APP下载

基于Ansys的超大型平头塔式起重机平衡臂优化设计

2017-07-12郭纪斌张春兰李青云

计算技术与自动化 2017年2期
关键词:有限元优化设计

郭纪斌+张春兰+李青云

摘要:以T3000160超大型平头塔式起重机平衡臂为研究对象,对其结构进行优化设计。首先建立平衡臂有限元仿真模型,然后采用Ansys中的APDL算法语言和参数化技术对平衡臂结构相关设计尺寸进行参数化建模,通过结构优化,最后得到平衡臂主体结构的最优截面尺寸,结果表明平衡臂整体结构强度和刚度满足设计方案要求,参数化设计能提高工程机械的设计质量。

关键词:超大型平头塔式起重机;平衡臂;优化设计;有限元

中图分类号:TH2文献标识码:A

Abstract:Taking the counterjib of T3000160 super large flattop tower crane as the research object,the structure is optimized. Firstly,the finite element simulation model of the counterjib is established. Then,the APDL algorithm language and parametric technique in Ansys are used to parameterize the design dimensions of the counterjib structure. Through the structural optimization,the optimal crosssectional dimension of the main structure of the counterjib is obtained,The results show that the overall strength and rigidity of the counterjib meet the design requirements,and the parametric design can improve the design quality of the construction machinery.

Key words:super large flattop tower crane,counterjib,optimized design,finite element

1引言

隨着有限元技术的不断发展,计算机辅助设计在塔式起重机关键组成部件的优化分析设计中得到了广泛应用。计算机辅助设计及有限元分析技术的引进使用,使得塔机产品使用起来更加安全和高效。超大型平头塔式起重机作为塔机发展的方向,其结构复杂,工况多样,仅仅对其进行整体的综合系统设计是不够的,更应该关注其细节结构设计分析,关注计算机优化设计。

本论文选取T3000160超大型平头塔式起重机作为研究对象,利用计算机辅助设计技术对平衡臂结构进行有限元建模分析,使用APDL算法完成平衡臂结构的优化设计,达到降本增效的目的。

2Ansys有限元分析优化设计的有关概念121设计变量设计方案完成后,其中的设计元素可以用一组基本参数数值来表示,这一组参数数值就是所谓的设计变量。

22目标函数

在产品结构设计中,可以利用一些设计指标衡量一项设计方案的好坏,通过把设计指标参数化得到相关函数来表示这些指标,这些相关函数即是优化设计的目标函数。

计算技术与自动化2017年6月第36卷第2期郭纪斌等:基于Ansys的超大型平头塔式起重机平衡臂优化设计23约束性条件

所谓约束性条件是在对与目标函数相关的设计变量进行取值时加入的限制性条件。约束类型按照目标函数中设计变量的不同性质可分为边界性约束和性能性约束。

24合理性设计

所谓合理性设计是指满足设计方案所有给定约束条件(包括设计变量的约束和状态变量的约束)的设计。倘若给定约束条件中的任一条未满足,该设计就被认为是不合理的。而最优设计就是既能满足所有约束条件同时目标函数值又是最小的设计。

3超大型平头塔机平衡臂优化设计的步骤

在Ansys软件中可以用两种方式进行结构优化设计:图形交互式或者数据批处理来完成。在本论文中,选用数据批处理方式来进行平衡臂结构优化设计,以期提高优化设计效率。

由于用户采用优化方式的差异(批处理或GUI方式),Ansys优化设计步骤会有些许差别。本论文中平衡臂优化设计步骤如下:

31分析文件的生成1311参数化建立模型通过Ansys软件/PREP7命令把设计方案中的设计变量参数化建立数据模型的工作完成。对于本论文选定的T3000160超大型平头塔式起重机平衡臂,设计变量是拉杆和臂架弦杆的尺寸,如表1所示。

表1设计变量

设计变量1初值(mm)1变量含义X112001平衡臂下弦杆角钢L200X36的截面长度X21361平衡臂下弦杆角钢L200X36的截面长度X31651平衡臂拉杆圆钢Φ130的半径

312计算求解

Ansys中的求解器主要是对分析类型和分析选项在优化过程中进行定义,并完成载荷的施加,及对载荷步的指定,最后进行有限元分析计算,同时在分析过程中需要的数据都要在计算求解过程中指出。

在本论文平衡臂的优化分析中,solution 部分输入如下:

/SOLU

PREP7,

BEAM,P21X,5,PRES,-0.2c-5,…

Acc1,0,10000,0,

AUTO CP,0,0.65*2,

SOLVE,

FINISH。

313提取参数化分析结果

对分析结果进行提取并给相应的参数赋值,这些参数通常情况下包括目标函数和状态变量。完成本步操作使用POST1命令,尤其是与数据的存储、加减或者其他操作相关时,而对数据的提取通常用*GET命令(Utility Menu>Parameters>Get Scalar Data)来完成。

在本论文研究中,设置平衡臂总重量为目标函数。因为重量和体积成比例关系,对产品总体积的减小就相当于总重量的减少,因此把总体积设计为目标函数。在优化研究中,把轴向应力、节点位移设置为状态变量。这些参数的设定可以用下面的方法进行定义:

/POST1

ETABLE,evolume,VOLU,

QR SSUM

*GET,VOLUME,SSUM,DEFORMED,EVOLUME

QR,SMAX_E,LS,0,1

CP,ETAB,SMAX_E,0,1,

*GET,SMAX_E,SORT,MAX

*GETT,DYMAX1,NODE,1528,Z,Y

32对计算结果优化分析

建立完成分析文件之后,就可以利用计算机进行优化分析。在优化处理器中,这些相关参数的值被假定为一个设计序列,所有参数会在Ansys数据库中被自动设置为设计序列1。

4超大型平头塔机平衡臂优化设计结果

通过10次迭代计算完成对模型参数的优化,目标函数与设计变量的变化如图1—图3所示。

图1设计变量X1优化示意图图2设计变量X2优化示意图图3设计变量X3优化示意图通过上面的优化示意图可以看出,三个设计变量都是平衡臂主结构件的截面尺寸,经过优化计算,截面尺寸都得以减小,而与其相关的目标函数(平衡臂总体积)有总体减小的趋势。

在优化计算时不仅要减少平衡臂体积,同时其结构对强度和刚度的设计要求也要满足,所以本研究增设状态变量1(平衡臂端部位移)和状态变量2(截面危险节点的应力值)为研究对象,其优化过程如图4—图5所示。

图4状态变量1优化示意图图5状态变量2优化示意图从两个状态变量的优化过程可以看出,在经过多次迭代优化后各状态变量值变量均在设定值范围内变化,变化非常小。

目标函数的最优解在Ansys优化设计过程可以自动选出,在本论文中得出的最优解见表2。

由优化计算结果可以看出,平衡臂总质量由18.87吨优化到了17.13吨,減少了1.74吨,减重百分比为9.22%。与初始设计方案相对比,优化后主体结构件截面尺寸减小,从而降低了平衡臂总质量,达到了减轻平衡臂总重量的优化设计目标。通过对优化模型有限元分析结果的检查,其结构刚度、强度均符合设计要求,如表2所示。

本论文选用Ansys一阶优化方法对以平衡臂总质量为目标函数的方案进行计算优化,优化后平衡臂结构强度刚度均在设计允许值范围内。通过定义主要结构件尺寸的优化,平衡臂总重量减少1.74吨,降幅9.22%。

5结论

本论文以T3000160超大型平头塔式起重机平衡臂的优化设计为研究对象,采用现代设计理论和方法,使用主流有限元分析软件Ansys完成对平衡臂结构的优化分析,其过程主要如下。

(1)建立T3000160塔机平衡臂有限元分析模型,选用BEAM188,MASS21等作为模型分析单元,确保有限元模型结构、重量等参数的设置符合实际情况。

(2)各项参数满足设计方案要求。通过优化分析,得到平衡臂主体结构件的最优截面尺寸,同时有限元分析结果表明整体结构强度和刚度满足设计方案需求。

(3)本论文选取T3000160超大型平头塔式起重机的平衡臂进行有限元分析优化设计,为超大型平头塔式起重机平衡臂及其他相关部件结构的强度分析和设计提供一个理论性的支撑,同时提高工程机械设计质量,缩短设计周期,促进优化设计法在起重机设计中的应用。

参考文献

[1]张洪信.ANSYS基础与实例教程[M].北京:机械工业出版社.2013.

[2]周宁. ANSYS APDL高级工程应用实例分析与二次开发[M].北京:中国水利水电出版社. 2007.

[3]起重机设计规范GB/T38112008[S].中华人民共和国质量监督检验检疫总局.2009.

[4]马东辉,赵东.基于ANSYS和MATLAB的结构优化设计[J].制造业自动化.2013.35(10):106-108.

[5]李新华,张毅,戴琳.塔式起重机起重臂的模糊优化设计[J].机械与电子.2010(9):92-93.

[6]孙运见,孙乐.基于Jaumin的等参单元算法框架设计[J].计算机辅助工程.2015(1):63-67.

[7]杨周妮,吴作伟,雷铁安. ANSYS优化方法与遗传算法在结构优化方面的比较[J]. 自动化技术与应用.2004(7):4-6.

[8]许觅婷,李纳,谢天胜. 塔式起重机起重臂的有限元分析及多目标优化[J]. 无线互联科技.2016(9):122-123.

猜你喜欢

有限元优化设计
有限元基础与应用课程专业赋能改革与实践
基于有限元的Q345E钢补焊焊接残余应力的数值模拟
将有限元分析引入材料力学组合变形的教学探索
大型压滤机主梁的弹性力学计算及有限元分析设计
大型压滤机主梁的弹性力学计算及有限元分析设计
起重机吊臂振动模态的有限元分析
对无线传感器网络MAC层协议优化的研究与设计
基于simulation的医用升降椅参数化设计
简述建筑结构设计中的优化策略
210 t转炉连接装置的有限元分析及强度校核