Research progresses of radionuclide imaging in cardiac sudden death
2018-01-24,
,
(Department of Nuclear Medicine, Tianjin Medical University Cardiovascular Clinical Institute and TEDA International Cardiovascular Hospital, Tianjin 300457, China)
心源性猝死(sudden cardiac death, SCD)指突发的、不可预料的、在症状出现后1 h之内的死亡,具有发病突然、进展迅速、后果严重、死亡率高和难以准确预测等特点。SCD最主要原因是恶性心律失常,其中室性心动过速和心室颤动等最多见;但任何累及心脏的疾病最终均可能导致SCD,其确切机制尚不明确。冠状动脉粥样硬化性心脏病(以下简称冠心病)是SCD最常见的病因,特别是心力衰竭患者发生SCD的概率更高;其他病因还有非粥样硬化性冠状动脉疾病、心肌病和其他器质性心脏病及遗传性离子通道疾病。器质性心脏病患者属猝死高危人群,尤其是合并严重心力衰竭、室性心律失常、不明原因晕厥等患者。美国心力衰竭早期死亡病例中,SCD占约22%[1],而慢性心力衰竭治疗过程中,SCD约占死亡原因的50%[2]。目前指南侧重于以左心室射血分数(left ventricular ejection fraction, LVEF)作为SCD风险分层和患者管理的主要指标[3-4],许多LVEF正常的患者仍有发生SCD风险,而根据指南,这类患者不符合放置植入式心脏复律除颤器(implantable cardioverter defibrillator, ICD)适应证,单纯以LVEF作为SCD风险分层指标显然缺乏敏感度和特异度。放射性核素显像的SPECT或PET技术可从心肌血流灌注、糖或脂肪酸代谢、心脏交感神经活性分布等角度进行分子水平无创性显像,具有较高特异度和敏感度,可以预测主要心脏不良事件(major adverse cardiac event, MACE)发生、识别高危人群,甚至筛选干预性治疗适应证,为临床提供无创性诊断、评价方法。
1 心肌血流灌注显像(myocardial perfusion imaging, MPI)
1.1 技术特点 MPI由SPECT或PET技术获得。由于PET的空间分辨力更高,其诊断敏感度和特异度高于SPECT。MPI显像剂经静脉注射后随冠状动脉血流进入心肌细胞,其进入心肌细胞的“量”与局部的“血流量”成正比,经首次冠状动脉循环基本达到心肌最大摄取。MPI可定量或半定量化反映心肌血流减低程度,包括心肌梗死范围、程度、LVEF及收缩同步性。有无缺血、范围及程度、梗死瘢痕范围及左心室功能等均与预后相关,是包括SCD在内的MACE预测因子。
1.2 在SCD中的应用研究 对于ST段抬高型急性心肌梗死,应通过介入技术尽早开通梗死相关血管;而对于慢性稳定型冠心病,寻找有无缺血及范围的客观证据、进行危险分层,进而选择药物治疗和/或血管重建更为重要[5]。一项对4 865例冠心病患者(LVEF>35%)MPI显像后的风险评估研究[6]表明,负荷MPI灌注异常范围与SCD发生相关。Piccini等[7]研究6 383例冠心病患者MPI,进行回顾性风险评估,发现MPI负荷总评分与SCD发生率相关,是心脏性猝死预测因子之一。Rijnierse等[8]指出,在缺血性心脏病患者中,心肌血流量和左心室心肌血流储备分数异常减低与电生理评估过程中心室率失常有关,表明受损心肌血流量与心脏电生理不稳定相关,有助于对SCD患者进行危险分层。Majmudar等[9]发现PET测定左心室心肌血流储备分数减低与MACE事件有关。Tsai等[10]认为在缺血性心肌病患者中应用MPI获得的左心室收缩同步性参数有助于预测室性心律失常(包括室性心动过速和心室颤动)发生,后者是导致SCD的重要因素。
2 心肌糖代谢与脂肪酸代谢显像
2.1 技术特点 在空腹、有氧生理条件下,脂肪酸是心肌细胞代谢主要能量来源,占ATP供给总量65%,葡萄糖和乳酸提供心肌所需能量的35%。缺血或缺氧条件下,游离脂肪酸代谢受到抑制而转向葡萄糖代谢。18F-FDG是葡萄糖类似物,进入心肌细胞后被磷酸化为18F-FDG-6-磷酸,但不能参与糖原合成、糖酵解和去磷酸化等其他代谢过程,不能进一步代谢,而以该形式滞留在心肌细胞内,反映其摄取和利用葡萄糖速率;若心肌细胞坏死,则能量代谢活动停止,不能摄取18F-FDG。BMIPP是游离脂肪酸分支类似物,模拟体内游离脂肪酸有氧氧化过程,123I标记BMIPP反映脂肪酸代谢。123I-BMIPP减低不仅与病理条件下心脏脂肪酸代谢障碍有关,还与随之发生的MACE事件,包括SCD存在关联。
2.2 在SCD中的应用研究 缺血、缺氧时冬眠心肌局部存在去交感神经分布支配,此现象与SCD发生率有密切关系。利用18F-FDG显像提示有冬眠心肌时,发生去交感神经分布支配的冬眠心肌具有一定预测SCD发生的作用,有助于选择ICD适应证[11]。此外,心肌脂肪酸代谢障碍与室性心律失常紧密相关,代谢障碍者易发展为室性心律失常,心肌脂肪酸显像预测心脏事件发生有一定价值[12]。Yamashita等[13]对100例缺血性心肌病患者血运重建后植入ICD,行123I-BMIPP脂肪酸和201Tl血流显像,对比观察接受和未接受ICD放电治疗两组(后者占19%),结果表明123I-BMIPP/201Tl显像不匹配对ICD未来放电治疗事件具有明显预测价值。
3 心脏神经显像
3.1 技术特点 心脏自主神经系统包括交感神经与副交感神经。交感神经末梢释放去甲肾上腺素和肾上腺素,作用于心肌细胞β1肾上腺素能受体;副交感神经末梢释放乙酰胆碱,作用于心肌毒蕈碱受体。去甲肾上腺素及乙酰胆碱都可以被神经末梢重新摄取回神经细胞内。心力衰竭者心肌的显著特征之一是交感神经前突触去甲肾上腺素摄取明显减少和后突触β-肾上腺素能受体密度降低[14]。
MIBG类似于去甲肾上腺素,参与神经递质特异度摄取与储存,但不同于去甲肾上腺素,MIBG被摄取分布后不被代谢,从而可显示其分布[15]。123I-MIBG-SPECT平面成像分为早期像(注射后15~30 min)与延迟像(注射后3~4 h),采用心脏/纵隔比值(heart mediastinal ratio, HMR),即ROI技术勾画心脏和纵隔区域ROI,计算二者ROI平均计数比值,可对图像进行半定量评估。此外,比较早期像与延迟像心脏区域MIBG计数比值,即MIBG在心脏神经元内洗脱,可作为反映去甲肾上腺素在心脏神经元内滞留的参数。
3.2 在SCD中的应用研究 心脏交感神经干走行分布与冠状动脉分布一致,其损伤位置往往呈现在心肌损伤处及其远端,且对缺血性损伤十分敏感,受损后修复缓慢。基于此,MIBG显像被用来显示“缺血记忆”,即“缺血记忆”显像[16]。MIBG延迟像获得的HMR是反映生存预后的参数之一,其阈值一般为1.2,HMR≤1.2预示生存预后较差,SCD发生率较高,与LVEF具有较好相关性。对心力衰竭患者的123I-MIBG显像对照研究[17]显示,在年龄60岁以上心肌梗死患者(心功能NYHA分级为Ⅲ~Ⅳ级)中,延迟像HMR减低是SCD的预测因子。Nakajima等[18]对接受123I-MIBG显像的955例慢性心力衰竭患者随访5年,发现205例死亡者中30%为SCD,且与MIBG显像HMR危险度分级明显相关,从而肯定了MIBG显像在心力衰竭患者中预测SCD的明显增益价值。ADMIR-HF多中心研究[19]表明,HMR<1.60组心力衰竭患者2年心性死亡率和全因死亡率为11.2%和16.1%,而HMR≥ 1.60组分别为1.8%和3.0%,二者差异明显。
MIBG与MPI联合显像研究[20]结果显示,交感神经削弱和心肌灌注减低与导致SCD的致死性心律失常发生密切相关,有助于筛选能从ICD治疗中获益较大的患者。Kawai等[21]发现,MIBG显像中显像剂分布低评分对心力衰竭患者无需ICD治疗的阳性预测值达100%,可协助筛选ICD植入适应证。Boogers等[22]对116例心力衰竭患者于植入ICD前行123I-MIBG显像,MIBG显像有明显显像剂分布减低(累积评分>26)患者ICD治疗获益大,提示123I-MIBG显像所示心脏交感神经去神经化支配能改善因致死性心律失常而接受ICD治疗者的危险度分层。Nakajima等[23]指出,HMR比值低于1.6~1.8和MIBG洗脱率加速是心脏泵衰竭、SCD和致死性心律失常的高危指征,与其他指标相比具有独立或增益价值;HMR>2.0者则具有较好的长期预后。
羟基麻黄碱(hydroxyephedrine,11C-HED)PET显像为近期国外研究热点,用于定量交感神经末梢分布密度。11C-HED摄取与去甲肾上腺素组织浓度相关,摄取减低提示局部去交感神经支配,是心律失常性MACE事件高危信号[24]。临床前研究[25]表明,即使在无心肌梗死和心力衰竭情况下,有冬眠心肌者死于室速或室颤的发生率较高,且11C-HED PET显像发现有广泛的去交感神经支配。Cain等[26]应用11C-HED PET显像对缺血性心肌病SCD发生危险度进行评估研究,结果显示左心室去交感神经支配大于37.6%是SCD发生的独立预测因子,PET定量去交感神经支配心肌能强有力预测SCD发生的危险性,且独立于LVEF、心肌梗死面积和其他参数。虽然11C-HED目前展示出了巨大前景,但由于其半衰期短,需由回旋加速器现场制备,目前应用仍受限。LMI1195是一种基于18F的PET示踪剂,类似于MIBG,其半衰期较长,是极具前景的新型示踪剂。初步研究结果[27-28]表明,LMI1195有助于识别高风险SCD患者,并可以协助引导ICD治疗。
4 小结
及时有效识别SCD高风险患者并采取相应干预手段至关重要。目前诊断SCD主要依赖于评估LVEF,缺乏敏感度和特异度,而心脏核医学成像提供了新型诊断手段。心肌血流、代谢、神经成像对于识别LVEF增高或无LVEF功能障碍的患者更具优势。但目前仍缺乏大量的前瞻性研究,有待于进一步验证心脏核素成像对于SCD的预测能力,从而发现过去未能识别的SCD患者,并对其进行适当干预,为预测包括心脏猝死在内的心脏事件、识别高危人群乃至筛选ICD植入适应证提供无创影像学方法。
[参考文献]
[1] Mehta PA, Dubrey SW, McIntyre HF, et al. Mode of death in patients with newly diagnosed heart failure in the general population. Eur J Heart Fail, 2008,10(11):1108-1116.
[2] MERIT-HF Study Group. Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL randomised intervention trial in congestive heart failure (MERIT-HF). Lancet, 1999,353(9169):2001-2007.
[3] Tracy CM, Epstein AE, Darbar D, et al. 2012 ACCF/AHA/HRS focused update of the 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: A reportof the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol, 2012,60(14):1297-313.
[4] Priori SG, Blomström-Lundqvist C, Mazzanti A, et al. 2015 ESC guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC) Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J, 2015,36(41):2793-2867.
[5] Hachamovitch R, Berman DS, Shaw LJ, et al. Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: Differential stratification for risk of cardiac death and myocardial infarction. Circulation, 1998,97(6):535-543.
[6] Piccini JP, Starr AZ, Horton JR, et al. Single-photon emission computed tomography myocardial perfusion imaging and the risk of sudden cardiac death in patients with coronary disease and left ventricular ejection fraction >35%. Circulation, 2010,56(3):206-214.
[7] Piccini JP, Horton JR, Shaw LK, et al. Single-photon emission computed tomography myocardial perfusion defects are associated with an increased risk of all-cause death, cardiovascular death, and sudden cardiac death. Circ Cardiovasc Imaging, 2008,1(3):180-188.
[8] Rijnierse MT, de Haan S, Harms HJ, et al. Impaired hyperemic myocardial blood flow is associated with inducibility of ventricular arrhythmia in ischemic cardiomyopathy. Circ Cardiovasc Imaging, 2014,7(1):20-30.
[9] Majmudar MD, Murthy VL, Shah RV,et al. Quantification of coronary flow reserve in patients with ischaemic and non-ischaemic cardiomyopathy and its association with clinical out comes. Eur Heart J Cardiovascular Imaging, 2015,16(8):900-909.
[10] Tsai SC, Chang YC, Chiang KF, et al. LV dyssynchrony is helpful in predicting ventricular arrhythmia in ischemic cardiomyopathy after cardiac resynchronization therapy. Medicine (Baltimore), 2016,95(7):e2840.
[11] Kelesidis IK, Travin MI. Use of cardiac radionuclide imaging to identify patients at risk for arrhythmic sudden cardiac death. J Nucl Cardiol, 2012,19(1):142-152.
[12] Nishimura M, Tsukamoto K, Hasebe N, et al. Prediction of cardiac death in hemodialysis patients by myocardial fatty acid imaging. J Am Coll Cardiol, 2008,51(2):139-145.
[13] Yamashita M, Inoue K, Iguchi N, et al. Abstract 12640: Prognostic utility of myocardial fatty acid imaging in risk stratification for sudden cardiac death in patients with ischemic cardiomyopathy. Circulation, 2011,124(21):A12640.
[14] Caldwell JH, Link JM, Levy WC, et al. Evidence for pre-to postsynaptic mismatch of the cardiac sympathetic nervous system in ischemic congestive heart failure. J Nucl Med, 2008,49(2):234-241.
[15] Kasama S, Toyama T, Kurabayashi M. Usefulness of cardiac sympathetic nerve imaging using (123)iodine-metaiodobenzylguanidine scintigraphy for predicting sudden cardiac death in patients with heart failure. Int Heart, 2016,57(2):140-144.
[16] Dilsizian V, Bateman TM, Bergmann SR, et al. Metabolic imaging with beta-methyl-p-[(123)I]-iodophenyl-pentadecanoic acid identifies ischemic memory after demand ischemia. Circulation, 2005,112(14):2169-2174.
[17] Nakata T, Miyamoto K, Doi A, et al. Cardiac death prediction and impaired cardiac sympathetic innervation assessed by MIBG in patients with failing and nonfailing hearts. J Nucl Cardiol, 1998,5(6):579-590.
[18] Nakajima K, Nakata T, Yamada T, et al. A prediction model for 5-year cardiac mortality in patients with chronic heart failure using123I-metaiodobenzylguanidine imaging. Eur J Nucl Med Mol Imaging, 2014,41(9):1673-1682.
[19] Jacobson AF, Senior R, Cerqueira MD, et al. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol, 2010,55(20):2212-2221.
[20] Nishisato K, Hashimoto A, Nakata T, et al. Impaired cardiac sympathetic innervation and myocardial perfusion are related to lethal arrhythmia: Quantification of cardiac tracers in patients with ICDs. J Nucl Med, 2010,51(8):1241-1249.
[21] Kawai T, Yamada T, Tamaki S, et al. Usefulness of cardiac meta-iodobenzylguanidine imaging to identify patients with chronic heart failure and left ventricular ejection fraction <35% at low risk for sudden cardiac death. Am J Cardiol, 2015,115(11):1549-1554.
[22] Boogers MJ, Jan WB, Henneman MM, et al. Cardiac sympathetic denervation assessed with 123-iodine metaiodobenzylguanidine imaging predicts ventricular arrhythmias in implantable cardioverter-defibrillator patients. J Am Coll Cardiol, 2010,55(24):2769-2777.
[23] Nakajima K, Nakata T. Cardiac 123I-MIBG imaging for clinical decision making: 22-year experience in Japan. J Nucl Med, 2015,56(Suppl 4):11-19.
[24] Barletta V, Fabiani I, Lorenzo C, et al. Sudden cardiac death: A review focused on cardiovascular imaging. J Cardiovasc Echogr, 2014,24(2):41-51.
[25] Luisi AJ Jr, Suzuki G, Dekemp R, et al. Regional11C-hydroxyephedrine retention in hibernating myocardium: Chronic inhomogeneity of sympathetic innervation in the absence of infarction. J Nucl Med, 2005,46(8):1368-1374.
[26] Cain ME. Impact of denervated myocardium on improving risk stratification for sudden cardiac death. Trans Am Clin Climatol Assoc, 2014,125:141-153; discussion 153.
[27] Werner RA, Rischpler C, Onthank D, et al. Retention kinetics of the18F-labeled sympathetic nerve PET tracer LMI1195: Comparison with11Chydroxyephedrine and123I-MIBG. J Nucl Med, 2015,56(9):1429-1433.
[28] Higuchi T, Yousefi BH, Kaiser F, et al. Assessment of the18F-labeled PET tracer LMI1195 for imaging norepinephrine handling in rat hearts. J Nucl Med, 2013,54(7):1142-1146.