测点的206Pb/238U年龄值为263~283 Ma(表2),在U-Pb年龄谐和图(图5c)上,形成了(263±2)Ma (MSWD=0.2,n=19)和(283±4)Ma(MSWD=0,n=2)两组206Pb/238U加权平均年龄。其中,最小年龄组(263±2)Ma代表了该花岗细晶岩的形成时代,即中二叠世,该结果也得到了邻区同时代岩浆事件的印证[31];而283 Ma的年龄值应代表了捕获锆石的年龄。
样品HYC15-3采自侵入金银库组的辉绿岩。18个有效测点的206Pb/238U年龄值为260~563 Ma(表2),在U-Pb年龄谐和图(图5d)上,形成了(267±3)Ma (MSWD=0.78,n=8)和(463±5)Ma(MSWD=0.82,n=9)两组206Pb/238U加权平均年龄,同时,还有1个测点给出了(563±8)Ma的206Pb/238U谐和年龄值。其中,最小年龄组(267±3)Ma代表了该辉绿岩的形成时代,即中二叠世;而其他年龄值应代表了捕获锆石的年龄。
3.2 锆石Hf同位素
在对绢云母片岩(样品16XH15-1)中锆石进行LA-ICP-MS U-Pb定年的基础上,对代表峰期年龄的碎屑锆石进行了微区原位Hf同位素分析。分析结果表明,其176Hf/177Hf值为0.282 079~0.282 332,Hf(t)值为-13.9~-0.1,Hf同位素一阶段模式年龄TDM1和二阶段模式年龄TDM2分别为1 827~1 307 Ma和2 411~1 715 Ma(表3,图6)。
263 Ma花岗细晶岩(样品HYC15-2)中岩浆锆石的176Hf/177Hf值为0.282 642~0.282 672,Hf(t)值为0.9~2.0,Hf同位素二阶段模式年龄TDM2为1 110~1 047 Ma(表3,图6),表明其原始岩浆应为新增生地壳部分熔融的产物。
表1佳木斯地块北部金银库组绢云母片岩中锆石LA-ICP-MSU-Pb分析结果
Table1LA-ICP-MSdetritalzirconU-PbdatingresultsforsericiteschistfromtheJinyinkuFormationinthenorthernJiamusimassif
样品号wB/10-6ThUTh/U同位素比值年龄/Ma207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ16XH15-1-01118023310.510.065020.001141.216290.022300.134820.001197752480810815716XH15-1-0270720230.350.066300.001231.232780.022400.134290.001038162581610812616XH15-1-03214231230.690.067310.001411.260230.024260.135700.001588472282811820916XH15-1-0490423320.390.067450.001141.170280.020380.125290.001188522178710761716XH15-1-0587219130.460.065590.002011.137290.032730.125760.001327936677116764816XH15-1-06125925970.490.065270.001091.216580.023030.134260.001437832280811812816XH15-1-0753410820.490.064470.001341.200500.025700.134530.001417572880112814816XH15-1-0848625250.190.060290.001150.794200.018100.094600.001236142859410583716XH15-1-0995832140.300.058020.001160.639120.012960.079580.00077531285028494516XH15-1-1051516380.310.068760.001511.282470.028540.134540.001268923083813814716XH15-1-1135835750.100.057410.001160.629930.012920.079100.00069507304968491416XH15-1-1279431780.250.058530.001170.645090.013100.079500.00070550295058493416XH15-1-1364914820.440.065510.001431.238210.029270.136160.001347913381813823816XH15-1-1456516340.350.065580.001241.231170.023360.135640.001227932581511820716XH15-1-1557419200.300.083800.003652.014220.076230.174320.0037512888711202610362116XH15-1-1685722150.390.064580.001141.203030.021490.134290.001187612380210812716XH15-1-1755917830.310.065360.001361.228990.027590.135530.001647862781413819916XH15-1-18118923170.510.068410.001291.180380.022120.124140.000858812779110754516XH15-1-1966124600.270.056310.001250.617340.013400.079030.00059465354888490416XH15-1-20150429160.520.068070.001421.182570.025120.125730.001598712479312763916XH15-1-2147916140.300.066740.001561.255630.034740.134660.0017883036826168141016XH15-1-222004500.440.067520.001871.262070.035060.134870.001358544182916816816XH15-1-2380829350.280.056100.001140.615400.012960.079290.00089456274878492516XH15-1-2461042010.150.057520.001070.728910.018030.090970.001315113055611561816XH15-1-25103824570.420.065310.001221.123290.021280.123960.001097842576510753616XH15-1-26167423910.700.073000.001361.191790.021720.117840.0009210142479710718516XH15-1-27328834340.960.071230.001221.236000.022330.125540.001449641981710762816XH15-1-28101121180.480.067490.001241.257060.025450.134520.001438532582711814816XH15-1-2969020850.330.066600.001311.239880.025940.135100.001668252481912817916XH15-1-3073818970.390.063580.001361.184710.025700.135000.001367282979412816816XH15-1-3153918450.290.066520.001451.233380.026740.134570.001318232981612814716XH15-1-32220829940.740.067680.001271.260280.024970.134740.001298592582811815716XH15-1-3362226060.240.055400.001120.605230.012900.079100.00085428294818491516XH15-1-34119022070.540.066310.001341.236250.026280.135070.0015381626817128179
续表1
实线圆和椭圆表示年龄测点位置,虚线圆表示Hf同位素测点位置。图4 金银库组中代表性碎屑锆石和岩浆锆石的CL图像Fig.4 CL images of selected detrital and magmatic zircons from the Jinyinku Formation
图5 金银库组中代表性样品的锆石U-Pb年龄谐和图和频数图Fig.5 Zircon U-Pb concordia and probability diagrams for selected samples from the Jinyinku Formation
267 Ma辉绿岩(样品HYC15-3)中,约267 Ma的岩浆锆石的176Hf/177Hf值为0.282 393~0.282 799,Hf(t)值为-7.7~6.4,Hf同位素一阶段模式年龄TDM1为994~802 Ma。该样品中465 Ma捕获锆石的Hf(t)值为0.4和0.8,对应的Hf同位素一阶段模式年龄TDM1和二阶段模式年龄TDM2分别为1 054、1 035 Ma和1 294、1 270 Ma,表明其岩浆形成的过程中有古老地壳物质的加入(图6,表3)。
表2 佳木斯地块北部侵入金银库组火成岩中锆石的U-Pb分析结果
注:HYC15-2为花岗细晶岩(LA-ICP-MS);HYC15-3为辉绿岩(SIMS)。
表3佳木斯地块北部金银库组变沉积岩和侵入岩锆石Lu-Hf同位素分析结果
Table3Lu-HfisotopicdataformetasedimentaryandintrusiverocksfromtheJinyinkuFormationinthenorthernJiamusimassif
样品号t/Ma176Yb/177Hf176Lu/177Hf176Hf/177Hf2σεHf(0)εHf(t)2σTDM1(Hf)/MaTDM2(Hf)/MafLu/Hf16XH15-1-014570.0361370.0012660.2823130.000034-16.2-6.61.213351851-0.9616XH15-1-024660.0270520.0009360.2822870.000030-17.1-7.21.113591896-0.9716XH15-1-034920.0216510.0007940.2822340.000026-19.0-8.50.914271995-0.9816XH15-1-044940.0353710.0012250.2823320.000030-15.6-5.11.113071785-0.9616XH15-1-054940.0114350.0004040.2822600.000025-18.1-7.40.913781929-0.9916XH15-1-064980.0325710.0011230.2821550.000048-21.8-11.21.715512176-0.9716XH15-1-078150.0510470.0018730.2822820.000034-17.3-0.31.214001729-0.9416XH15-1-088140.0422610.0016100.2822850.000054-17.2-0.11.913871715-0.9516XH15-1-095830.0195520.0007030.2822570.000036-18.2-5.61.313931888-0.9816XH15-1-104910.0091620.0002830.2821450.000022-22.2-11.50.815312185-0.9916XH15-1-118230.0375690.0013600.2821450.000030-22.2-4.81.115752013-0.9616XH15-1-124900.0200570.0007190.2821810.000045-20.9-10.31.614982113-0.9816XH15-1-135610.0179100.0006610.2822320.000026-19.1-7.00.914261955-0.9816XH15-1-148130.0135150.0004670.2821690.000028-21.3-3.61.015051934-0.9916XH15-1-154870.0358500.0012740.2822950.000027-16.9-6.61.013611874-0.9616XH15-1-164930.0243750.0008420.2820790.000025-24.5-11.20.916442341-0.9716XH15-1-178160.0416470.0014740.2819690.000048-28.4-13.91.718272411-0.9616XH15-1-184890.0115430.0003770.2821700.000022-21.3-10.70.815002132-0.9916XH15-1-197610.0203340.0007670.2822650.000039-17.9-1.51.413841763-0.98HYC15-2-012680.0377800.0017310.2826650.000033-3.81.80.88481062-0.95HYC15-2-022630.0356010.0015730.2826630.000027-3.81.70.88471063-0.95HYC15-2-032690.0442900.0019320.2826570.000053-4.11.50.88631079-0.94HYC15-2-042670.0227900.0010230.2826450.000040-4.51.20.78601094-0.97HYC15-2-052690.0469700.0020110.2826560.000011-4.11.40.78671082-0.94HYC15-2-062650.0381010.0017040.2826420.000041-4.61.00.78791106-0.95HYC15-2-072670.0469720.0019920.2826420.000099-4.60.90.78871110-0.94HYC15-2-082650.0362790.0015950.2826480.000032-4.41.20.78691093-0.95HYC15-2-092660.0281190.0012670.2826700.000081-3.62.00.78301047-0.96HYC15-2-102640.0515790.0021570.2826720.000057-3.61.90.88481053-0.94HYC15-3-012650.0244840.0012360.2826970.000031-2.73.00.7791994-0.96HYC15-3-024650.0144400.0005710.2825120.000112-9.20.80.610351270-0.98HYC15-3-032650.0179480.0007460.2823930.000040-13.4-7.70.712061585-0.98HYC15-3-044650.0190820.0007220.2825010.000091-9.60.40.710541294-0.98HYC15-3-052670.0209290.0009670.2827670.000011-0.25.50.8687853-0.97HYC15-3-062710.0210540.0010390.2827800.0000810.36.00.7670829-0.97HYC15-3-072670.0427530.0019200.2827950.0000980.86.40.8663806-0.94HYC15-3-082600.0481020.0021160.2827990.0001990.96.40.9662802-0.94HYC15-3-092670.0369250.0016390.2827620.000059-0.35.20.9706869-0.95HYC15-3-102700.0523840.0022360.2827540.000020-0.64.80.8730892-0.93
图6 金银库组中碎屑锆石和侵入其中岩浆锆石的(ε)Hf (t)-t图解Fig.6 Plot ofHf (t) values vs. U-Pb ages of detrital and magmatic zircons from selected samples in the Jinyinku Formation
4 讨论
4.1 石灰窑金银库组的沉积时限
东北早古生代地层的研究程度较低,主要原因是其出露范围小,多呈残留体分布在大面积花岗岩中,并且缺少系统的年代学研究。萝北县东部石灰窑地区小范围出露大理岩,前人通过系统的野外地质研究将其划归到金银库组[8]。通过与毗邻俄罗斯兴凯地块含化石的普洛霍拉组对比,认为其形成时代为早寒武世,这是佳木斯地块上前人确定的唯一一处早古生代地层,但由于缺少指示性化石以及精准年代学研究,关于其形成时代长期存在争议。因此,本文通过对金银库组中的变沉积岩和侵入其中火成岩中的锆石U-Pb精确定年,同时结合野外地质接触关系以及佳木斯地块上发育的地质体的年代学研究结果,以便限定其形成时代。
研究区岩性主要为大理岩,呈规则条带构造,中间含原岩为泥质岩的片岩夹层,岩石成分均一,上下呈过渡关系。由于大理岩中缺少碎屑锆石,本次样品采自大理岩夹层中以陆缘碎屑成分为主的绢云母片岩。样品16XH15-1中最年轻的一组碎屑锆石加权平均年龄为463 Ma,代表了金银库组的最大沉积年龄不早于463 Ma。侵入到金银库组的花岗细晶岩和辉绿岩分别具有263和267 Ma的结晶年龄,进而限定了金银库组的沉积上限,表明金银库组形成时代不晚于267 Ma。此外,研究区基底的岩心年代学研究表明,埋深3 478 m的基底花岗岩形成于430 Ma[32],并且424~430 Ma岩浆作用也广泛出露在邻区松嫩—张广才岭地块的东部[33]和佳木斯地块的北部[34]。由于样品16XH15-1中缺乏约430 Ma的碎屑锆石,因此,我们认为金银库组形成于463~430 Ma,即金银库组形成于晚奥陶世至早志留世。
4.2 石灰窑金银库组的沉积物源
锆石以较高的封闭温度和高硬度为特点,使得其在经历各种地质过程中仍然保持稳定的U-Pb-Hf同位素体系。因此,在岩浆活动相对频繁的地区,结合碎屑锆石的年龄频谱和Hf同位素成分,并与区域中已有的同位素年代学数据进行对比,可以有效地示踪地层的沉积物源[35-36]。
本文采自金银库组的绢云母片岩中的72粒碎屑锆石普遍具有岩浆锆石的特征,具有1 955~457 Ma的年龄区间,年龄众数主要在814 Ma(占总数的45%)、757 Ma(15%)、568 Ma(3%)、491 Ma(29%)和463 Ma(4%),同时包括少量>1.0 Ga的锆石。结合其具有自形—半自形的形态学特征,表明金银库组的沉积物源以早古生代和新元古代火成岩为主,这些岩浆事件与佳木斯地块上出露的古生代和新元古代岩浆事件相吻合[40],同时在相邻的松嫩—张广才岭地块和兴凯地块中也具有类似的岩浆事件[18, 37-38],这说明金银库组的沉积物源区为佳木斯地块及其邻区。
新元古代(814、757和568 Ma)碎屑锆石以具有负的Hf(t)值(-13.9~-0.1)为特征(图6),其中814 Ma的碎屑锆石与邻区松嫩—张广才岭地块东缘841 Ma花岗闪长岩具有相似的Hf同位素特征[18, 39-40],757 Ma的年龄则与兴凯地块西北部Iman群中(757±4)Ma花岗片麻岩的形成时代相吻合[38]。虽然目前缺少568 Ma岩浆事件的报道,但基于佳木斯地块麻山地区花岗片麻岩变质作用的研究表明,该区存在563 Ma的高级变质作用[41]。新元古代碎屑锆石年龄与区域岩浆和变质作用在时间上呈现一致性。因此,上述岩浆作用所产生的岩浆岩可为金银库组提供沉积物源。
4.3 构造意义
金银库组零星出露于萝北县石灰窑和密山县金银库地区,前人研究认为本组属于稳定建造系列的异地碳酸盐岩建造[8]。针对该异地碳酸盐岩建造所形成地质背景的研究,有利于解读区域构造演化历史。
异地碳酸盐岩形成的地质背景主要有4种,分别是活动大陆边缘的弧后或弧间裂谷盆地、被动大陆边缘盆地、大洋海山附近以及前陆盆地[44]。由于金银库组中岩石成分单一,以碳酸盐岩为主,只含有少量砂泥质陆源碎屑成分,没有出现火山碎屑岩以及与火山熔岩伴生的现象;因此,我们认为金银库组最有可能形成于被动大陆边缘盆地的地质背景。同时,对松嫩—张广才岭地块东部和佳木斯地块北部岩浆岩的年代学和地球化学研究也表明,在晚奥陶世到早志留世期间,佳木斯地块北部处于被动大陆边缘环境[34, 37]。综上所述,我们认为萝北县石灰窑地区金银库组形成于被动大陆边缘的构造背景。
5 结论
通过对佳木斯地块石灰窑地区金银库组中碎屑锆石和岩浆锆石U-Pb年代学以及Hf同位素的研究,得出以下几点结论:
1)佳木斯地块北部石灰窑地区金银库组的形成时代为463~430 Ma,即晚奥陶世至早志留世,而不是前人确定的早寒武世。
2)佳木斯地块北部石灰窑地区存在中二叠世岩浆作用。263 Ma花岗细晶岩的原始岩浆应为新增生地壳物质部分熔融的产物,而267 Ma辉绿岩的原始岩浆在形成的过程中有古老地壳物质的加入。
3)金银库组的沉积物源主要来自佳木斯地块及其邻区的早古生代早期和新元古代火成岩,并且金银库组形成于被动大陆边缘盆地的构造背景。
致谢:河北省廊坊物探勘察院在锆石的分选过程中给予了帮助,中国地质大学(武汉)地质过程与矿产资源国家重点实验室以及中国科学院地质与地球物理研究所在锆石LA-ICP-MS U-Pb分析以及主量元素、微量元素及Hf同位素测试过程中给予了大力帮助,在此表示感谢。
[1]Li J Y. Permian Geodynamic Setting of Northeast China and Adjacent Regions: Closure of the Paleo-Asian Ocean and Subduction of the Paleo-Pacific Plate[J]. Journal of Asian Earth Sciences , 2006, 26 (3/4): 207-224.
[2] Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanerozoic Granitoids in Northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1): 1-30.
[3] Xu W L, Pei F P, Wang F, et al. Spatial-Temporal Relationships of Mesozoic Volcanic Rocks in NE China: Constraints on Tectonic Overprinting and Transformations Between Multiple Tectonic Systems[J]. Journal of Asian Earth Sciences,2013, 74: 167-193.
[4] 许文良, 王枫, 裴福萍,等. 中国东北中生代构造体制与区域成矿背景:来自中生代火山岩石组合时空变化的制约[J]. 岩石学报, 2013, 29 (2): 339-353.
Xu Wenliang, Wang Feng, Pei Fuping, et al. Mesozoic Tectonic Regimes and Regional Ore-Forming Background in NE China: Constraints from Spatial and Temporal Variations of Mesozoic Volcanic Rock Associations[J]. Acta Petrologica Sinica, 2013, 29 (2): 339-353.
[5] Zhou J B, Wilde S A, Zhang X Z, et al. The Onset of Pacific Margin Accretion in NE China: Evidence from the Heilongjiang High-Pressure Metamorphic Belt[J]. Tectonophysics, 2009, 478: 230-246.
[6] 孟恩, 许文良, 杨德彬, 等. 满洲里地区灵泉盆地中生代火山岩的锆石U-Pb年代学、地球化学及其地质意义[J]. 岩石学报, 2011, 27 (4): 1209-1226.
Meng En, Xu Wenliang, Yang Debin, et al. Zircon U-Pb Chronology, Geochemistry of Mesozoic Volcanic Rocks from the Lingquan Basin in Manzhouli Area, and Its Tectonic Implications[J]. Acta Petrologica Sinica, 2011, 27(4): 1209-1226.
[7] 王枫, 许文良,葛文春,等. 敦化—密山断裂带的平移距离:来自松嫩—张广才岭—佳木斯—兴凯地块古生代—中生代岩浆作用的制约[J]. 岩石学报, 2016, 32 (4): 1129-1140.
Wang Feng, Xu Wenliang, Ge Wenchun, et al. The Offset Distance of the Dun-Mi Fault: Constrains from Palezoic-Mesozoic Magmatism with in the Songnen-Zhangguangcai Range, Jiamusi and Khanka Massifs[J]. Acta Petrologica Sinica, 2016, 32 (4): 1129-1140.
[8] 黑龙江省地质矿产局. 黑龙江省区域地质志[M]. 北京: 地质出版社, 1993.
Heilongjiang Bureau of Geology and Mineral Resources. Regional Geology of Heilongjiang Province[M]. Beijing: Geological Publishing House, 1993.
[9] Meng E, Xu W L, Pei F P, et al. Detrital-Zircon Geochronology of Late Paleozoic Sedimentary Rocks in Eastern Heilongjiang Province, NE China: Implications for the Tectonic Evolution of the Eastern Segment of the Central Asian Orogenic Belt[J]. Tectonophysics, 2010, 485: 42-51.
[10] Sengör A M C, Natal’in B A , Burtman V S. Evolution of the Altaid Tectonic Collage and Paleozoic Crustal Growth in Eurasia[J]. Nature, 1993, 364: 299-307.
[11] Jahn B M. The Central Asian Orogenic Belt and Growth of the Continental Crust in the Phanerozoic[J]. Geological Society of London, 2004, 226: 73-100.
[12] 李宇, 丁磊磊, 许文良, 等. 孙吴地区中侏罗世白云母花岗岩的年代学与地球化学: 对蒙古—鄂霍茨克洋闭合时间的限定[J]. 岩石学报, 2015, 31 (1): 56-66.
Li Yu, Ding Leilei, Xu Wenliang, et al. Geochronology and Geochemistry of Muscovite Granite in Sunwu Area, NE China: Implications for the Timing of Closure of the Mongol-Okhotsk Ocean[J]. Acta Petrologica Sinica, 2015, 31(1): 56-66.
[13] 许文良, 孙德有, 周燕. 满洲里—绥芬河地学断面岩浆作用和地壳结构[M]. 北京: 地质出版社, 1994.
Xu Wenliang, Sun Deyou, Zhou Yan. Magmatism and Crutal Structure of Manzhouli-Suifenhe Geological Fault[M]. Geological Publishing House, Beijing, 1994.
[14] Wilde S A, Dorsett-Bain H L, Liu J L. The Iden-tification of a Late Pan-African Granulite Facies Event in Northeast China: SHRIMP U-Pb Zircon Dating of the Mashan Group at Liumao, Heilongjiang Province, China[C]//Proceedings of the 30th IGC: Precambrian Geology Metamorphic Petrology. Amsterdam: VSP International Science Publishers, 1997: 59-74.
[15] Wilde S A, Wu F Y, Zhang X Z. Late Pan-African Magmatism in Northeastern China: SHRIMP U-Pb Zircon Evidence from Granitoids in the Jiamusi Massif[J]. Precambrian Research, 2003, 122: 311-327.
[16] 吴福元, 孙德有, 林强. 东北地区显生宙花岗岩的成因与地壳增生[J]. 岩石学报, 1999, 15 (2): 181-189.
Wu Fuyuan, Sun Deyou, Lin Qiang. Petrogenesis of the Phanerozoic Granites and Crustal Growth in the Northeast China[J]. Acta Petrologica Sinica, 1999, 15 (2): 181-189.
[17] 吴福元, Wilde S A, 孙德有. 佳木斯地块片麻状花岗岩的锆石离子探针U-Pb年龄[J]. 岩石学报, 2001, 17 (3): 443-452.
Wu Fuyuan, Wilde S A, Sun Deyou. The La-ICP-MS U-Pb Ages of Granitic Gneisses in the Jiamusi Massif[J]. Acta Petrologica Sinica, 2001, 17 (3): 443-452.
[18]Luan J P, Wang F, Xu W L, et al. Provenance, Age, and Tectonic Implications of Neoproterozoic Strata in the Jiamusi Massif: Evidence from U-Pb Ages and Hf Isotope Compositions of Detrital and Magmatic Zircons[J]. Precambrian Research, 2017, 297: 19-32.
[19] Bi J H, Ge W C, Yang H, et al. Petrogenesis and Tectonic Implications of Early Paleozoic Granitic Magmatism in the Jiamusi Massif, NE China: Geochronological, Geochemical and Hf Isotopic Evidence[J]. Journal of Asian Earth Sciences, 2014, 96: 308-331.
[20]Wilde S A, Zhang X Z, Wu F Y. Extension of a Newly Identified 500 Ma Metamorphic Terrane in North East China: Further U-Pb SHRIMP Dating of the Mashan Complex, Heilongjiang Province, China[J]. Tectonophysics, 2000, 328: 115-130.
[21]Wang F, Xu W L, Xu Y G, et al. Late Triassic Bimodal Igneous Rocks in the Eastern Heilongjiang Province, NE China:Implications for the Initation of Subduction of the Paleo-Pacific Plate Beneath Eurasia[J]. Journal of Asian Earth Sciences, 2015, 97: 406-423.
[22] Liu Y S, Hu Z C, Gao S, et al. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS Without Applying an Internal Standard[J]. Chemical Geology, 2008, 257: 34-43.
[23]Liu Y S, Gao S, Hu Z C, et al. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons of Mantle Xenoliths[J]. Journal of Petrology, 2010, 51: 537-571.
[24] Ludwig K R. ISOPLOT 3: A Geochronological Too-lkit for Microsoft Excel[M]. California: Berkeley Geochronology Centre Special Publication, 2003: 1-74.
[25] Andersen T. Correction of Common Lead in U-Pb Analyses that Do not Report204Pb[J]. Chemical Geology, 2002, 192 (1/2): 59-79.
[26] Hu Z C, Liu Y S, Gao S, et al. A “Wire” Signal Smoothing Device for Laser Ablation Inductively Coupled Plasma Mass Spectrometry Analysis[J]. Spectrochimica Acta: Part B: Atomic Spectroscopy, 2012, 78: 50-57.
[27]Koschek G. Origin and Significance of the SEM Cathodoluminescence from Zircon[J]. Journal of Microscopy, 1993, 171: 223-232.
[28] Belousova E A, Griffin W L, O’Reilly S Y, et al. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type[J]. Contributions to Mineralogy and Petrology, 2002, 143: 602-622.
[29] Corfu F, Hanchar J M, Hoskin P W O, et al. Atlas of Zircon Textures[J]. Reviews in Mineralogy and Geochemistry, 2003, 53: 469-500.
[30]Rubatto D. Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link Between U-Pb Ages and Metamorphism[J]. Chemical Geology, 2002, 184: 123-138.
[31] Bi J H , Ge W C, Yang H, et al. Geochronological and Geochemical of Late Carboniferous-Middle Permian I- and A-Type Granites and Gabbro-Diorites in the Eastern Jiamusi Massif, NE China: Implications for Petrogenesis and Tectonic Setting[J]. Lithos, 2016, 266/267: 213-232.
[32] 高福红,王枫,曹花花,等. 三江盆地绥滨断陷基底花岗岩的锆石U-Pb年代学及其构造意义[J]. 吉林大学学报(地球科学版),2010, 40 (4): 955-960.
Gao Fuhong, Wang Feng, Cao Huahua, et al. Zircon U-Pb Age of the Basement Granite from Suibin Depression in Sanjiang Basin and Its Tectonic Implications[J]. Journal of Jilin University (Earth Science Edition), 2010, 40 (4): 955-960.
[33] Wang F, Xu W L, Meng E, et al. Early Paleozoic Amalgamation of the Songnen-Zhangguangcai Range and Jiamusi Massifs in the Eastern Segment of the Central Asian Orogenic Belt: Geochronological and Geochemical Evidence from Granitoids and Rhyolites[J]. Journal of Asian Earth Sciences, 2012, 49: 234-248.
[34] Buchko I V, Sorokin A A, Kudryashov N M. Age and Tectonic Position of the Early Paleozoic Malyi Khingan Terrane in the Eastern Part of the Central Asian Fold Belt[J]. Doklady Earth Sciences, 2012, 445(2): 929-933.
[35] Lee J, Williams I, Ellis D. Pb, U and Th Diffusion in Natural Zircon[J]. Nature, 1997, 390: 159-163.
[36] Cherniak D J,Watson E B.Pb Diffusion in Zircon[J].Chemical Geology, 2001, 172 (1/2): 5-24.
[37] Wang Z W, Xu W L, Pei F P, et al. Geochronology and Geochemistry of Early Paleozoic Igneous Rocks of the Lesser Xing’an Range, NE China: Implications for the Tectonic Evolution of the Eastern Central Asian Orogenic Belt[J]. Lithos, 2016, 261(1): 144-163.
[38] Khanchuk A I, Berdnikov N V, Cherepanov A A, et al. First Finds of Platinoids in Black-Shale Sequences of the Bureya Massif[J]. Doklady Earth Sciences, 2009, 425 (5): 213-215.
[39] 王少轶,刘宝山. 伊春东风经营所新元古代花岗质片麻岩U-Pb年代学和地球化学特征[J].世界地质,2014,33 (4): 780-786.
Wang Shaoyi, Liu Baoshan. Characteristics of U-Pb Chronology and Geochemistry of Neoproterozoic Granitic Gneiss in Dongfengjingyingsuo of Yichun Area[J]. Global Geology, 2014,33 (4): 780-786.
[40] Luan J P, Xu W L, Wang F, et al. Age and Geo-chemistry of Neoproterozoic Granitoids in the Songnen-Zhangguangcai Range Massif, NE China: Petrogenesis and Tectonic Implications[J]. Journal of Asian Earth Sciences, 2017, 148: 265-276.
[41] Yang H, Ge W C, Zhao G C, et al. Zircon U-Pb Ages and Geochemistry of Newly Discovered Neoproterozoic Orthogneisses in the Mishan Region, NE China: Constraints on the High-Grade Metamorphism and Tectonic Affinity of the Jiamusi-Khanka Block[J]. Lithos, 2017, 268/269/270/271: 16-31.
[42] Sorokin A A, Kudryashov N M. The First Geochro-nological Evidence of Late Proterozoic Granitoid Magmatism in the Bureya Terrane[J]. Doklady Earth Sciences, 2012, 447 (5): 541-545.
[43] Sorokin A A, Kotovb A B, Sal’nikova E B, et al. Early Paleozoic Granitoids in the Lesser Khingan Terrane, Central Asian Foldbelt: Age, Geochemistry and Geodynamic Interpretations[J]. Petrology, 2011, 19: 632-648.
[44] 牛新生,王成善. 异地碳酸盐岩块体与碳酸盐岩重力流沉积研究及展望[J].古地理学报,2010, 12 (1): 17-30.
Niu Xinsheng, Wang Chengshan. Problems and Perspect in Studies of Allochthonous Carbonate Blocks and Carbonate Gravity Flow Desposits[J]. Journal of Paleogeography, 2010, 12 (1): 17-30.