肌萎缩侧索硬化症相关基因突变与疾病动物模型
2017-11-01张连峰
张 丽,张连峰,2*
(1.中国医学科学院,医学实验动物研究所,北京协和医学院比较医学中心,卫计委人类疾病比较医学重点实验室,北京 100021; 2.中国医学科学院神经科学中心,北京 100730)
研究进展
肌萎缩侧索硬化症相关基因突变与疾病动物模型
张 丽1,张连峰1,2*
(1.中国医学科学院,医学实验动物研究所,北京协和医学院比较医学中心,卫计委人类疾病比较医学重点实验室,北京 100021; 2.中国医学科学院神经科学中心,北京 100730)
肌萎缩侧索硬化症是一种累进性神经退行疾病,以上、下运动神经元选择性退化和凋亡为特征,引发瘫痪、最终导致死亡。大量引发ALS的基因突变被鉴定出,包括FUS/TLS、EPHA4、SS18L1、ATXN2 和C9ORF72等基因,这些基因突变的发现拓宽了RNA调节参与ALS病理生成的理解。本文对家族性ALS相关的基因突变及现有的ALS啮齿类动物模型进行总结概括。
肌萎缩侧索硬化症;基因突变;动物模型
肌萎缩侧索硬化症(amyotrophic lateral sclerosis,ALS)也称为“葛雷克氏症”,是一种累进性神经退行疾病,以控制肌肉收缩的一种神经元即上、下运动神经元选择性退化和凋亡为特征,引发瘫痪、最终导致死亡。ALS分为家族型和分散性两类,家族型ALS(fALS)约占10%,散发性ALS (sALS) 占90%。目前已找到多种引发ALS的基因突变,仅占这些病例的20%~30%左右。但大部分家族型和是绝大部分分散病例的病因仍是未知,可能与神经突触内谷氨酸的兴奋毒性、氧化应激、神经营养因子、自身免疫反应、重金属中毒、慢病毒感染等有关。
ALS目前缺少有效的治疗方法。发现新的致病基因、易感基因,寻找不同致病基因导致ALS的共同机制和治疗靶点等仍然是目前研究的热点。本文就目前发现的ALS相关基因突变和动物模型情况作如下总结。
1 参与ALS病理发生的基因
从1995年发现SOD1基因突变是家族型ALS的致病基因以来[1],ALS致病基因的发现越来越多,包括近5年发现的EPHA4、SS18L1和ATXN2等。表1列举了ALS相关基因,共计27种,其中,SOD1、C9ORF72、FUS和TARDBP与ALS关系最为密切,SOD1在家族型ALS中占了15%,C9ORF72重复核酸扩增在家族型ALS中占了45%,在散发性ALS中占了10%,FUS和TARDBP在家族型ALS中比例均可达4%;SETX、VAPB、ANG、OPTN、SQSTM1等比较罕见,仅与少数ALS相关,见图1。仍有一些分子流行病研究发现的ALS相关基因可作为尚未确定基因。
图1 家族型ALS致病基因比例Fig.1 The percentage of four familial ALS disease-causing genes and other genes
表1 参与 ALS病理发生的基因
续表1
基因Genes基因功能Genefunction染色体Chromosome突变Mutations家族性/%fALS散发性/%sALS参考文献ReferencesTARDBP/TDP-43DNA/RNA结合蛋白,证据明确显示TDP-43蛋白异常沉积与ALS病理相关。DNA/RNAbindingproteins,thepathologicaccumulationofTDP⁃43isnowwellrecognizedtocontributetothepa⁃thologyofALS.1p362239402~04[7]ARHGEF28该蛋白可结合神经丝蛋白mRNA,可能参与了ALS神经丝蛋白聚集体的形成。TheencodedproteininteractswithneurofilamentmRNAandmaybeinvolvedintheformationofALSneurofilamentaggregates.5q132---[8]SETX该蛋白具有DNA/RNA解旋酶功能域,参与RNA剪切过程。基因突变和一个常染色体显性遗传的青少年ALS相关。ThisproteincontainsaDNA/RNAhelicasedomainwhichsuggeststhatitmaybeinvolvedinbothDNAandRNAprocessing.MutationsinthisgenehavebeenassociatedwithanautosomaldominantformofjuvenileALS.9q34137罕见Rare[9]ATXN2ATXN2蛋白N端包含一个14~31残基多谷氨酰胺区域,病理条件扩增至32~200个。多谷氨酰胺长度增加的个体对ALS易感。TheN⁃terminalregionoftheproteincontainsapolyglu⁃taminetractof14-31residuesthatcanbeexpandedinthepathogenicstateto32-200residues.IntermediatelengthexpansionsofthistractincreasesusceptibilitytoALS.12q2412CAG重复扩增CAGrepeatexpansion47-[10,11]PFN1参与肌动蛋白的聚合-解聚动态平衡调节。该基因的缺失与Miller⁃Dieker综合症相关,所编码的蛋白质也可能在亨廷顿病中发挥作用。Theencodedproteinplaysanimportantroleinactindy⁃namicsbyregulatingactinpolymerization.DeletionofthisgeneisassociatedwithMiller⁃Diekersyndrome,andtheencodedproteinmayalsoplayaroleinHuntingtondisease.17p1324--[12]SS18L1SS18L1钙敏感的反式激活因子,参与表观遗传控制和染色质重塑。SS18L1突变与ALS相关。Thisgeneencodesacalcium⁃responsivetransactivatorwhichisanessentialsubunitofaneuron⁃specificchroma⁃tin⁃remodelingcomplex.Mutationsinthisgenearein⁃volvedinALS.20q1333---[13,14]C9ORF72与RAB蛋白相互作用参与自噬和內吞,具有2~22个或700~1600个拷贝的GGGGCC六核苷酸重复扩增突变与ALS或额颞痴呆(FTD)相关。C9ORF72hasbeenshowntointeractwithRabproteinsthatareinvolvedinautophagyandendocytictransport.Ex⁃pansionofaGGGGCCrepeatfrom2-22copiesto700-1600copiesintranscriptsfromthisgeneisassociatedwithALSandFTD(frontotemporaldementia).9p212GGGGCC重复扩增GGGGCCrepeatexpansion4510[15]OPTNOPTN可与huntingtin蛋白、转录因子3A以及RAB8蛋白相互作用,具有激活TNFa和Fas配体通路介导凋亡和炎症,基因突变导致家族型青光眼和ALS。OPTNinteractionswithhuntingtin,RAB8andtranscriptionfactorIIIAproteins.Itmayutilizetumornecrosisfactor⁃al⁃phaorFas⁃ligandpathwaystomediateapoptosisandin⁃flammation.OPTNmutationsareassociatedwithfamilialglaucomaandALS.10p133罕见Rare-[16]
续表1
基因Genes基因功能Genefunction染色体Chromosomes突变Mutations家族性/%fALS散发性/%sALS参考文献ReferencesUBQLN2蛋白质泛素化与降解。Thisproteinisthoughttofunctionallylinktheubiquitina⁃tionmachinerytotheproteasometoaffectinvivoproteindegradation.Xp11215--[17]SQSTM1可与泛素结合并调节NF⁃KB信号通路。SQSTM1bindsubiquitinandregulatesactivationofthenu⁃clearfactorkappa⁃B(NF⁃kB)signalingpathway.5q353罕见Rare[18]VCP参与高尔基体分选和蛋白质泛素化与降解。TheencodedproteinplaysaroleinGolgisorting,proteinubiquitinationanddegradation.9p1334--[19]ALS2/ALSIN参与膜泡运输,调节內吞。Thisproteinisinvolvedinvesiculartransportandfunctionsasamodulatorforendosomaldynamics.2q33119--[20]HNRNPA2B1核糖核蛋白类,与mRNA加工、代谢和运输有关。Thisgeneencodesheterogeneousnuclearribonucleoproteins(hnRNPs)andinfluencespre⁃mRNAprocessing,aswellasotheraspectsofmRNAmetabolismandtransport.7p152---[21,22]HNRNPA1核糖核蛋白类,与mRNA加工、代谢和运输有关。Thisgeneencodesheterogeneousnuclearribonucleoproteins(hnRNPs)thatassociatewithpre⁃mRNAsinthenucleusandinfluencespre⁃mRNAprocessing,aswellasotheraspectsofmRNAmetabolismandtransport.12q1313---[22]CHMP2B参与膜泡运输。CHMP2Bisinvolvedinvesiculartransport.3p112---[23]ELP3ELP3是组蛋白乙酰转移酶复合物的催化亚基,和RNA合成延长,投射神经元成熟有关。ELP3isthecatalyticsubunitofthehistoneacetyltransferaseelongatorcomplex,whichcontributestotranscriptelongationandalsoregulatesthematurationofprojectionneurons.8p211---[24]ANGRNA酶家族成员,促进tRNA水解进而导致蛋白合成下降,可调节新生血管形成和运动神经元轴突生长。Thisgeneencodesribonuclease,RNaseAfamily.Ithydro⁃lyzescellulartRNAsresultingindecreasedproteinsynthe⁃sis.Itisanexceedinglypotentmediatorofnewbloodvesselformationandmotorneuronaxonoutgrowth.14q11218罕见Rare[20]SPG11参与细胞间物质转运,与神经元轴突生长有关。Theproteinisinvolvedinintercellulartransportandisre⁃latedtoaxonoutgrowth.15q211---[20]DCTN1可与细胞内微管结合驱动轴突运输。Dynactinbindstomicrotubulestodriveaxonaltransport.2p131---[25]NEFH参与神经元细胞骨架的形成。Theproteinisinvolvedintheformationofneuronalcy⁃toskeleton.22q122---[20]VAPB参与细胞间物质转运,与神经元轴突生长有关。Theproteinisinvolvedinintercellulartransportandisre⁃latedtoaxonoutgrowth.20q13322罕见Rare[20]
注: -, 不明确;fALS,家族性脊髓侧索硬化症;ALS,脊髓侧索硬化症。
Note. -, unclear; fALS, familial amyotrophic lateral sclerosis; ALS, amyotrophic lateral sclerosis.
2 RNA代谢异常是ALS主要机制?
研究表明,ALS是通过异常的蛋白脂代谢如ER应激和自噬以及RNA剪切加工过程介导的。而在所有的非SOD1介导的ALS疾病均有RNA剪切过程参与。目前发现的参与ALS病理发生的基因有30种左右,涉及细胞表面受体、RNA剪切、蛋白质合成到轴突转运等多个方面。但是,涉及RNA剪切、延伸和代谢的基因占了主要部分,其中C9ORF72突变导致的ALS疾病在家族性ALS病例的中的比例最高,与RNA代谢的关系也最为密切。由于C9ORF72剪切体1的第一外显子E1a和剪切体3的第一外显子E1b之间有GGGGCC六个碱基的重复序列(hexanucleotide repeat expansion,HRE),HER长短在人群中具有多态性,正常人群中GGGGCC重复数一般在30个以下,高于30个重复会有发生额颞叶痴呆(FTD)或ALS的可能,ALS患者中拷贝数可高达1 600个。尽管C9ORF72的致病机制仍然处于初始阶段,但是目前可推测HER有二种可能机制参与FTD或ALS。其一是HRE结构导致C9ORF72转录子在细胞内的积累,并可能与DNA形成RNA/DNA 杂交环(R-loop)引起RNA毒性。第二种可能是HRE结构可能导致一种叫做不需要ATG的翻译(repeat-associated non-ATG (RAN) translation)GGGGCC重复可以编码甘胺酸/精氨酸或脯氨酸/精氨酸的多肽,这两种多肽都有细胞毒性。C9ORF72第一外显子后的GGGGCC多拷贝重复,造成RNA的异常积累和定位。
此外,FUS、TARDB、SETX、ATXN2、ARHGEF28、ELP3、HNRPA2B1和HNRPA1等8个基因在ALS所占比例次于C9ORF72,也与RNA代谢相关。FUS和TARDBP是一个多功能的DNA和RNA结合蛋白,参与RNA转录、选择性剪接及mRNA稳定性调节。SETX有DNA/RNA解旋酶功能域,参与tRNA和核内小RNA的剪切。ANG 属于RNA酶,ATXN2突变可以增加TARDBP毒性。ARHGEF28是Rho信号激活单白,但可以结合神经丝蛋白mRNA 并引起其降解,ELP3参与RNA合成延长。HNRPA2B1和HNRPA1编码不均一型核糖核蛋白(heterogeneous nuclear ribonucleoprotein,hnRNP)是多功能RNA结合蛋白,可调节前体mRNA(pre-mRNA)分子的选择性剪接以及mRNA转运、翻译和稳定性。因此RNA代谢异常可能是ALS的核心机制之一。
3 ALS动物模型
ALS动物模型是研究ALS的病因、病理、发病机制和治疗的重要工具。目前建立ALS的啮齿类动物模型主要是SOD1、TDP-43、VCP、FUS、ALSIN等基因的不同突变体和采用不同启动子的转基因大小鼠或基因敲除小鼠,还包括Wobbler小鼠自发突变ALS易感品系,以及免疫原诱发的豚鼠ALS模型(表2)。自发突变ALS易感品系Wobbler小鼠是50年前建立的ALS模型,现在仍然广泛使用。hmSOD1-G93A突变基因转基因小鼠是目前应用最广泛的ALS模型[27],比较客观的反映氧化应激对运动神经元的损伤机制。
4 ALS疾病动物模型展望
ALS病因多样,机制复杂,目前所建立的基因修饰模型和诱导模型尚不能全方位的反映ALS的病理机制,这也成为ALS治疗研究的限制之一。一方面现有的模型品系仅涉及有限的基因,大多致病基因包括新发现的ALS致病基因比如C9ORF72、ARHGEF28尚未建立模型,这些基因可能反映不同致病机制。另一方面,已经建立的SOD1、TDP-43、FUS等基因在野生型基因高表达时也会引起神经毒性[28,31,32], 所以转基因模型不能完全反映基因突变的特点。相对于转基因随机插入,基因敲入是实现基因稳定过表达的一种有效工具。利用CRISPR/Cas9技术可以实现外源基因的定点敲入,使遗传背景更为简单,实验操作更加精准、高效。此外,很多致病基因表达的蛋白具备多个功能域,可以和其他多种因子相互作用,而且基因敲除和点突变对细胞作用也是不同的,基因敲除ALS模型不能完全反映基因突变的致病机制,因此在未来的研究中,需要以突变的基因敲入为主,制作更能反映致病机制的ALS模型。
表2 ALS啮齿类模型
[1] Andersen PM, Nilsson P, Ala-Hurula V, et al. Amyotrophic lateral sclerosis associated with homozygosity for an Asp90Ala mutation in CuZn-superoxide dismutase [J]. Nat Genet, 1995, 10(1): 61-66.
[2] Ackerley S, James PA, Kalli A, et al. A mutation in the small heat-shock protein HSPB1 leading to distal hereditary motor neuronopathy disrupts neurofilament assembly and the axonal transport of specific cellular cargoes [J]. Hum Molec Genet, 2006, 15(2): 347-354.
[3] Krishnan J, Lemmens R, Robberecht W, et al. Role of heat shock response and Hsp27 in mutant SOD1-dependent cell death [J]. Exp Neurol, 2006, 200(2): 301-310.
[4] Hideyama T, Kwak S. When does ALS start? ADAR2-GluA2 hypothesis for the etiology of sporadic ALS [J]. Front Mol Neurosci, 2011, 4: 33.
[5] Van Hoecke A, Schoonaert L, Lemmens R, et al. EPHA4 is a disease modifier of amyotrophic lateral sclerosis in animal models and in humans [J]. Nat Med, 2012, 18(9): 1418-1422.
[6] Deng H, Gao K, Jankovic J. The role of FUS gene variants in neurodegenerative diseases [J]. Nat Rev Neurol, 2014, 10(6): 337-348.
[7] Bennion Callister J, Pickering-Brown SM. Pathogenesis/genetics of frontotemporal dementia and how it relates to ALS [J]. Exp Neurol, 2014, 262 Pt B: 84-90.
[9] Chen YZ, Bennett CL, Huynh HM, et al. DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4) [J]. Am J Hum Genet, 2004, 74(6): 1128-1135.
[10] Liu X, Lu M, Tang L, et al. ATXN2 CAG repeat expansions increase the risk for Chinese patients with amyotrophic lateral sclerosis [J]. Neurobiol Aging, 2013, 34(9): 2236. e5-8.
[11] Elden AC, Kim HJ, Hart MP, at al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS [J]. Nature, 2010, 466(7310): 1069-1075.
[12] Wu CH, Fallini C, Ticozzi N, et al. Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis [J]. Nature. 2012, 488(7412): 499-503.
[13] Teyssou E, Vandenberghe N, Moigneu C, et al. Genetic analysis of SS18L1 in French amyotrophic lateral sclerosis[J]. Neurobiol. Aging, 2014, 35(5): e9-e12.
[14] Renton AE, Traynor BJ. CRESTing the ALS mountain [J]. Nat Neurosci, 2013, 16(7):774-775.
[15] Haeusler AR, Donnelly CJ, Periz G, et al. C9 or f72 nucleotide repeat structures initiate molecular cascades of disease [J]. Nature. 2014, 507(7491): 195-200.
[16] Maruyama H, Morino H, Ito H. Mutations of optineurin in amyotrophic lateral sclerosis [J]. Nature, 2010, 465(7295): 223-226.
[17] Renton AE, Chiò A, Traynor BJ. State of play in amyotrophic lateral sclerosis genetics [J]. Nat Neurosci, 2014, 17(1):17-23.
[18] Gal J, Ström AL, Kwinter DM, et al. Sequestosome 1/p62 links familial ALS mutant SOD1 to LC3 via an ubiquitin-independent mechanism [J]. J Neurochem, 2009, 111(4): 1062-1073.
[19] Zou ZY, Liu MS, Li XG, et al. Screening of VCP mutations in Chinese amyotrophic lateral sclerosis patients [J]. Neurobiol Aging, 2013, 34(5): 1519.e3-4.
[20] Su XW, Broach JR, Connor JR, et al. Genetic heterogeneity of amyotrophic lateral sclerosis: implications for clinical practice and research [J]. Muscle Nerve, 2014, 49(6): 786-803.
[21] Martinez FJ, Pratt GA, Van Nostrand EL, et al. Protein-RNA networks regulated by normal and ALS-associated mutant HNRNPA2B1 in the nervous system[J]. Neuron, 2016, 92(4): 780-795.
[22] Kim HJ, Kim NC, Wang YD, et al. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS [J]. Nature, 2013, 495(7442): 467-473.
[23] Cox LE, Ferraiuolo L, Goodall EF, et al. Mutations in CHMP2B in lower motor neuron predominant amyotrophic lateral sclerosis (ALS) [J]. PLoS One, 2010, 5(3): e9872.
[24] Simpson CL, Lemmens R, Miskiewicz K, et al. Variants of the elongator protein 3 (ELP3) gene are associated with motor neuron degeneration[J]. Hum Mol Genet, 2009, 18(3): 472-481.
[25] Münch C, Sedlmeier R, Meyer T, et al. Point mutations of the p150 subunit of dynactin (DCTN1) gene in ALS[J]. Neurology, 2004, 63(4): 724-726.
[26] Hirano M, Quinzii CM, Mitsumoto H, et al. Senataxin mutations and amyotrophic lateral sclerosis[J]. Amyotroph Lateral Scler, 2011, 12(3): 223-227.
[27] 范昌发,岳秉飞,王军志. 转基因动物模型在ALS发病机制研究及药物疗效观察中的应用[J].实验动物科学, 2008, 25(4): 45-48.
[28] McGoldrick P, Joyce PI, Fisher EM, et al. Rodent models of amyotrophic lateral sclerosis [J]. Biochim Biophys Acta, 2013, 1832 (9): 1421-1436.
[29] Lai C, Xie C, McCormack SG, et al. Amyotrophic lateral sclerosis 2-deficiency leads to neuronal degeneration in amyotrophic lateral sclerosis through altered AMPA receptor trafficking [J]. J Neurosci, 2006, 26(45): 11798-11806.
[30] Moser JM, Bigini P, Schmitt-John T. The Wobbler mouse, an ALS animal model [J]. Mol Genet Genomics, 2013, 288(5-6): 207-229.
[31] Mitchell JC, McGoldrick P, Vance C, et al. Overexpression of human wild-type FUS causes progressive motor neuron degeneration in an age- and dose-dependent fashion[J]. Acta Neuropathol, 2012, 125 (2): 273-288.
[32] Xu G, Ayers JI, Roberts BL, et al. Direct and indirect mechanisms for wild-type SOD1 to enhance the toxicity of mutant SOD1 in bigenic transgenic mice[J]. Hum Mol Genet, 2014, 24(4): 1019-1035.
Amyotrophiclateralsclerosis-associatedgenemutationsandALSanimalmodels
ZHANG Li1, ZHANG Lian-feng1,2*
(1.Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Key Laboratory of Human Disease Comparative Medicine, National Health and Family Planning Commission of P.R.C, Beijing 100021,China; 2.Neuroscience Center, Chinese Academy of Medical Sciences, Beijing 100730,China)
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by a selective loss of upper and lower motor neurons that lead to paralysis and even death. Mutations in a large number of genes, includingFUS/TLS,EPHA4,SS18L1,ATXN2 andC9ORF72, are identified to the casual genes of ALS, which broadens our understanding of the role of RNA modulation in ALS pathogenesis. This review summarized ALS-associated genes and the related ALS rodent models.
Amyotrophic lateral sclerosis; Gene mutation; Animal model
R-33
A
1671-7856(2017) 10-0089-07
10.3969.j.issn.1671-7856. 2017.10.018
2017-03-01
国家自然科学基金(81571222);中央级公益科研院所基本科研业务费(2016ZX310039)。
张丽(1981-),女,博士,研究方向:比较医学。E-mail: zhangl@cnilas.org
张连峰,男,研究员,博士,研究方向:比较医学。E-mail: zhanglf@cnilas.org