灌溉方式和施氮量对直播稻氮素和水分利用的影响*
2017-12-09朱从桦李其勇李星月郑家国李旭毅
张 鸿, 朱从桦, 李其勇, 李星月, 郭 展, 郑家国, 李旭毅**
灌溉方式和施氮量对直播稻氮素和水分利用的影响*
张 鸿1, 朱从桦1, 李其勇1, 李星月1, 郭 展1, 郑家国2, 李旭毅2**
(1. 四川省农业科学院植物保护研究所/农业部西南作物有害生物综合治理重点实验室 成都 610066; 2. 四川省农业科学院作物研究所 成都 610066)
为研究不同灌溉方式和施氮量对直播稻的光合生产、干物质积累、氮素利用、水分利用和稻谷产量的影响, 采用裂区试验设计, 主区因素为品种: ‘德香4103’和‘金农丝苗’, 副区因素为3种灌溉方式: 浅水灌溉、轻干湿交替灌溉和重干湿交替灌溉, 副副区因素为4个施氮量: 0 kg(N)·hm-2、120 kg(N)·hm-2、180 kg(N)·hm-2、240 kg(N)·hm-2, 分析测定直播稻的干物质积累量、氮素积累量和利用率、水分利用率和产量等指标。结果表明: 灌溉方式和施氮量对直播稻氮素利用和产量形成的影响存在显著的互作效应。与浅水灌溉相比, 轻干湿交替灌溉处理下‘德香4103’和‘金农丝苗’抽穗期剑叶净光合速率、拔节—抽穗期干物质积累量、结实期茎叶氮素转运量、成熟期籽粒中氮素积累量、氮素农艺效率和氮肥回收效率显著增加; 抽穗期叶面积指数、拔节前干物质积累量、成熟期茎叶氮素积累量显著降低。施氮量对‘德香4103’和‘金农丝苗’氮素积累量、氮素利用效率、产量的影响存在差异。浅水灌溉处理中, 与无氮相比, ‘德香4103’和‘金农丝苗’施氮后产量分别提高31.79%~48.77%和29.72%~45.36%; 施氮量超过180 kg·hm-2后, ‘德香4103’的产量显著下降, 而‘金农丝苗’相应指标却无显著变化。轻干湿交替灌溉处理中, 与无氮相比, ‘德香4103’和‘金农丝苗’施氮后产量分别提高32.58%~61.10%和36.49%~48.45%; 施氮量超过180 kg·hm-2后‘德香4103’的产量无显著变化, 氮肥回收效率、氮素农艺效率均显著下降, ‘金农丝苗’的产量和干物质积累量无显著变化, 成熟期氮素积累量显著提高。重干湿交替灌溉处理中, 与无氮相比, ‘德香4103’和‘金农丝苗’施氮后产量分别提高37.01%~42.88%和30.11%~42.63%; 施氮量超过180 kg·hm-2后, ‘德香4103’和‘金农丝苗’的产量无显著变化; 但‘德香4103’成熟期氮素积累量显著增加, ‘金农丝苗’氮素积累量却无显著增加, 两个品种氮素农艺效率均显著降低。综上所述, 轻干湿交替灌溉更适合于直播稻高产、节水、高效栽培, 其中‘德香4103’产量在轻干湿交替灌溉下施纯氮240 kg·hm-2处理最高, ‘金农丝苗’产量在轻干湿交替灌溉下施纯氮180 kg·hm-2处理最高。
水稻; 直播; 灌溉方式; 施氮量; 干物质积累; 氮素利用; 水分利用; 产量
干旱是影响水稻丰产性最为突出的因素之一, 水稻节水栽培技术和抗旱能力提升被广大科研工作者所重视[1-5]。近年来, 干湿交替灌溉技术在中国和东南亚国家得到快速推广和延伸[6]。适度的水分胁迫有利于提高土壤通气性, 增加土壤细菌、放线菌活性和数量, 促进水稻根系生长[7], 提高土壤中部分酶活性及水稻根系氧化力和渗透调节物质含量[4], 促进水稻对轻度水分胁迫产生适应性变化, 同时提高叶片气孔导度、蒸腾速率和净光合速率[8], 提高水稻产量[9], 降低耗水量, 提高水分生产率, 改善稻米品质[10]。以往对干湿交替灌溉技术方面的研究缺少水分精确化控制, 加之该技术在不同生态区的适应程度也不尽一致, 所以使得其对产量的影响结果并未达成共识[1,3,11]。为此, 在本试验区进一步开展干湿交替灌溉过程中水分控制程度研究能够为水稻节水稳产, 甚至增产提供理论依据。
氮是水稻正常生长发育过程中必不可少的元素, 不同的氮肥施用方式[12]、施用量[13]、氮素形态[14]等均会对氮肥利用产生不同影响。水、氮在作物生产中往往是相互制约、相互协同的, 水氮互作在移栽稻上研究较多, 主要集中于干物质生产、稻米品质[10]、生理性状[15-16]、产量、氮代谢酶、氮、磷、钾的吸收[17]等方面, 主要结论是: 水、氮肥对水稻产量、部分生理指标、氮吸收利用、氮代谢酶、根系特征、干物质量等有显著的互作效应[15,18-19]。近年来, 随着栽培方式多样化, 直播稻推广逐年受到重视, 直播面积、直播比例在不同地区均有较大发展。直播水稻具有用工少、劳动强度低、成本低等优点, 顺应了轻简化栽培发展的需求, 且与移栽稻相比, 直播稻播期推迟, 营养生长期缩短, 在利用温光资源表现出一些不同的生育特征[20]。因此, 加强对直播稻栽培研究显得十分重要。从播期、施肥、水分、氮肥运筹等方面对直播稻的产量、氮素吸收、养分积累利用、品质、光合特性、生理指标等开展了一系列研究[20-23], 但直播稻生产中水、氮互作效应鲜见报道。本研究重在探索水氮互作对直播稻光合物质及干物质生产积累、产量及其构成因素的影响, 以及直播稻的氮素吸收利用特点, 以探索直播稻水肥调控机理, 明确最优水氮管理模式, 为高效养分管理和发展节水丰产型直播稻生产提供理论基础和实践依据。
1 材料与方法
1.1 试验设计
试验于2013年在四川省德阳市绵竹市孝德镇金星村进行。试验田块为砂壤土, 排灌方便, 前茬为冬闲田。土壤有机质为23.40 g·kg-1、速效氮61.01 mg·kg-1、速效磷10.41 mg·kg-1、速效钾70.42 mg·kg-1、全氮1.70 g·kg-1、全磷0.82 g·kg-1、全钾18.32 g·kg-1。
试验采用3因素裂区试验设计, 主区为品种, 副区为灌溉方式, 副副区为施氮量。2个供试品种: ‘德香4103’(超级稻, 全生育期150 d)和‘金农丝苗’(超级稻, 全生育期142 d)。3种灌溉方式: 浅水灌溉(W1), 2叶一心至成熟期保持1~3 cm水层; 轻干湿交替灌溉(W2), 播种后第64 d开始, 每次灌水2~3 cm, 当土壤水势(soil)为-15 kPa时(用中国科学院南京土壤研究所生产的真空表式土壤负压计测定土壤水势), 再灌水2~3 cm, 如此循环; 重干湿交替灌溉(W3), 播种后64 d起每次灌水2~3 cm, 当土壤水势(soil)为-30 kPa时, 再灌水2~3 cm, 如此循环。4个施氮量: 0 kg(N)·hm-2(N0)、120 kg(N)·hm-2(N120)、180 kg(N)·hm-2(N180)、240 kg(N)·hm-2(N240)。
4月5日采用水直播, 播种时进行人工划行均匀播种(芽谷), 播种量折干种为22.5 kg·hm-2, 播种行距为30 cm。播后出苗前进行化学除草, 3叶一心期进行人工定苗, ‘德香4103’和‘金农丝苗’定植密度分别为3.0×l05株·hm-2和4.5×l05株·hm-2。氮、磷、钾肥为尿素、过磷酸钙、氯化钾。氮肥中基肥占30%, 断奶肥(1叶一心)占20%, 分蘖肥(4叶一心)占20%, 穗肥(倒3叶)占30%。P2O5和K2O施用量分别为90 kg·hm-2和180 kg·hm-2, 其中磷肥全作基肥施用, 钾肥分基肥和拔节肥两次施用, 各占50%。小区面积5 m×3 m=15 m2, 3次重复, 小区间作埂(40 cm宽)覆膜, 其余田间管理同当地大面积生产田块。
1.2 测定项目与方法
1.2.1 水分利用率
记录全生育期各小区的降雨量, 记录每一次灌溉量和排水量, 计算水分利用率。
1.2.2 干物质积累和植株叶面积指数(LAI)
于拔节期、抽穗期及成熟期, 按各小区平均茎蘖数各取代表性植株1行(长度为1 m), 去根后分为叶、茎鞘、穗, 于105 ℃杀青30 min, 75 ℃烘至恒重后称重。其中, 在抽穗期用美国生产的CID-203叶面积仪测定叶面积, 并计算叶面积指数(LAI)。
1.2.3 植株氮积累量
利用1.2.2中的干物质样品, 粉碎后过60目筛, 采用H2SO4-H2O2消化, 采用半微量凯氏定氮法测定各部位含氮量, 计算植株氮积累量。
1.2.4 净光合速率
于抽穗期, 选择晴天上午9:00—11:30, 用美国生产的LI-6400便携式光合仪, 测定剑叶光合速率(n), 人工控制条件: CO2浓度为400 µmol·mol-1, 温度为30 ℃, 光照强度为1 000 µmol·m-2·s-1。每小区测定5片, 重复测定3次。
1.2.5 考种与计产
于成熟期每小区调查2行(每行长度为4 m)稻株穗数, 计算单位面积穗数; 并取接近于平均穗数的植株1行(长度为2 m), 考查穗数、实粒数、空壳数、结实率、千粒重等产量构成因素。去边行及杂株按实收面积计产。
1.2.6 参数计算
氮素收获指数=成熟期单位面积植株籽粒氮素积累量/植株氮素总积累量 (1)
结实期茎鞘(叶)氮素表观转移量(kg)=抽穗期茎鞘(叶)氮积累量-成熟期茎鞘(叶)氮积累量 (2)
结实期氮素表观转移率(kg×kg-1)=茎鞘(叶)氮素表观转移量/抽穗期茎鞘(叶)氮积累量 (3)
结实期转移的氮对籽粒的贡献率(kg×kg-1)=结实期茎叶氮素表观转移总量/成熟期籽粒氮积累量 (4)
氮素干物质生产效率(kg·kg-1)=单位面积干物质量/单位面积植株氮积累量 (5)
氮素稻谷生产效率(kg·kg-1)=单位面积籽粒产量/单位面积植株氮积累量 (6)
氮肥农艺效率(kg·kg-1)=(施氮肥区产量-不施氮肥区产量)/施氮量 (7)
氮肥吸收利用效率(%)=(施氮区植株总吸氮量-空白区植株总吸氮量)/施氮量×100% (8)
水分利用率(kg·kg-1)=籽粒产量/(降雨量+灌水量-排水量) (9)
1.3 数据分析
采用DPS 7.05软件进行试验数据分析, 最小显著差法LSD检验平均数, Origin 2017作图。
2 结果与分析
2.1 灌溉方式和施氮量对直播稻产量及其构成的影响
表1可见, 直播条件下水稻品种间产量差异极显著, 表现为常规稻品种‘金农丝苗’显著高于杂交稻品种‘德香4103’, 有效穗、群体颖花量及结实率等产量性状的显著提高是‘金农丝苗’在直播条件下表现出明显产量优势的关键。同时, 各水氮处理对不同品种产量的影响均达极显著水平, 且互作效应极显著。其中, ‘德香4103’产量以W2N240处理最高, ‘金农丝苗’产量以W2N180处理最高。灌溉方式仅对有效穗和结实率的影响极显著, 表现为有效穗随灌水量的减少而显著降低, W3处理结实率显著低于W1、W2处理。施氮量对各产量性状的影响均达极显著, 表明施氮量对直播稻每穗粒数、群体颖花量及千粒重的影响高于灌溉方式, 但其与品种对有效穗的影响存在显著的互作效应, 品种和灌溉方式对每穗粒数的影响存在极显著的互作效应。
除有效穗随施氮量的增加而显著提高外, 对其余产量构成因素的影响因品种、灌溉方式而异。‘德香4103’在常规灌溉方式下随施氮量的增加, 每穗粒数先增加后减少, 群体颖花量呈增加趋势, 结实率降低, 千粒重无显著变化; 在轻、重干湿交替灌溉方式下随施氮量的增加, 每穗粒数和群体颖花量呈增加趋势, 而结实率和千粒重则反之。‘金农丝苗’在常规灌溉方式下随施氮量的增加, 每穗粒数减少, 群体颖花量增加, 千粒重先增加后减少; 在轻干湿交替灌溉方式下, 每穗粒数先增加后减少, 千粒重降低, 群体颖花量增加; 在重干湿交替灌溉方式下, 每穗粒数先增加后减少, 群体颖花量增加, 千粒重无显著变化。此外, W1和W2灌溉方式下施氮量对该品种的结实率影响不显著。
2.2 灌溉方式和施氮量对直播稻抽穗期光合物质生产的影响
灌溉方式和施氮水平均显著影响直播稻抽穗期叶面积指数(图1), 各品种LAI随灌水量的降低而显著减少, 随施氮水平的提高而显著增加。灌溉方式和施氮水平对直播稻品种抽穗期剑叶光合速率的影响因品种而异。‘德香4103’表现为剑叶光合速率随灌水量的降低先增后减, 随施氮量的增加而提高; 而‘金农丝苗’在两种交替灌溉方式下增加施氮量均能显著提高抽穗期剑叶光合速率(图2)。这表明灌溉方式和施氮水平对两个直播稻品种光合生产的影响存在差异。
2.3 灌溉方式和施氮量对直播稻干物质积累的影响
从表2看, 灌溉方式和施氮量对直播稻干物质积累的影响因品种的不同存在显著差异。对‘德香4103’而言, 相比重干湿交替灌溉, 常规灌溉方式下有利于拔节前以及抽穗后干物质积累量的增加, 从而提高最终生物产量, 但收获指数显著降低; 采用干湿交替灌溉后减少灌溉水量有利于提高拔节至抽穗期间的干物质积累量, 但灌溉水量过少拔节前及抽穗后干物质积累量会减少, 导致生物量降低。不同灌溉方式下适当增施氮肥实现干物质积累量提高的途径并不一致, 表现为常规灌溉和重干湿交替灌溉方式下适当增施氮肥(施氮量分别为180 kg·hm-2和240 kg·hm-2)有利于提高抽穗后干物质积累量, 轻干湿交替灌溉方式下适当增施氮肥(240 kg·hm-2)有利于提高拔节至抽穗、抽穗后干物质积累量。对‘金农丝苗’而言, 常规灌溉和轻干湿交替灌溉方式下最终生物产量显著高于重干湿交替灌溉方式, 二者最终生物产量优势分别在于拔节前和拔节至抽穗期干物质积累量的提高; 常规灌溉和轻干湿交替灌溉方式下适当增施氮肥(施氮量分别为240 kg·hm-2和180 kg·hm-2)有利于增加拔节前及抽穗后干物质积累量; 而重干湿交替灌溉方式下适当增施氮肥(施氮量为240 kg·hm-2)有利于提高拔节前及抽穗后干物质积累量, 最终生物产量和收获指数提高。这表明直播稻灌溉方式改变后, 各生育阶段干物质积累对最终生物产量的贡献存在差异。
表1 灌溉方式和施氮量对不同品种直播稻产量及产量构成的影响
W1: 2叶一心至成熟期保持1~3 cm水层; W2: 播种后64 d至成熟期, 每次灌水2~3 cm, 当土壤水势(soil)为-15 kPa时, 再灌水2~3 cm, 如此循环; W3: 播种后64 d至成熟期, 每次灌水2~3 cm, 当土壤水势(soil)为-30 kPa时, 再灌水2~3 cm, 如此循环。同列不同小写字母表示同一品种不同灌溉方式和施氮量组合差异显著(<0.05)。*和**分别表示在0.05和0.01水平上差异显著。W1: soil surface water layer was kept at 1-3 cm from 2.1 leaves to maturity; W2: soil surface water layer was added to 2-3 cm when the soil water potential (soil) reached-15 kPa from 64 days after sowing to mature stage; W3: soil surface water layer was added to 2-3 cm when the soil water potential (soil) reached-30 kPa from 64 days after sowing to mature stage. Different lowercase letters in the same column indicate significant differences at 0.05 level among different interaction combinations of irrigation managements and nitrogen rates of a variety. * and ** mean significant differences at 0.05 and 0.01 levels, respectively.
图1 灌溉方式和施氮量对不同品种直播稻抽穗期叶面积指数的影响
W1: 2叶一心至成熟期保持1~3 cm的水层; W2: 播种后第64 d至成熟期, 每次灌水2~3 cm, 当土壤水势(soil)为-15 kPa时, 再灌水2~3 cm, 如此循环; W3: 播种后64 d至成熟期, 每次灌水2~3 cm, 当土壤水势(soil)为-30 kPa时, 再灌水2~3 cm, 如此循环; N0: 不施用氮肥; N120: 施氮量为120 kg·hm-2; N180: 施氮量为180 kg·hm-2; N240: 施氮量为240 kg·hm-2。不同小写字母表示同一灌溉方式下, 不同施氮量间差异显著。W1: soil surface water layer was kept at 1-3 cm from 2.1 leaves to maturity; W2: soil surface water layer was added to 2-3 cm when the soil water potential (soil) reached-15 kPa from 64 days after sowing to mature stage; W3: soil surface water layer was added to 2-3 cm when the soil water potential (soil) reached-30 kPa from 64 days after sowing to mature stage; N0: no nitrogen fertilizer; N120: N rate was 120 kg·hm-2; N180: N rate was 180 kg·hm-2; N240: N rate was 240 kg·hm-2. Different lowercase letters indicate significant differences at 0.05 level among different nitrogen rates under the same irrigation management.
图2 灌溉方式和施氮量对不同品种直播稻抽穗期剑叶光合速率的影响
W1: 2叶一心至成熟期保持1~3 cm的水层; W2: 播种后第64 d至成熟期, 每次灌水2~3 cm, 当土壤水势(soil)为-15 kPa时, 再灌水2~3 cm, 如此循环; W3: 播种后64 d至成熟期, 每次灌水2~3 cm, 当土壤水势(soil)为-30 kPa时, 再灌水2~3 cm, 如此循环; N0: 不施用氮肥; N120: 施氮量为120 kg·hm-2; N180: 施氮量为180 kg·hm-2; N240: 施氮量为240 kg·hm-2。不同小写字母表示同一灌溉方式下, 不同施氮量间差异显著。W1: soil surface water layer was kept at 1-3 cm from 2.1 leaves to maturity; W2: soil surface water layer was added to 2-3 cm when the soil water potential (soil) reached-15 kPa from 64 days after sowing to mature stage; W3: soil surface water layer was added to 2-3 cm when the soil water potential (soil) reached-30 kPa from 64 days after sowing to mature stage; N0: no nitrogen fertilizer; N120: N rate was 120 kg·hm-2; N180: N rate was 180 kg·hm-2; N240: N rate was 240 kg·hm-2. Different lowercase letters indicate significant differences at 0.05 level among different nitrogen rates under the same irrigation management.
表2 灌溉方式和施氮量对不同品种直播稻干物质积累的影响
W1: 2叶一心至成熟期保持1~3 cm水层; W2: 播种后64 d至成熟期, 每次灌水2~3 cm, 当土壤水势(soil)为-15 kPa时, 再灌水2~3 cm, 如此循环; W3: 播种后64 d至成熟期, 每次灌水2~3 cm, 当土壤水势(soil)为-30 kPa时, 再灌水2~3 cm, 如此循环。同列不同小写字母表示同一品种不同灌溉方式和施氮量组合差异显著(<0.05)。*和**分别表示在0.05和0.01水平上差异显著。W1: soil surface water layer was kept at 1-3 cm from 2.1 leaves to maturity; W2: soil surface water layer was added to 2-3 cm when the soil water potential (soil) reached-15 kPa from 64 days after sowing to mature stage; W3: soil surface water layer was added to 2-3 cm when the soil water potential (soil) reached-30 kPa from 64 days after sowing to mature stage. Different lowercase letters in the same column indicate significant differences at 0.05 level among different interaction combinations of irrigation managements and nitrogen rates of a variety. * and ** mean significant differences at 0.05 and 0.01 levels, respectively.
2.4 灌溉方式和施氮量对直播稻氮素积累及转运的影响
由表3可知, 不同灌水处理除对茎鞘转运量无显著影响外, 灌水和施氮处理对氮素积累、转运均有显著或极显著影响, 且对抽穗期、成熟期氮素积累量、叶片转运量、穗部氮增加量具有极显著的互作效应。两品种抽穗期氮素积累量存在显著差异, ‘金农丝苗’显著高于‘德香4103’, 且水氮处理对两个品种氮素积累量影响趋势存在差异。‘德香4103’抽穗期及成熟期氮素积累量分别随灌水量减少先升高后降低和降低趋势, 随施肥量增加而显著升高。‘金农丝苗’抽穗期氮素积累量随灌水量减少而呈下降趋势, 其成熟期氮素积累量受灌水量影响与‘德香4103’成熟期氮素积累量变化趋势相同。‘金农丝苗’抽穗期及成熟期氮素积累量随施氮量增加而提高, 与‘德香4103’表现一致。两个直播稻收获指数均随灌水量减少而增大, 随施肥量增加而减小。灌水处理对两个直播稻的叶片、茎鞘氮素转运量及穗部氮增加量影响一致, 均随灌水量增加而呈先升后降的趋势, 在轻干湿交替灌溉处理下, 3个指标均达最大值, 说明适度水分胁迫促进了氮素向穗部转移。在轻干湿交替灌溉处理中, ‘德香4103’在N180处理下叶片、茎鞘氮素转运量及在N240穗部氮增加量均显著高于其余施氮处理, 而‘金农丝苗’则在N240处理下显著高于其余施氮处理, 说明对氮素转运、利用存在品种差异。两个直播稻的叶片转运率、茎鞘转运率、氮转运贡献率在各个水氮处理下表现相同, 均随灌水量减少而提高, 随施氮量增加而降低。
从图3可知, 成熟期不同部位的氮素积累量存在差异。‘德香4103’茎鞘、叶片氮素积累量随灌水量减少而减少(N240处理除外), 随施氮量增加而增加; 籽粒氮素积累量随灌水量减少而呈先上升后下降的趋势, 在轻干湿交替灌溉下, N120、N180、N240均高于其余两个灌水处理。‘金农丝苗’茎鞘氮素积累量随灌水量减少先上升后下降, 随施氮量增加而增加, 在轻干湿交替灌溉下, N120、N180、N240处理高于其他两个灌水处理; 叶片氮素积累量随灌水量减少而减少, 随施氮量增加而增加; 籽粒氮素积累量随灌水量减少而先上升后下降, 随施氮量增加而增加, 在轻干湿交替灌溉下, N120、N180处理氮素积累高于其他处理。说明轻干湿交替灌溉增加了成熟期穗部氮素积累量。
图3 灌溉方式和施氮量对成熟期茎、叶、籽粒氮素积累的影响
W1: 2叶一心至成熟期保持1~3 cm的水层; W2: 播种后第64 d至成熟期, 每次灌水2~3 cm, 当土壤水势(soil)为-15 kPa时, 再灌水2~3 cm, 如此循环; W3: 播种后64 d至成熟期, 每次灌水2~3 cm, 当土壤水势(soil)为-30 kPa时, 再灌水2~3 cm, 如此循环; N0: 不施用氮肥; N120: 施氮量为120 kg·hm-2; N180: 施氮量为180 kg·hm-2; N240: 施氮量为240 kg·hm-2。不同小写字母表示同一灌溉方式下, 不同施氮量间差异显著。W1: soil surface water layer was kept at 1-3 cm from 2.1 leaves to maturity; W2: soil surface water layer was added to 2-3 cm when the soil water potential (soil) reached-15 kPa from 64 days after sowing to mature stage; W3: soil surface water layer was added to 2-3 cm when the soil water potential (soil) reached-30 kPa from 64 days after sowing to mature stage; N0:no nitrogen fertilizer; N120: N rate was 120 kg·hm-2; N180: N rate was 180 kg·hm-2; N240: N rate was 240 kg·hm-2. Different lowercase letters indicate significant differences at 0.05 level among different nitrogen rates under the same irrigation management.
2.5 灌溉方式和施氮量对直播稻氮素利用和水分利用率的影响
从表4可知, 不同灌水和氮肥处理对水稻氮素干物质生产效率、氮素稻谷生产效率、氮素农艺效率、氮肥回收效率、水分利用率影响均达显著水平, 且互作效应显著。‘德香4103’氮素生产效率随灌水量减少而先上升后下降, 随施氮量增加而降低; ‘金农丝苗’氮素生产效率随灌水量减少而增加, 在不同灌溉处理下, 其氮素生产效率均随施氮量增加而降低。说明不同品种氮素生产效率存在差异。两个直播稻氮素农艺效率及氮肥回收效率均随灌水量增加而呈先上升后下降趋势, 不同施氮处理对其影响存在差异; 各灌水处理下, 高施氮处理降低了氮素农艺效率及氮肥回收效率。中低施氮水平下, 相比淹灌, 轻干湿交替处理提高了‘德香4103’的氮素农艺效率及氮肥回收效率; 在重干湿交替处理下两个品种氮素农艺效率及氮肥回收效率均随施氮量增加而降低, 表明在各个灌水处理下, 高施氮量反而降低了氮素农艺效率及氮肥回收效率。‘德香4103’和‘金农丝苗’的水分利用率随着灌水量的增加而降低, 随着施氮量的增加而增加。此外, 在轻干湿交替处理下, ‘德香4103’在N180处理下、‘金农丝苗’在N120处理下氮肥回收效率均显著高于其他处理。
3 讨论
根系是植株吸收水分及养分的重要器官。有研究表明, 控制灌溉可不同程度提高水稻根系活力、最长根长、根直径、根体积[24], 提高稻基农田土壤酶活性、微生物量碳氮[25], 改善水稻根际土壤环境, 加快水稻根系泌氧, 促进根系生长[26], 同时还提高氮代谢酶活性[27], 促进对氮素吸收、转运、利用。本研究表明, 轻干湿交替灌溉处理促进了直播稻氮素吸收、积累, 同时促进了叶片、茎鞘氮素转运量, 但叶片转运率、茎鞘转运率、氮素转运贡献率不及重干湿交替灌溉处理。可以看出, 直播稻受水分胁迫越重时, 氮素吸收越受影响, 穗部氮素则主要靠叶片、茎鞘部等营养器官向穗部转运来保证, 这与王绍华等[18]研究结果一致。从施氮量来看, 氮肥用量较低时, 直播稻氮素积累量少, 但其叶片、茎鞘转运率更高, 氮转运贡献率亦更高。水、氮两因素对氮素积累及转运过程中受施氮量影响比灌水处理更大。轻干湿交替灌溉处理能提高氮素农艺效率及氮肥回收效率, 但氮素生产效率因品种影响存在差异, 水分胁迫降低了‘德香4103’氮素生产效率, 而提高了‘金农丝苗’氮素生产效率。施氮量越高反而降低了氮素生产效率, 可能是高施氮量虽然增加了氮素积累, 但茎、叶氮素向穗部转运降低, 在营养器官中滞留较多, 产生了较大的浪费[18]。轻干湿交替灌溉处理下, 适度提高氮肥用量可以提高氮素农艺效率及回收效率, 但差异不明显, 过高则会降低氮素生产效率, 且重干湿交替灌溉下, 施氮量增加降低了氮素利用效率。
有研究表明, 干湿交替灌溉有利于提高水稻剑叶光合速率, 且在抽穗期提高氮肥用量(180~270 kg·hm-2)可增加剑叶光合速率[28]。本研究结果与此一致, 轻干湿交替灌溉提高了抽穗期剑叶光合速率, 且其随施氮量增加而呈上升趋势。同时, 灌水量减少显著降低了LAI, 但施氮水平提高可显著增加LAI。施氮对产量及其构成因素均有极显著影响, 灌水对有效穗、结实率及产量有极显著影响, 施氮量影响大于灌水。水氮互作效应对直播稻产量、结实率影响显著。孙永健等[15]指出水氮互作对穗粒数、产量有显著影响, 而在本研究结果中, 水氮互作对结实率及产量产生了显著影响, 可能是不同品种在不同环境下对水氮互作响应存在差异。说明在本研究中水氮互作下产量的提高来源是结实率的显著提升。付景等[11]研究表明, 轻干湿交替灌溉处理可以提高抗氧化酶活性, 提高超级稻根系中细胞分裂素(Z+ZR)和吲哚-3-乙酸(IAA)含量, 在生理基础上对不利环境做出响应, 最终提高结实率, 促进产量提高。在轻干湿交替灌溉处理下, 结实率、产量均高于其余两个灌水处理, 适度水分胁迫促进了直播稻产量提高, 但在施氮水平上产量高峰出现存在品种差异, 在此处理下, ‘德香4103’在N240、‘金农丝苗’在N180下达最高产量。在轻度水分胁迫下, 适当增加施氮量可以提高产量, 达到“以肥调水”的目的, 但不同品种对氮肥耐性有差异。因此, 针对不同品种的耐肥力, 可采用轻干湿交替灌溉并依据品种特性合理施用氮肥, 施用量在180~270 kg·hm-2之间, 提高氮素农艺效率及回收效率, 可达到高产高效。
表4 灌溉方式和施氮量对不同品种直播稻氮素利用、水分利用率的影响
W1: 2叶一心至成熟期保持1~3 cm水层; W2: 播种后64 d至成熟期, 每次灌水2~3 cm, 当土壤水势(soil)为-15 kPa时, 再灌水2~3 cm, 如此循环; W3: 播种后64 d至成熟期, 每次灌水2~3 cm, 当土壤水势(soil)为-30 kPa时, 再灌水2~3 cm, 如此循环。同列不同小写字母表示同一品种不同灌溉方式和施氮量组合差异显著(<0.05)。*和**分别表示在0.05和0.01水平上差异显著。W1: soil surface water layer was kept at 1-3 cm from 2.1 leaves to maturity; W2: soil surface water layer was added to 2-3 cm when the soil water potential (soil) reached-15 kPa from 64 days after sowing to mature stage; W3: soil surface water layer was added to 2-3 cm when the soil water potential (soil) reached-30 kPa from 64 days after sowing to mature stage. Different lowercases letters in the same column indicate significant differences at 0.05 level among different interaction combinations of irrigation managements and nitrogen rates of a variety. * and ** mean significant difference at 0.05 and 0.01 levels, respectively.
4 结论
灌溉方式和施氮量对直播稻氮肥利用效率及产量形成存在显著互作效应, 合理安排灌溉方式和施氮量可以实现直播稻产量、氮肥利用效率和水分利用率同步提高。从节水增产的角度, 轻干湿交替灌溉更适合于直播稻高产、节水、高效栽培, 且‘德香4103’配合施纯氮240 kg·hm-2处理产量、氮素利用率和水分利用率最高, ‘金农丝苗’配合施纯氮180 kg·hm-2处理产量、氮素利用率和水分利用率最高。
[1] 褚光, 展明飞, 朱宽宇, 等. 干湿交替灌溉对水稻产量与水分利用效率的影响[J]. 作物学报, 2016, 42(7): 1026–1036 Zhu G, Zhan M F, Zhu K Y, et al. Effects of alternate wetting and drying irrigation on yield and water use efficiency of rice[J]. Acta Agronomica Sinica, 2016, 42(7): 1026–1036
[2] Lampayan R M, Rejesus R M, Singleton G R, et al. Adoption and economics of alternate wetting and drying water management for irrigated lowland rice[J]. Field Crops Research, 2015, 170: 95–108
[3] Tabbal D F, Bouman B A M, Bhuiyan S I, et al. On-farm strategies for reducing water input in irrigated rice: Case studies in the Philippines[J]. Agricultural Water Management, 2002, 56(2): 93–112
[4] 杨建昌, 袁莉民, 唐成, 等. 结实期干湿交替灌溉对稻米品质及籽粒中一些酶活性的影响[J]. 作物学报, 2005, 31(8): 1052–1057Yang J C, Yuan L M, Tang C, et al. Effect of dry-wet alternate irrigation on rice quality and activities of some enzymes in grains during the filling[J]. Acta Agronomica Sinica, 2005, 31(8): 1052–1057
[5] 孙永健, 孙园园, 刘树金, 等. 水分管理和氮肥运筹对水稻养分吸收、转运及分配的影响[J]. 作物学报, 2011, 37(12): 2221–2232Sun Y J, Sun Y Y, Liu S J, et al. Effects of water management and nitrogen application strategies on nutrient absorption, transfer, and distribution in rice[J]. Acta Agronomica Sinica, 2011, 37(12): 2221–2232
[6] 张自常, 李鸿伟, 陈婷婷, 等. 畦沟灌溉和干湿交替灌溉对水稻产量与品质的影响[J]. 中国农业科学, 2011, 44(24): 4988–4998 Zhang Z C, Li H W, Chen T T, et al. Effect of furrow irrigation and alternate wetting and drying irrigation on grain yield and quality of rice[J]. Scientia Agricultura Sinica, 2011, 44(24): 4988–4998
[7] 刘艳, 孙文涛, 宫亮, 等. 水分调控对水稻根际土壤及产量的影响[J]. 灌溉排水学报, 2014, 33(2): 98–100 Liu Y, Sun W T, Gong L, et al. Effects of water regulation on rhizosphere soils and yield of rice[J]. Journal of Irrigation and Drainage, 2014, 33(2): 98–100
[8] 王唯逍, 刘小军, 田永超, 等. 不同土壤水分处理对水稻光合特性及产量的影响[J]. 生态学报, 2012, 32(22): 7053–7060 Wang W X, Liu X J, Tian Y C, et al. Effects of different soil water treatments on photosynthetic characteristics and grain yield in rice[J]. Acta Ecologica Sinica, 2012, 32(22): 7053–7060
[9] 迟道才, 佟延旭, 陈涛涛, 等. 多生育期不同水分胁迫耦合对水稻产量及水分生产率的影响[J]. 沈阳农业大学学报, 2016, 47(1): 71–77 Chi D C, Tong Y X, Chen T T, et al. Effects of water stress coupling in different growth stage on rice yield and water productivity[J]. Journal of Shenyang Agricultural University, 2016, 47(1): 71–77
[10] 陈新红, 徐国伟, 孙华山, 等. 结实期土壤水分与氮素营养对水稻产量与米质的影响[J]. 扬州大学学报: 农业与生命科学版, 2003, 24(3): 37–41Chen X H, Xu G W, Sun H S, et al. Effects of soil moisture and nitrogen nutrition during grain filling on the grain yield and quality of rice[J]. Journal of Yangzhou University: Agricultural and Life Sciences Edition, 2003, 24(3): 37–41
[11] 付景, 刘洁, 曹转勤, 等. 结实期干湿交替灌溉对2个超级稻品种结实率和粒重的影响[J]. 作物学报, 2014, 40(6): 1056–1065 Fu J, Liu J, Cao Z Q, et al. Effects of alternate wetting and drying irrigation during grain filling on the seed-setting rate and grain weight of two super rice cultivars[J]. Acta Agronomica Sinica, 2014, 40(6): 1056–1065
[12] 林晶晶, 李刚华, 薛利红, 等.15N示踪的水稻氮肥利用率细分[J]. 作物学报, 2014, 40(8): 1424–1434 Lin J J, Li G H, Xue L H, et al. Subdivision of nitrogen use efficiency of rice based on15N tracer[J]. Acta Agronomica Sinica, 2014, 40(8): 1424–1434
[13] 张秀芝, 易琼, 朱平, 等. 氮肥运筹对水稻农学效应和氮素利用的影响[J]. 植物营养与肥料学报, 2011, 17(4): 782–788 Zhang X Z, Yi Q, Zhu P, et al. Agronomic responses to nitrogen application and nitrogen utilization in rice fields[J]. Plant Nutrition and Fertilizer Science, 2011, 17(4): 782–788
[14] 孙园园, 孙永健, 杨志远, 等. 不同形态氮肥与结实期水分胁迫对水稻氮素利用及产量的影响[J]. 中国生态农业学报, 2013, 21(3): 274–281 Sun Y Y, Sun Y J, Yang Z Y, et al. Nitrogen use efficiency and yield of rice under different nitrogen and water stress conditions at grain-filling stage[J]. Chinese Journal of Eco-Agriculture, 2013, 21(3): 274–281
[15] 孙永健, 孙园园, 刘凯, 等. 水氮交互效应对杂交水稻结实期生理性状及产量的影响[J]. 浙江大学学报: 农业与生命科学版, 2009, 35(6): 645–654 Sun Y J, Sun Y Y, Liu K, et al. Effects of water-nitrogen interaction on some physiological characteristics and grain yield in hybrid rice during grain filling[J]. Journal of Zhejiang University: Agriculture& Life Sciences, 2009, 35(6): 645–654
[16] 杨建昌, 王志琴, 朱庆森. 不同土壤水分状况下氮素营养对水稻产量的影响及其生理机制的研究[J]. 中国农业科学, 1996, 29(4): 58–66 Yang J C, Wang Z Q, Zhu Q S. Effect of nitrogen nutrition on rice yield and its physiological mechanism under different status of soil moisture[J]. Scientia Agricultura Sinica, 1996, 29(4): 58–66
[17] 孙永健, 孙园园, 李旭毅, 等. 水氮互作对水稻氮磷钾吸收、转运及分配的影响[J]. 作物学报, 2010, 36(4): 655–664 Sun Y J, Sun Y Y, Li X Y, et al. Effects of water-nitrogen interaction on absorption, translocation and distribution of nitrogen, phosphorus, and potassium in rice[J]. Acta Agronomica Sinica, 2010, 36(4): 655–664
[18] 王绍华, 曹卫星, 丁艳锋, 等. 水氮互作对水稻氮吸收与利用的影响[J]. 中国农业科学, 2004, 37(4): 497–501 Wang S H, Cao W X, Ding Y F, et al. Interactions of water management and nitrogen fertilizer on nitrogen absorption and utilization in rice[J]. Scientia Agricultura Sinica, 2004, 37(4): 497–501
[19] 肖新, 朱伟, 肖靓, 等. 不同水肥管理对水稻分蘖期根系特征和氮磷钾养分累积的影响[J]. 土壤通报, 2016, 47(4): 903–908 Xiao X, Zhu W, Xiao L, et al. Effects of water and fertilizer management on root characteristics and nitrogen, phosphorous and potassium uptakes of rice at tillering stage[J]. Chinese Journal of Soil Science, 2016, 47(4): 903–908
[20] 陆春泉. 不同栽培措施对直播水稻产量与品质的影响[D]. 扬州: 扬州大学, 2010: 12–53 Lu C Q. Effect of different cultivation measures on yield and quality in direct seeding rice[J]. Yangzhou: Yangzhou University, 2010: 12–53
[21] 华小龙. 施氮量对条直播水稻产量和养分利用效率的影响及其生理基础[D]. 扬州: 扬州大学, 2015: 16–52 Hua X L. Effect of nitrogen rates on grain yield and nutrient use efficiency of drilling and direct seeding rice and its physiological mechanism[J]. Yangzhou: Yangzhou University, 2015: 16–52
[22] 倪竹如, 陈俊伟, 阮美颖. 氮肥不同施用技术对直播水稻氮素吸收及其产量形成的影响[J]. 核农学报, 2003, 17(2): 123–126 Ni Z R, Chen J W, Ruan M Y. Effect of different modes of fertilizer N application on nitrogen absorption and yield of direct seeding rice[J]. Acta Agriculturae Nucleatae Sinica, 2003, 17(2): 123–126
[23] 蒋明金, 马均, 孙永健, 等. 播种量和氮肥运筹对直播杂交稻光合生产力及氮素利用的影响[J]. 浙江大学学报: 农业与生命科学版, 2015, 41(5): 516–526 Jiang M J, Ma J, Sun Y J, et al. Effects of seeding rates and nitrogen fertilizer managements on photosynthetic productivity and nitrogen utilization in direct-seeded rice[J]. Journal of Zhejiang University: Agriculture & Life Sciences, 2015, 41(5): 516–526
[24] 张凤翔, 周明耀, 周春林, 等. 水肥耦合对水稻根系形态与活力的影响[J]. 农业工程学报, 2006, 22(5): 197–200 Zhang F X, Zhou M Y, Zhou C L, et al. Effects of water and fertilizer coupling on root morphological characteristics and activities of rice[J]. Transactions of the CSAE, 2006, 22(5): 197–200
[25] 肖新, 朱伟, 肖靓, 等. 适宜的水氮处理提高稻基农田土壤酶活性和土壤微生物量碳氮[J]. 农业工程学报, 2013, 29(21): 91–98 Xiao X, Zhu W, Xiao L, et al. Suitable water and nitrogen treatment improves soil microbial biomass carbon and nitrogen and enzyme activities of paddy field[J]. Transactions of the CSAE, 2013, 29(21): 91–98
[26] 赵锋, 徐春梅, 张卫建, 等. 根际溶氧量与氮素形态对水稻根系特征及氮素积累的影响[J]. 中国水稻科学, 2011, 25(2): 195–200 Zhao F, Xu C M, Zhang W J, et al. Effects of rhizosphere dissolved oxygen and nitrogen form on root characteristics and nitrogen accumulation of rice[J]. Chinese Journal of Rice Science, 2011, 25(2): 195–200
[27] 孙永健, 孙园园, 李旭毅, 等. 水氮互作下水稻氮代谢关键酶活性与氮素利用的关系[J]. 作物学报, 2009, 35(11): 2055–2063 Sun Y J, Sun Y Y, Li X Y, et al. Relationship of activities of key enzymes involved in nitrogen metabolism with nitrogen utilization in rice under water-nitrogen interaction[J]. Acta Agronomica Sinica, 2009, 35(11): 2055–2063
[28] 孙永健, 孙园园, 刘凯, 等. 水氮互作对结实期水稻衰老和物质转运及产量的影响[J]. 植物营养与肥料学报, 2009, 15(6): 1339–1349 Sun Y J, Sun Y Y, Liu K, et al. Effects of water-nitrogen interaction on rice senescence and material transport and yield during grain filling[J]. Plant Nutrition and Fertilizer Science, 2009, 15(6): 1339–1349
张鸿, 朱从桦, 李其勇, 李星月, 郭展, 郑家国, 李旭毅. 灌溉方式和施氮量对直播稻氮素和水分利用的影响[J]. 中国生态农业学报, 2017, 25(12): 1802-1814
Zhang H, Zhu C H, Li Q Y, Li X Y, Guo Z, Zheng J G, Li X Y. Effect of irrigation management and nitrogen rate on nitrogen and water utilization of direct-seeded rice[J]. Chinese Journal of Eco-Agriculture, 2017, 25(12): 1802-1814
Effect of irrigation management and nitrogen rate on nitrogen and water utilization of direct-seeded rice*
ZHANG Hong1, ZHU Conghua1, LI Qiyong1, LI Xingyue1, GUO Zhan1, ZHENG Jiaguo2, LI Xuyi2**
(1. Institute of Plant Protection, Sichuan Academy of Agricultural Sciences / Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu 610066, China; 2. Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China)
Direct-seeded rice has advantages of less labor, lower labor strength and cost. But it meantime has different development characteristics from the transplanted rice. It is necessary to investigate the cultivation and growth of direct-seeded rice. In this study, a field experiment was conducted to investigate the effects of irrigation managements and nitrogen application rates on nitrogen and water utilization and yield of direct-seeded rice. In the experiment, a split-split plot design was set with rice varieties (‘Dexiang 4103’ and ‘Jinnongsimiao’) as the main factor, irrigation managements (shallow water irrigation, alternate irrigation with wetting and moderate drying, alternate irrigation with wetting and severe drying) as the sub-plot factor, and N rate (0 kg·hm-2, 120 kg·hm-2, 180 kg·hm-2and 240 kg·hm-2) as the split-split plot factor. The photosynthetic rate, dry matter accumulation, nitrogen utilization, water utilization and yield of direct-seeded rice were measured at different growth stages. There was a significant interaction between irrigation management and N rate on nitrogen utilization, water utilization and yield of direct-seeded rice. Compared with the shallow water irrigation, the net photosynthetic rate at jointing stage, dry matter accumulation at jointing-heading stage, nitrogen transport amounts of stems and leaves at mature stage, nitrogen accumulation of grains at maturity stage, nitrogen agronomic efficiency and nitrogen fertilizer recovery efficiency were significantly increased in the alternate irrigation with wetting and moderate drying; however, the leaf area index at heading stage, dry matter accumulation before jointing and nitrogen accumulation in stems and leaves at mature stage were significantly decreased. The effect of N rates on nitrogen accumulation, nitrogen utilization efficiency and yield of ‘Dexiang 4103’ and ‘Jinnongsimiao’ were different. Under the shallow water irrigation, compared with nitrogen free treatment, the yields of ‘Dexiang 4103’ and ‘Jinnongsimiao’ increased by 31.79%-48.77%, 29.72%-45.36%, respectively, under treatments of applying nitrogen fertilizer. But with the N rate increase (higher than 180 kg·hm-2), the yield of ‘Dexiang 4103’ was significantly decreased, and the corresponding indicators of ‘Jinnongsimiao’ were not significantly changed. Under the alternate irrigation with wetting and moderate drying, compared with nitrogen free treatment, the yields of ‘Dexiang 4103’ and ‘Jinnongsimiao’ increased by 32.58%-61.10%, 36.49%-48.45%, respectively, under treatments of applying nitrogen fertilizer. When N rate was more than 180 kg·hm-2, for ‘Dexiang 4103’, the yield was not significantly changed, nitrogen fertilizer recovery efficiency, the nitrogen agronomic efficiency decreased with the increase of N rate. For ‘Jinnongsimiao’, the yield, dry matter accumulation not changed significantly, and the nitrogen accumulation at maturity stages increased significantly. Under the alternate irrigation with wetting and severe drying, compared with nitrogen free treatment, the yields of ‘Dexiang 4103’ and ‘Jinnongsimiao’ increased by 37.01%-42.88%, 30.11%-42.63%, respectively, under the treatments of applying nitrogen fertilizer. When N rate was more than 180 kg·hm-2, the yield of two cultivars was not changed significantly, their nitrogen agronomic efficiency decreased with the N rate increaseing. The nitrogen accumulation of ‘Dexiang 4103’ at maturity stage increased significantly and that of ‘Jinnongsimiao’ was not changed significantly with N rate increasing. In summary, alternate irrigation with wetting and moderate drying was more suitable for high yield, water saving and high efficiency cultivation of direct-seeded rice. Furthermore, the highest yields of ‘Dexiang 4103’ and ‘Jinnongsimiao’ were observed under N rates of 240 kg·hm-2and 180 kg·hm-2, respectively.
Rice; Direct seeding; Irrigation management; Nitrogen rate; Dry matter accumulation; Nitrogen utilization; Water utilization; Yield
, E-mail: lixuyi_2005@sohu.com
Apr. 18, 2017;
Jun. 30, 2017
10.13930/j.cnki.cjea.170334
S511
A
1671-3990(2017)12-1802-13
李旭毅, 主要从事水稻栽培生理研究。E-mail: lixuyi_2005@sohu.com
张鸿, 主要从事高效栽培和农产品绿色生产研究。E-mail: zhh503@163.com
2017-04-18
2017-06-30
* This study was supported by the National Key Research and Development Program of China (SQ2017YFNC050029), Sichuan Province Financial Innovation Ability Promotion Special Fund (2016GYSH-008, 2016GYSH-013) and Sichuan Science and Technology Support Program (2014NZ0008).
* 国家重点研发计划项目(SQ2017YFNC050029)、四川省财政创新能力提升工程专项资金项目(2016GYSH-008, 2016GYSH-013)和四川省科技支撑计划项目(2014NZ0008)资助