基于AHP和模糊综合评价法的科技报告公开风险评估研究
2017-12-19符慧
符慧
摘 要: 旨在准确评估科技报告公开的风险可能性,为报告是否适宜公开提供决策思路和风险规划预警。通过将层次分析法和模糊综合评价法结合,构建相关风险量化模型,将其应用于科技信息管理中科技报告公开研究的构想。
关键词: 科技报告;风险评估;层次分析法;模糊综合评价法
一、引言
我国的科研活动自建国初就已发生,至今已产生了成千上万份的科技报告。科技报告不同于一般报告,具有技术含量高、实用性强、包含大量知识产权信息、披露最新科研進展和发现的特点,是一种宝贵的信息资源。若能及时合理地揭示,传播科技报告中的最新技术信息,将有利于促进科技成果转化,加速科学技术转化为生产力[1]。然而实际上,这些凝聚着众多研究人员心血的科技报告在项目结题后,大多数都被束之高阁,无人问津。科技报告的转化和再开发利用率极低,造成了资源的极大浪费。但随着互联网发展,信息共享理念的提倡,科技报告公开共享的服务等问题再次成为科技报告体系领域研究的热点,受到广泛关注。如今依法向社会开放非涉密的科技报告,在全国范围内促进科技报告交流与共享的体系,让科技报告发挥出其特有的价值已刻不容缓。
可是一切信息公开必然伴随着风险,尤其是科技信息。由于其具有的特点,在公开后可能对整个社会、国家造成难以想象的影响。所以构建科技报告公开风险评估模型,较准确地评估科技报告公开的风险性,为科技报告是否公开提供决策依据以及风险规划和预警提供管理思路,是科技报告共享服务领域的首要工作。
二、研究方法
某一报告公开的风险具有复杂性,其涉及并带来影响的领域是多方面的,譬如政治、经济和国家安全等。若从单一层次思考是无法正确衡量的,所以科技报告公开的风险性评估应站在系统的角度,多领域多方面考量。基于此,科技报告公开风险评估模型的构建中,主要采用层次分析法(Analytic hierarchy process, AHP)。层次分析法是指将一个复杂的多目标决策问题作为一个系统,将目标分解为多个目标或准则,进而分解为多指标的若干层次。通过定性指标模糊量化方法计算出层次单排序和总排序,以作为目标或多方案优化决策的系统方法。故通过层次分析法,可以有效针对报告公开后可能存在的风险点建立层级指标,将风险性这一复杂目标分解化。
同时为了解决风险评估中定性指标的定量处理难点,在层次分析法的研究基础上将结合模糊综合评价法。模糊综合评价法是一种基于模糊数学的综合评价方法,该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,能较好解决模糊的、难以量化的问题。
通过层次分析法构建科技报告公开风险评估模型,计算与目标有关因素的相对权重值。并在此基础上利用模糊综合评价法,让多位专家根据科技报告的内容对相应指标进行的评判,最终得到科技报告公开的风险等级,从而为某科技报告适宜公开与否提供决策思路。
三、基于AHP和模糊综合评价的科技报告公开风险评估模型
1. 层次分析法
层次分析法实际是美国运筹学家T.L.Staay教授提出的一种多准则决策方法[2]。具体算法步骤如下:
1)构建层次结构模型
在本研究中,科技报告公开的风险性即为模型的目标层。针对该目标层,分析科技报告公开可能存在的风险点,按领域原则将目标分解为军事、科技和政治等5个组成元素,此为二级指标。接着将二级指标细化为各自具体的代表指标,最终得到了如下的一个多层次的递进评估模型。
2)构造各层次中的所有判断矩阵
建立了多层次评价模型后,元素上下级之间的隶属关系就可以被确定。根据同一层级指标两两比较其相对重要性,可得出相对权值的比值从而建立如下形式的判断矩阵,如公式(1)所示:
aij表示同一层级指标i与j两因素相对权值的比值,且元素aij具有aii=1,aij>0,
的性质。
3)元素相对权重计算
权重向量的计算方法较多,本研究主要采用求和法。由于判断矩阵中每一列都近似地反映了权值的分配情形,故可采用全部列向量的算术平均值来估计权向量,即
4)一致性检验
在AHP中通常难以构造出满足一致性的判断矩阵,但判断矩阵偏离一致性条件又应有一个度,为此,必须对判断矩阵是否可接受进行鉴别。具体如下:
2. 模糊综合评价法
模糊综合评判是对多种属性的事物,做出一个能合理地综合这些属性或因素的总体评判[3]。模糊综合评价法的步骤如下:
1)确定指标集与评语集
指标集U是以影响评价对象的各种因素为元素组成的集合,U={u1,u2,...,un}。评语集是评价者对评价对象可能做出的各种总的判断等级组成的集合,V={v1,v2,...,vm}。
2)单因素评判
对每个xi={xi1,xi2,...,xik}的ki个因素,按初始模型作综合评判。设xi的因素重要程度模糊子集为Ai,xi的ki个因素的总的评价矩阵为Ri,得:
(5)
Bi为xi的单因素评判。
3)多因素综合评判
根据但因素评判结果可得到准则层指标集U={u1,u2,...,un}的总的评价矩阵R,将R与该层权重向量W做模糊变换,即
B=W·R 将结果归一化处理得B',最终根据最大隶属度法,对做出评价判断。
四、实例分析
以国家科技报告服务系统中某篇科技报告为例,根据上述建立的评估模型,构建X层相对于总目标的判断矩阵,矩阵取值根据1~9标度法[4],结果如表2:
根据式(2)可计算出第二层各元素相对于总目标的权重向量,
WX=[0.442,0.126,0.233,0.154,0.046]
根据式(3)、(4)可分别计算得λmax=5.3509,CI=0.0877。对矩阵进行一致性检验,查表1知IR=1.12,计算得CR=0.078<0.1,故矩阵具有满意的一致性。
同理,可计算出第三层各元素相对于层与其相关的元素权重,见表3。
科技报告公开的风险性评价的13个因素可组成指标集,对于指标集U中各因素的評价有5种结果,即低、较低、中、较高、高,组成评语集V。现利用问卷调查的形式,请15位专家对各指标权重进行评判,最终可得X层各自对应的模糊关系Ri,对其进行归一化,得到的模糊关系矩阵如下:
根据式(5)可得单层次评价结果,将单层次评价结果综合,简化可得总的模糊关系矩阵
所以最后总的模糊综合评价结果为
B=W·R=[0.0689,0.3397,0.2928,0.2673,0.033]
对其进行归一化,得B'=[0.068,0.337,0.297,0.265,0.033]。根据最大隶属度原则,认为该报告公开的风险性较低。且依据实际情况,该篇报告的完成者和完成单位对其设定密级也为非涉密类。即在国家的科技报告系统中该报告属于非涉密,延期公开。通过实例,说明了上述研究模型具有一定的可靠性和合理性。
五、结束语
运用层次分析法和模糊综合评价法对科技报告公开进行风险性评估,既减少了评价者的主观判断和偏好等对评价结果的影响,同时也解决了评估中定性指标定量评估的难点,能一定程度适用介于是否公开边缘的灰色地带科技报告。通过计算评估,既可得报告公开的总风险等级,同时又可知其对各领域的相对风险程度,可为报告是否宜公开提供决策依据和风险预警。
基于AHP和模糊综合评价法作为公开风险评估在科技报告领域的应用,仍存在很多需要改进的地方,是一项值得不断深入完善的研究。
参考文献
[1]蒋岚,唐宝莲.探索科技报告管理的创新模式[J].黑龙江档案,2013,(4):26-27.DOI:10.3969/j.issn.1673-9116.2013.04.009.
[2] Saaty T L. The analytic hierarchy process: Planning, priority setting, resource Allocation. McGraw-Hill, NY, USA[M]// The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation. 1980.
[3]许树柏. 层次分析法原理[M]. 天津大学出版社, 1988.
[4]穆成坡,黄厚宽,田盛丰,等.基于模糊综合评判的入侵检测报警信息处理[J].计算机研究与发展, 2005, 42(10):001679-1685.
[5]汪雪锋,付芸,邱鹏君等.关于我国国家科技报告服务模式的探索[J].科技管理研究,2016,36(7):190-195.DOI:10.3969/j.issn.1000-7695.2016.07.035.
[6]邓雪,李家铭,曾浩健等.层次分析法权重计算方法分析及其应用研究[J].数学的实践与认识,2012,42(7):93-100.DOI:10.3969/j.issn.1000-0984.2012.07.012.
[7]冯登国,张阳,张玉清等.信息安全风险评估综述[J].通信学报,2004,25(7):10-18.DOI:10.3321/j.issn:1000-436X.2004.07.002.
[8]张舒,史秀志,黄刚海等.基于层次分析法和模糊综合评判方法的安全管理体系优选[J].安全与环境学报,2010,10(6):221-226.DOI:10.3969/j.issn.1009-6094.2010.06.051.
[9] Westen C J V, Montoya L, Boerboom L. Multi-Hazard Risk Assessment Using GIS in Urban Areas: A Case Study for the City of Turrialba[J]. 2017.