一种选择性检测SO2的荧光增强型探针的合成
2017-07-31何艳阳付丁强宋振雷
何艳阳, 付丁强, 杨 黎, 宋振雷
(1. 四川大学a. 华西药学院; b. 化学工程学院; c. 华西医院肿瘤中心,四川 成都 610041)
·快递论文·
一种选择性检测SO2的荧光增强型探针的合成
何艳阳1a, 付丁强1b, 杨 黎1c*, 宋振雷1a
(1. 四川大学a. 华西药学院; b. 化学工程学院; c. 华西医院肿瘤中心,四川 成都 610041)
SO2作为一种重要的气体信号分子,其浓度异常与癌症、心血管疾病、神经系统疾病有关,因此有必要发展一种检测SO2的分析方法。本文以1,1,2-三甲基-1H-苯并[e]吲哚和碘甲烷为原料合成中间体2; 2与2,4-二甲基-5-醛基-1H-吡咯-3-羧酸经缩合反应合成了一个基于苯并吲哚和吡咯共轭的荧光增强型探针(3),其结构经1H NMR,13C NMR和HR-MS表征。探针3可以定量检测外源性SO2,并且对SO2具有良好的选择性,对其他阴离子和生物硫醇不响应或响应水平低。用350 nm激发,探针3在450 nm处的荧光强度随SO2的浓度增加而增强。当SO2浓度为0~100 μmol·L-1时,荧光强度与其呈良好的线性关系,相关系数R2为0.997。
苯并[e]吲哚; 吲哚半菁; 荧光探针; 合成; SO2检测; 选择性
SO2是大气主要污染物之一,火山爆发时会喷出该气体,在许多工业过程中也会产生SO2。在食品工业中,SO2广泛地用于抗氧化和抗菌[1]。在生物有机体内,SO2是除了一氧化氮、一氧化碳和硫化氢以外的第4种气体信号分子[2-5],其主要以亚硫酸根和亚硫酸氢根的形式存在,内源性SO2能够通过含硫氨基酸如半胱氨酸和谷胱氨肽的生物合成产生以维持生物硫平衡[6]。毒理学和流行病学研究证明,内源性SO2的浓度异常与多种疾病密切相关,如呼吸系统疾病、神经系统疾病、心血管系统疾病和癌症等[7-9]。因此,有必要发展一种实时检测生物组织SO2浓度的方法。
区别于传统的紫外吸收法、电化学法及色谱法等分析方法,荧光分析法具有选择性好、灵敏度高及操作简便等特点,并且能够在不损伤生物样品的情况下实时检测生物活性分子并成像。由于荧光分析法的这些优点,近年来有大量检测生物活性分子的荧光探针被报道。线粒体作为一类重要的细胞器,是细胞内产生活性氧物种(ROS)和活性硫物种(RSS)的主要场所[10],SO2在线粒体中通过硫化氢和含硫氨基酸的氧化以及亚磺酰丙酮酸的分解产生。因线粒体中SO2及其衍生物的检测分析具有重要的研究价值,并且有助于研究线粒体诱导大的细胞凋亡过程[11]。至今,已有一些荧光探针检测线粒体SO2的文献报道[12-15],但是由于其或水溶性不佳或选择性不好或检测区间窄及线性关系不优等缺点而限制其应用。因此,设计线粒体靶向的SO2荧光探针具有重要意义。
基于此,本文设计并合成了一个结构新颖的检测SO2的荧光探针,并对其进行了光谱分析,研究了其对SO2的荧光滴定和选择性。以1,1,2-三甲基-1H-苯并[e]吲哚(1)和碘甲烷为原料制得中间体1,1,2,3-四甲基-1H-苯并[e]吲哚鎓碘化物(2); 2与2,4-二甲基-5-醛基-1H-吡咯-3-羧酸经缩合反应合成了吲哚半菁类探针(3, Scheme 1),其结构经1H NMR,13C NMR和HR-MS表征。该探针分子的苯并吲哚结构具有靶向线粒体的潜力,吡咯结构上的羧基能够增加水溶性,并且可与具有胺基或羟基的药物分子连接,可进一步探究其除了荧光探针以外的用途,吡咯作为抗肿瘤药物舒尼替尼的结构单元,其可能具有抗肿瘤的潜力,本文只探究其作为荧光探针的用途。SO2与共轭双键的亲核1,4-加成破坏了荧光探针的共轭体系使得探针分子产生荧光强度发生变化,从而实现了线粒体SO2的选择性定量检测。
1 实验部分
1.1 仪器与试剂
Beckman coulter DU800型紫外可见分光光度计;Hitachi F-7000型荧光分光光度计(狭缝宽度为5/10 nm); Bruker AVANCE400型核磁共振仪(DMSO-d6为溶剂,TMS为内标);Finnigan LCQDECA型质谱仪。
柱色谱用硅胶,200~300目;其余所用试剂均为分析纯。
1.2 合成
(1) 2的合成
将1 2.0 g(10 mmol)溶于邻二氯苯(5 mL)中,加入碘甲烷1.87 mL(30 mmol),搅拌下于120 ℃反应过夜。冷却至室温(析出固体),真空抽滤,滤饼用适量丙酮洗涤,真空干燥得粉白色固体2 2.8 g,产率80%;1H NMR(400 MHz, DMSO-d6)δ: 1.76(s, 6H, CH3), 2.88(s, 3H, CH3), 4.10(s, 3H, CH3), 7.73(t,J=7.2 Hz, 1H, ArH), 7.79(t,J=7.2 Hz, 1H, ArH), 8.11(d,J=9.2 Hz, 1H, ArH), 8.22(d,J=8.0 Hz, 1H, ArH), 8.30(d,J=8.8 Hz, 1H, ArH), 8.37(d,J=8.4 Hz, 1H, ArH)。
(2) 3的合成
在反应管中依次加入2 351 mg(1 mmol), 2,4-二甲基-5-醛基-1H-吡咯-3-羧酸167 mg(1 mmol),无水乙醇5 mL和哌啶40 μL,搅拌下回流(80 ℃)反应3 h(TLC检测)。减压蒸除溶剂,残余物经硅胶柱层析[洗脱剂:V(DCM) ∶V(MeOH)=50 ∶1]纯化得红色固体3 335 mg,产率67%;1H NMR(400 MHz, DMSO-d6)δ: 1.96(s, 6H, CH3), 2.54(s, 3H, CH3), 2.62(s, 3H, CH3), 4.06(s, 3H, CH3), 7.14(d,J=15.6 Hz, 1H, CH=CH), 7.65(t,J=7.2 Hz, 1H, ArH), 7.76(t,J=7.2 Hz, 1H, ArH), 7.99(d,J=8.8 Hz, 1H, ArH), 8.03(d,J=15.6 Hz, 1H, CH=CH), 8.17(d,J=8.4 Hz, 1H, ArH), 8.24(d,J=8.8 Hz, 1H, ArH), 8.36(d,J=8.4 Hz, 1H, ArH), 12.43(s, 1H, NH), 12.48(s, 1H, CO2H);13C NMR (100 MHz, DMSO-d6)δ: 12.13, 14.83, 22.69, 34.35, 44.24, 52.92, 103.55, 113.13, 116.57, 123.21, 126.80, 127.42, 127.96, 128.68, 130.47, 131.12, 132.97, 136.50, 136.81, 138.47, 140.18, 148.11, 165.91, 180.95; HR-MS(ESI)m/z: Calcd for C24H25N2O2I {[M-I]+} 373.471 6; found 373.187 4。
Scheme 1
1.3 光谱分析
用DMSO配制浓度为1×10-2mol·L-13的标准储备液。用pH 7.4的PBS缓冲液(10 mmol·L-1)和DMSO(V/V=9/1)将3标准储备液稀释为浓度10 μmol·L-1,定量加入亚硫酸氢钠及其它物质,分别测定其紫外-可见吸收光谱及荧光光谱。
λ/nm
2 结果与讨论
λ/nm
*同图1。
2.3 3的选择性研究
λ/nm
图3 3对常见阴离子和硫醇(100 μmol·L-1)的荧光响应(a)和选择性柱状图(b)*
2.4 检测机理
根据文献[12-13]报道,检测机理为SO2对苯并吲哚和吡咯共轭双键的1,4-亲核加成反应(Scheme 2)。向探针3的DMSO-d6溶液(40 mmol·L-1)加入1 eq.的NaHSO3,其1H NMR谱图(图4)在δ5.07和4.97出现两个双峰,分别为H1a和H1b的信号峰。
Scheme 2
δ
3 结论
设计并合成了用于检测SO2的荧光增强型荧光探针,以苯并吲哚和吡咯共轭结构为骨架,SO2对共轭双键的亲核1,4-加成使探针的结构发生改变从而引起荧光的变化。在PBS与DMSO混合溶液中,探针能够灵敏地检测SO2,在与SO2反应后,450 nm处的荧光强度增加。当SO2浓度在0~100 μmol·L-1时,浓度与荧光强度具有良好的线性关系,相关系数R2为0.997。探针对SO2具有很高的选择性,对其他常见阴离子和硫醇不响应或响应很低。
[1] Daniels D H, Joe Jr F L, Warner C R,etal. Survey of sulphites determined in a variety of foods by the optimized Monier-Williams method[J].Food Addit Contam,1992,9(4):283-289.
[2] Du S X, Jin H F, Bu D F,etal. Endogenously generated sulfur dioxide and its vasorelaxant effect in rats [J].Acta Pharmacol Sin,2008,29(8):923-930.
[3] Luo L M, Chen S, Jin H F,etal. Endogenous generation of sulfur dioxide in rat tissues[J].Biochem Biophys Res Commun,2011,415:61-67.
[4] Meng Z, Li Y, Li J L. Vasodilatation of sulfur dioxide derivatives and signal transduction[J].Arch Biochem Biophys,2007,467:291-296.
[5] Wang X B, Huang X M, Ochs T,etal. Effect of sulfur dioxide preconditioning on rat myocardial ischemia/reperfusion injury by inducing endoplasmic reticulum stress[J].Basic Res Cardiol,2011,106:865-87.
[6] Stipanuk M H, Ueki I. Dealing with methionine/homocysteine sulfur:Cysteine metabolism to taurine and inorganic sulfur [J].J Inherited Metab Dis,2011,34:17-32.
[7] Migliore L, Coppede F. Environmental-induced oxidative stress in neurodegenerative disorders and aging[J].Mutat Res,2009,674:73-84.
[8] Sang N, Yun Y, Yao G,etal. SO2-induced neurotoxicity is mediated by cyclooxygenases-2-derived prostaglandin E2and its downstream signaling pathway in rat hippocampal neurons[J].Sci,2011,124(2):400-413.
[9] Sang N, Yun Y, Li H,etal. SO2inhalation contributes to the development and progression of ischemic stroke in the brain toxicol[J].Sci,2010,114(2):226-236.
[10] Li L, Dong X, Shu B,etal. Iron-sulfur protein in mitochondrial complexes ofSpodopteralituraas potential site for ROS generation[J].J Insect Physiol,2014,71:24-29.
[11] Du S X, Jin H F, Bu D F,etal. Endogenously generated sulfur dioxide and its vasorelaxant effect in rats [J].Acta Pharmacol Sin,2008,29(8):923-930.
[12] Liu Y, Li K, Wu M Y,etal. A mitochondria-targeted colorimetric and ratiometric fluorescent probe for biological SO2derivatives in living cells[J].Chem Commun,2015,51:10236-10239.
[13] Liu Y, Li K, Xie K X,etal. A water-soluble and fast-response mitochondriatargeted fluorescent probe for colorimetric and ratiometric sensing of endogenously generated SO2derivatives in living cells[J].Chem Commun,2016,52:3430-3433.
[14] Xu J C, Pan J, Jiang X M,etal. A mitochondria-targeted ratiometric fluorescent probe for rapid,sensitive and specific detection of biological SO2derivatives in living cells[J].Biosensors and Bioelectronics,2016,77:725-732.
[15] Wang G, Chen H, Chen X L,etal. A novel carbazole-based mitochondria-targeted ratiometric fluorescent probe for bisulfite in living cells[J].RSC Adv,2016,6:18662-18666.
Synthesis of A Turn-on Fluorescent Probe for Selectivie Sensing of SO2
HE Yan-yang1a, FU Ding-qiang1b, YANG Li1c*, SONG Zhen-lei1a
(a. West China School of Pharmacy; b. School of Chemical Engineering;c. Cancer Center, West China Hospital, 1. Sichuan University, Chengdu 610041, China)
As an important gas signal molecule, sulfur dioxide(SO2) has attracted increasing attention in recent decades. It has been revealed that SO2and its derivatives are closely associated with various symptoms and diseases including cancer, cardiovascular diseases, neurological disorders and respiratory problems. Hence, developing analytical methods that could realize concentration determination of SO2and its derivatives are highly needed. In this work, we reported a novel turn-on fluorescent probe(3) for selectivie sensing of SO2derivatives based on the conjugate of benzo[e]indolium and pyrrole. The intermediate 2 was prepared by using 1,1,2-trimethyl-1H-benz[e]indole and iodomethane as raw materials. 3 was synthesizedviacondensation of 2 with 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid. The structure was characterized by1H NMR,13C NMR and HR-MS. 3 exhibited excellent selectivity for SO2over other anions and reductive sulfurs. With addition of sulfur dioxide, the emission intensity at 450 nm increased accordingly, and the emission intensity was linear function with the sulfur dioxide concentration over the range from 0 to 100 μmol·L-1(R2=0.997).
benz[e]indole; hemicyanine; fluorescent probe; synthesis; sulfur dioxide; selectivity
2017-01-09;
2017-06-07
何艳阳(1991-),女,汉族,四川广元人,硕士研究生,主要从事荧光探针的设计与合成研究。 E-mail: 13540474511@163.com
杨黎,副研究员, Tel. 028-85502157, E-mail: yangli@scu.edu.cn
O657; O625
A
10.15952/j.cnki.cjsc.1005-1511.2017.07.17006