APP下载

高血压引起脑小血管病可致认知障碍

2018-01-16陈伟红睿综述董艳红吕佩源审校

中风与神经疾病杂志 2018年1期
关键词:基底节白质认知障碍

刘 扬, 陈伟红, 李 睿综述, 董艳红, 吕佩源审校

65岁以上老年人中60%患有高血压,85岁以上者可达80%[1]。脑组织是高血压的早期受损靶器官。实际上,脑小血管病(CSVD)是高血压引起认知障碍的重要机制之一。高血压引起小动脉硬化,内膜中层平滑肌细胞丢失,纤维玻璃样物质沉积,血管壁增厚,管腔狭窄,致CSVD。CSVD是集神经影像学、病理学、无明显临床症状于一体的由磁共振成像(MRI)可检查到的一组疾病,包括:脑白质病变(WML),扩大的血管周围间隙(EPVS),腔隙性脑梗死(LI),脑微出血(MCB)等。特别是随着近年来MRI技术飞速发展,CSVD的诊断越来越明确。这些CSVD亚型可单独存在,但常常同时存在。有数据表明,65岁以上老年人认知障碍和痴呆的患病率约为8%,80岁以上者可达15%~20%[2],这给社会、家庭带来了巨大的经济负担,大大降低了幸福指数。在高血压的慢性病程中早期识别出认知功能下降并及时给予干预尤为重要。本篇综述主要目的是讨论高血压引起CSVD的机制,进而阐述CSVD与认知障碍的关系。

1 脑白质病变

脑白质病变(WML),也称脑白质高信号(WMH),在MRI T1加权成像呈等信号或低信号,而T2加权成像、液体衰减反转恢复序列(FLAIR)呈高信号[3]。WML可由小动脉周围脑组织少量轴突缺失发展为广泛脱髓鞘和轴索病变[4]。WML最重要的危险因素是年龄和高血压。收缩压对WML的危害远远大于舒张压,而有效的血压控制可延缓WML的进展。长期高血压可引起营养深部脑白质的小动脉、穿支动脉的血管内膜中层透明变性,管腔狭窄。也可引起血管纤维化,4型胶原纤维和细胞外基质成分改变,使血管壁僵硬,致脑血流自身调节障碍。这种障碍是脑血流自身调节范围的缩小,而调节速度并没有改变[5~7]。深部脑白质有分水岭供血的特点,故更易受低灌注的影响[8]。此外,高血压引起的WML常常伴有淀粉样蛋白沉积[9]。

WML的发生发展与认知功能下降、痴呆、脑血管病、死亡率等有关。一项为期4 y的纵向队列研究[10]发现,高血压患者脑室周围WML的进展与执行功能下降密切相关,但脑室周围WML基线水平与认知功能无关。因此有效延缓高血压患者WML进展应得到临床上的重视。血压控制欠佳者,WML常伴有脑灰质萎缩,引起执行功能、记忆力等降低[4]。与皮质下WML相比,脑室周围WML更容易引起认知障碍,前者局限于皮质—皮质连接处较短的白质纤维损害,而后者破坏远端皮质区的较长的纤维束,因此对认知的影响更大[10]。但WML总体积与认知障碍的关系尚存在争议。一项基于三维FLAIR成像的研究[11]指出,WML的总体积与简易智力状态检查量表(MMSE)评分有关,而对于蒙特利尔认知评估量表(MoCA)评分,只有顶叶WML体积与之独立相关。相反,另有研究[12]表明,WML体积与MMSE评分无关。这种对立的结果可能归结于样本量、种族、伴随疾病、MRI序列参数、统计学方法不同等方面。因此,WML总体积与认知障碍的关系尚需进一步大样本的临床研究。

2 扩大的血管周围间隙

血管周围间隙(PVS)包绕在经蛛网膜下腔进入脑实质的穿支动脉和小静脉周围,作为脑组织的间质液和溶解物的引流系统,属于正常的结构组织。当PVS扩大时,可在MRI中检测到线状或点状的与脑脊液信号强度相似的扩大的血管周围间隙(EPVS),也称Virchow-Robin间隙[13,14]。长期高血压损害血管弹性,激活低氧诱导因子-1α,产生级联炎症反应。细胞因子,炎症性基质金属蛋白酶和环氧合氧酶-2活化,开放血脑屏障(BBB),并诱导内皮细胞粘附因子的表达,导致白细胞、血小板粘附及微血管闭塞。BBB功能紊乱使血浆成分通过BBB外漏到PVS,可致EPVS[15,16]。Yao等[17]发现高血压可致基底节、白质、海马等多个部位EPVS加重。但高血压与EPVS分布的关系尚不明确。有研究[14]显示高血压,尤其是收缩压,对基底节EPVS的危害大于白质区。而另有研究[18]指出,高血压是白质区(而非基底节)EPVS的独立危险因素。此外,其他类型的CSVD也可致基底节EPVS,而半卵圆中心EPVS与血管危险因素联系更紧密[19]。因此,血压水平与不同解剖部位EPVS的发生发展需进一步探索。

多项前瞻性研究[20,21]表明,基底节EPVS(而不是白质EPVS)患者,计算力会逐渐下降,且其发展成血管性痴呆的风险大于阿尔茨海默病,但EPVS总数量与认知功能并无明显相关性。基底节EPVS对轻度认知障碍的影响并不独立于其他CSVD亚型[22]。Yao等[17]也发现,海马EPVS并未导致认知障碍,尽管海马与学习、记忆、认知功能有紧密联系。不同解剖部位的EPVS可能有不同的临床意义,有待继续探讨。

3 腔隙性脑梗死

腔隙性脑梗死(LI)是多位于深部穿支动脉供血区(内囊,基底节,放射冠,丘脑,脑干等)直径小于15 mm的梗死灶[23,24]。高血压是脑梗死的首要危险因素,其对LI的危害远大于大动脉粥样硬化或非腔隙性脑梗死,而且高血压患者LI复发率极高[24,25]。不同解剖部位的LI病因不同:高血压、多发LI和WML等均易引起半卵圆中心LI,而高脂血症易引起丘脑LI[26,27]。

LI发展为大面积脑梗死、痴呆的风险极高,但因其常常没有明显临床症状,及时有效的二级预防常常被忽略。一项meta分析[28]显示,大于30%的LI患者4 y后认知功能会显著下降。家庭血压偏高、多发LI是认知障碍、LI复发的的独立危险因素。多发的无症状性LI可致额叶功能障碍、暂时延迟的语言记忆[29]。此外,Kitagawa 等[30]的队列研究表明,CSVD对认知功能的影响远大于大动脉病变,即同期LI患者发展成痴呆,而颈动脉狭窄患者认知功能无明显变化。

4 脑微出血

脑微出血(CMB)可由磁敏感成像(SWI)检测到,呈圆形或卵圆形、边界清楚、均质,且相应部位的T1及T2加权成像上没有显示出高信号的直径2 ~ 10 mm病灶,其病理机制是小血管周围局部含铁血黄素的沉积[31]。高血压可引起大脑后动脉供血区,深部脑组织、幕下脑组织CMB,皮质CMB则与由淀粉样蛋白血管病相关[32,33]。而淀粉样蛋白血管病致CMB也是由高血压介导的[34]。CMB和WML常常同时存在,Gao等[35]研究发现高血压在CMB和WML的相互关系中起调节作用。持续高血压,尤其是反勺性高血压,损伤血管内皮,细胞因子,肿瘤坏死因子-α(TNF-α)释放,发生高血压相关性血管壁炎症反应。TNF是巨噬细胞和小胶质细胞分泌的关键调节因子,其中肿瘤坏死因子受体2(TNFR-2)是促进CMB的主要因子。高血压性动脉壁僵硬也可致CMB[36,37]。

研究表明,客观认知功能正常的高血压患者,若存在CMB,常常伴有主观认知功能下降—认知障碍的早期表现[38]。CMB致认知障碍可能是局部脑组织损伤,相邻脑组织的神经纤维和星形胶质断裂所致。局部解部位的CMB对认知有特定的影响,如基底节、丘脑,皮质区域CMB与执行功能有关,而全脑认知障碍与皮质CMB相关,但幕下CMB与认知障碍无关[39]。也研究[40]发现,皮质CMB与全脑认知障碍有关,而深部灰质、幕下CMB并不会引起认知障碍。多处CMB(≥2)或混合性CMB发展成痴呆的风险确有增加[41]。因此,CMB具体解剖部位与认知功能领域的关系应进一步行大规模临床试验研究。

此外,Ages-Reykjavik研究证实,晚年高血压(收缩压+舒张压)增加CSVD的风险,所以适当降低血压是有益的。相反,中年即患有高血压者,晚年时再降低血压可致广泛的器官低灌注,脑萎缩甚至是认知功能下降[42]。因此,血压的调控在不同时期意义不同。一项横断面研究显示,不同CSVD亚型同时存在会加重微血管结构受损,认知障碍的风险增加。CSVD总评分可预测发生痴呆的风险,特别是执行功能。这些结果表明脑组织损害的叠加可加重认知障碍[43]。

小结与展望:高血压与每种CSVD亚型均密切相关。多种高血压性血管病变和炎症反应可引起CSVD。CSVD单独或同时存在,均可引起认知功能下降。尽早识别出高血压患者伴有CSVD及认知功能下降十分重要。合理调控血压可有效延缓CSVD进展。但WML总体积是否与认知障碍有关,高血压与EPVS具体解剖部位的关系,基底节EPVS是否是认知障碍的独立危险因素以及不同解剖部位的CMB与认知障碍领域的真正关联性仍需进一步研究。

[1]Banegas JR,Graciani A,de la Cruz-Troca JJ,et al. Achievement of cardiometabolic goals in aware hypertensive patients in Spain:a nationwide population-based study[J]. Hypertension,2012,60(4):898-905.

[2]Qiu C,Winblad B,Fratiglioni L. The age-dependent relation of blood pressure to cognitive function and dementia[J]. Lancet Neurol,2005,4(8):487-499.

[3]Teng Z,Dong Y,Zhang D,et al. Cerebral small vessel disease and post-stroke cognitive impairment[J]. Int J Neurosci,2017,127(9):824-830.

[4]Kern KC,Wright CB,Bergfield KL,et al. Blood pressure control in aging predicts cerebral atrophy related to small-vessel white matter lesions[J]. Front Aging Neurosci,2017,9:132.

[5]Faraco G,Iadecola C. Hypertension:a harbinger of stroke and dementia[J]. Hypertension,2013,62(5):810-817.

[6]Tzourio C,Laurent S,Debette S. Is hypertension associated with an accelerated aging of the brain[J] ? Hypertension,2014,63(5):894-903.

[7]Novak V,Hajjar I. The relationship between blood pressure and cognitive function[J]. Nat Rev Cardiol,2010,7(12):686-698.

[8]O’Sullivan M,Lythgoe DJ,Pereira AC,et al. Patterns of cerebral blood flow reduction in patients with ischemic leukoaraiosis[J]. Neurology,2002,59(3):321-326.

[9]Scott JA,Braskie MN,Tosun D,et al. Cerebral amyloid and hypertension are independently associated with white matter lesions in elderly[J]. Front Aging Neurosci,2015,7(415):221.

[10]Uiterwijk R,Staals J,Huijts M,et al. MRI progression of cerebral small vessel disease and cognitive decline in patients with hypertension[J]. J Hypertens,2017,35(6):1263-1270.

[11]Ai Q,Pu YH,Sy C,et al. Impact of regional white matter lesions on cognitive function in subcortical vascular cognitive impairment[J]. Neurol Res,2014,36(5):434-443.

[12]Delano-Wood L,Abeles N,Sacco JM,et al. Regional white matter pathology in mild cognitive impairment:differential influence of lesion type on neuropsychological functioning[J]. Stroke,2008,39(3):794-799.

[13]Potter GM,Doubal FN,Jackson CA,et al. Enlarged perivascular spaces and cerebral small vessel disease[J]. Int J Stroke,2015,10(3):376-381.

[14]Yang S,Qin W,Yang L,et al. The relationship between ambulatory blood pressure variability and enlarged perivascular spaces:a cross-sectional study[J]. BMJ Open,2017,7(8):e015719.

[15]Iadecola C. The pathobiology of vascular dementia[J]. Neuron,2013,80(4):844-866.

[16]Rosenberg GA. Extracellular matrix inflammation in vascular cognitive impairment and dementia[J]. Clin Sci (Lond),2017,131(6):425-437.

[17]Yao M,Zhu YC,Soumare A,et al. Hippocampal perivascular spaces are related to aging and blood pressure but not to cognition[J]. Neurobiol Aging,2014,35(9):2118-2125.

[18]Zhu YC,Tzourio C,Soumare A,et al. Severity of dilated Virchow-Robin spaces is associated with age,blood pressure,and MRI markers of small vessel disease:a population-based study[J]. Stroke,2010,41(11):2483-2490.

[19]Arba F,Quinn TJ,Hankey GJ,et al. Enlarged perivascular spaces and cognitive impairment after stroke and transient ischemic attack[J]. Int J Stroke,2018,13(1):47-56.

[20]Ding J,Sigurethsson S,Jonsson PV,et al. Large perivascular spaces visible on magnetic resonance imaging,cerebral small vessel disease progression,and risk of dementia:the age,gene/environment susceptibility-reykjavik study[J]. JAMA Neurol,2017,74(9):1105-1112.

[21]Huijts M,Duits A,Staals J,et al. Basal ganglia enlarged perivascular spaces are linked to cognitive function in patients with cerebral small vessel disease[J]. Curr Neurovasc Res,2014,11(2):136-141.

[22]Riba-Llena I,Nafria C,Mundet X,et al. Assessment of enlarged perivascular spaces and their relation to target organ damage and mild cognitive impairment in patients with hypertension[J]. Eur J Neurol,2016,23(6):1044-1050.

[23]Li Y,Liu N,Huang Y,et al. Risk factors for silent lacunar infarction in patients with transient ischemic attack[J]. Med Sci Monit,2016,22:447-453.

[24]Lv P,Jin H,Liu Y,et al. Comparison of risk factor between lacunar stroke and large artery atherosclerosis stroke:a cross-sectional study in China[J]. PLoS One,2016,11(3):e0149605.

[25]Altmann M,Thommessen B,Ronning OM,et al. Blood pressure differences between patients with lacunar and nonlacunar infarcts[J]. Brain Behav,2015,5(8):e00353.

[26]Kloppenborg RP,Nederkoorn PJ,Grool AM,et al. Do lacunar infarcts have different aetiologies? Risk factor profiles of lacunar infarcts in deep white matter and basal ganglia:the second manifestations of ARTerial disease-magnetic resonance study[J]. Cerebrovasc Dis,2017,43(3-4):161-168.

[27]Rutten-Jacobs L,Markus HS. Vascular risk factor profiles differ between magnetic resonance imaging-defined subtypes of younger-onset lacunar stroke[J]. Stroke,2017,48(9):2405-2411.

[28]Makin SD,Turpin S,Dennis MS,et al. Cognitive impairment after lacunar stroke:systematic review and meta-analysis of incidence,prevalence and comparison with other stroke subtypes[J]. J Neurol Neurosurg Psychiatry,2013,84(8):893-900.

[29]Blanco-Rojas L,Arboix A,Canovas D,et al. Cognitive profile in patients with a first-ever lacunar infarct with and without silent lacunes:a comparative study[J]. BMC Neurol,2013,13(1):203.

[30]Kitagawa K,Miwa K,Yagita Y,et al. Association between carotid stenosis or lacunar infarction and incident dementia in patients with vascular risk factors[J]. Eur J Neurol,2015,22(1):187-192.

[31]Schrag M,Greer DM. Clinical associations of cerebral microbleeds on magnetic resonance neuroimaging[J]. J Stroke Cerebrovasc Dis,2014,23(10):2489-2497.

[32]Graff-Radford J,Simino J,Kantarc K,et al. Neuroimaging correlates of cerebral microbleeds:the ARIC study (atherosclerosis risk in communities)[J]. Stroke,2017,48(11):2964-2972.

[33]Jia Z,Mohammed W,Qiu Y,et al. Hypertension increases the risk of cerebral microbleed in the territory of posterior cerebral artery:a study of the association of microbleeds categorized on a basis of vascular territories and cardiovascular risk factors[J]. J Stroke Cerebrovasc Dis,2014,23(1):e5-11.

[34]Yakushiji Y,Yokota C,Yamada N,et al. Clinical characteristics by topographical distribution of brain microbleeds,with a particular emphasis on diffuse microbleeds[J]. J Stroke Cerebrovasc Dis,2011,20(3):214-221.

[35]Gao Z,Wang W,Wang Z,et al. Cerebral microbleeds are associated with deep white matter hyperintensities,but only in hypertensive patients[J]. PLoS One,2014,9(3):e91637.

[36]Kwon HM,Lim JS,Kim YS,et al. Cerebral microbleeds are associated with nocturnal reverse dipping in hypertensive patients with ischemic stroke[J]. BMC Neurol,2014,14(1):8.

[37]Shoamanesh A,Preis SR,Beiser AS,et al. Inflammatory biomarkers,cerebral microbleeds,and small vessel disease:Framingham Heart Study[J]. Neurology,2015,84(8):825-832.

[38]Uiterwijk R,Huijts M,Staals J,et al. Subjective cognitive failures in patients with hypertension are related to cognitive performance and cerebral microbleeds[J]. Hypertension,2014,64(3):653-657.

[39]Yamashiro K,Tanaka R,Okuma Y,et al. Cerebral microbleeds are associated with worse cognitive function in the nondemented elderly with small vessel disease[J]. Cerebrovasc Dis Extra,2014,4(3):212-220.

[40]Chiang GC,Cruz Hernandez JC,Kantarci K,et al. Cerebral microbleeds,CSF p-Tau,and cognitive decline:significance of anatomic distribution[J] . AJNR Am J Neuroradiol,2015,36(9):1635-1641.

[41]Miwa K,Tanaka M,Okazaki S,et al. Multiple or mixed cerebral microbleeds and dementia in patients with vascular risk factors[J]. Neurology,2014,83(7):646-653.

[42]Muller M,Sigurdsson S,Kjartansson O,et al. Joint effect of mid-and late-life blood pressure on the brain:the AGES-Reykjavik study[J]. Neurology,2014,82(24):2187-2195.

[43]Staals J,Booth T,Morris Z,et al. Total MRI load of cerebral small vessel disease and cognitive ability in older people[J]. Neurobiol Aging,2015,36(10):2806-2811.

猜你喜欢

基底节白质认知障碍
有氧运动与老年认知障碍
防跌倒,警惕认知障碍性疾病
超声诊断新生儿基底节区脑梗死1例
两例外伤后致脑基底节区出血案例的讨论及归纳
关爱父母,关注老年认知障碍症
IL-6、NES以及新生儿颅脑超声对早期诊断早产儿脑白质损伤的应用价值
扩大翼点入路改良手术治疗基底节区脑出血并脑疝疗效观察
高分辨率磁共振血管成像对基底节区急性脑梗死M1 段血管斑块特征分析的应用研究
缺血性脑白质脱髓鞘病变的影响因素
慢性心力衰竭与认知障碍的相关性