APP下载

移动通信基站天线电磁辐射分布规律及安全防护

2017-07-05王柳辉

绿色科技 2017年10期
关键词:分布规律电磁辐射移动通信

王柳辉

摘要:指出了随着通信行业在我国不断发展,用户量持续增加,为了满足话务容量和网络覆盖率的需求,三大通信运营商开始将大量的移动通信基站建设起来,特别是在城市中,修建了许多基站。尽管这些基站提升了移动网络运营效率,然而,也会增加环境中的电磁辐射总量,所以,掌握移动通信基站天线电磁分布规律及制定安全防护对策非常必要,需要给予高度重视。

关键词:移动通信;基站天线;电磁辐射;分布规律;安全防护

中图分类号:P427.35

文献标识码:A 文章编号:16749944(2017)10007802

1 引言

为了对基站天线电磁辐射的影响进行充分的了解,国内外有关这方面的研究和监测工作也在不断增加。力争在不影响人们身体健康的同时,构建一个良好的移动网络运行环境。因此,为了更好的了解这方面的内容,文章通过下文进行了探究,目的是为有关单位及工作人员在实际工作中提供一定的帮助作用。

2 具体布设方案分析

在通信行业不断发展的背景下,为了能够确保用户的通信水平,需要科学的布设移动通信基站天线,这就要求优先,制定出合理的天线参数,从实际情况入手,选取正确的场地,布设检测点,最后通过科学的设备和仪器进行布设和控制。

2.1 天线参数

通过应急通讯车进行试验监测,图1为网络天线的主要参数。

将三根定向天线设置到应急通信车中,其中,可以选择其中的一根进行试验,然后在关闭状态下控制另外两根天线,通过附近移动通信基站接入天线数据信号。

2.2 选取场地

可以在比较空旷的场地内进行现场监测,确保场内四周无房屋、树木等障碍物。并且,1000 m以内无基站天线。

2.3 布设监测点

将天线主瓣轴向出垂直面作为试验的监测面,并且,在该垂直监测面内需要均匀的分布各个监测点。在5~30 m左右控制天线监测面的水平方向距离,在2~3 m之间控制布点间隔距离;在3~15 m左右控制监测面垂直方向上的监测范围;在1 m左右控制布点间隔。

2.4 监测的基本方法和所用仪器

通过德国SRM-3000分频电磁辐射分析检测仪进行试验检测。按照相关标准进行检测,连续监测每个测点五次,并且,在15s以上控制各次监测时间,然后将稳定状态下的最大值读取出来。如果有较大的监测读数,需要将监测时间适当延长。

3 分布规律分析及安全防护对策

3.1 根据话务量确定无线电磁辐射强度

以1 m的高度为间隔,将距天线水平15 m的垂面选择出来,监测不同的话务量,在监测的过程中,利用手机通话的方式进行加载,其中实线、虚线和空线分别为两个载频、一个载频和空载的监测结果。通过分析相应的监测结果能够发现。网络天线的电磁辐射在空载时是最强烈的,13.49 μW/cm2为其最大值,在向一个载频满载增加了话务量负载以后,这样就会降低天线电磁辐射功率密度至11.44 μW/cm2。如果向两个载频增加了话务量以后,又会向13.08 μW/cm2增加电磁功率辐射密度,并且,不会有较大的变化幅度出现。出现这种情况的原因:网络天线为多址时分工作模式,以脉冲的形式发射信号,空载时会有较高的脉冲幅值,造成有较高的监测结果出现;并且,在不断的增加了话务量以后,脉冲量就会被分散到各个信道内,进而就会降低辐射功率,在继续增加话务量后,因为增加了辐射总量,因此,也会相继的增加辐射功率密度(图2)。

3.2 无线电磁辐射空间划分规律

在相关基站话务量统计结果基础上,这样随着话务量的变化天线电磁辐射强度也会发生变化。对加载时的一个载项WCDMA网络天线和空载时的GSM900网络天线作为研究对象,研究瓣轴所在垂面的空间电磁辐射分布规律,以明确天线的辐射范围与强度。

网络天线主瓣轴向、空载所在垂面的电磁辐射功率密度监测结果可以通过图2进行表示,从距离平面的7 m处开始,然后以1 m为间隔,对离地面15 m进行监测为止。通过分析监测结果,监测点和垂直距离与水平距离的距离越小,这样就会有越高的电磁辐射功率,同天线距离最近的监测点,57.84 μW/cm2控制功率密度。然而,在不断增大了观测点和垂直及水平的距离以后,这样就会迅速减小监测点和天线之间的距离,在和天线水平距离的17 m处,就会不断降低天线电磁辐射功率密度值,较《电磁辐射规定》内的单个限制小。对应的,就WCDMA网络天线而言,会在 5、8、10、13、15、17、20、23、25、28、30 m左右控制主瓣轴向所在垂面中的水平距离。从高出地面3 m的高度起,对高出地面14 m的高度以1 m的间隔进行监测。

随着垂直距离或者观测点和水平距离的加大,这样就会迅速减少监测点电磁辐射功率的密度值。

在具体天线下方垂直距离1.5 m和天线水平距离的15 m处,这样也会降低WCDMA天线电磁辐射功率值,一般会降低到6.06 μW/cm2,并且,对规定内的限制要求要低。

3.3 预测分析天线电磁辐射理论

为了对以上监测结果的准确性进行验证,首先,通过理论验证WCDMA、GSM900天线的电磁辐射。因为话务量会随着天线电磁辐射强度的变化而变化,分别在9W和20W控制 WCDMA和空载GSM900的天线发射功率。在3.0dB、45dB左右控制WCDMA、GSM900避雷器、接头和网络天线等总损耗量。

3.4 划定天线电磁负荷安全保护距离

通常会在天线主瓣方向处控制基站天线的电磁辐射区域,所以,把其垂直安全防护距离按照天线轴向的辐射厚度进行划定。

按照上述所检定的检测结果能够得知,WCDMA天线加一个载频、GSM900天线空载时,这样就会在4 m、3 m左右控制其主瓣垂直辐射厚度,然后对天线最大发射功率情况没有进行充分的考虑,如果天线在最大的功率条件下运行时,通过相应的分析能够将其轴向水平方向的辐射厚度计算出来,通过分析得知,其距离主要为21 m和17.8 m。并且,在4.2 m控制主瓣轴向垂直方向上的辐射厚度。同时,因为较大的配置了部分天线的下倾角,为了将电磁辐射对四周敏感目标的与影响度降低,所以,应该在4.5 m左右控制天线的垂直安全防护距离。

4 结语

随着话务量的不断变化,不同工作模式下的天线电磁辐射强度也会发生变化,在空载时,GSM900天线会有着最强的电磁辐射强度。在不断的增加了话务量以后,会首先降低,然后再升高,然而,却不会有过大的总变化幅度。电磁辐射强度在天线空载状态下是最小的,在不断的增加了话务量以后,也会相应的增加辐射宽度。并且,天线的主瓣方向是天线电磁辐射能量的主要集中点,垂直半功率角和辐射厚度有关。按照理论计算结果及现场监测结果,将天线的垂直安全防护距离确定了出来。

参考文献:

[1]吕建红,彭继文,方 芳,等.移动通信基站天线电磁辐射分布规律及安全防护研究[J].环境科学与技术,2013(6):896~897.

[2]周建明,高攸纲,徐小超,等. 通信电磁辐射及其防护[M].北京:人民邮电出版社,2010.63.

[3]陆 丹. 上海市电磁辐射污染源现状分析及防护对策[J]. 环境科与技术,2008,31(7):152~154.

[4]张海鸥,潘 超,夏远芬,等. 移动通信基站电磁辐射时空分布及衰减特性[J]. 电力环境保护,2009,25(4):55~57.

[5]陳 旸,陈成章,年 冀,等. 广州市 GSM 移动电话基站发射电磁波对环境污染影响分析[J].中国环境监测,2002,18(4):55~58.

猜你喜欢

分布规律电磁辐射移动通信
室内电磁辐射污染的控制方法
分析电磁辐射污染的防治研究
当前高速铁路移动通信系统关键技术的演进及发展探析
探究集约化理念在移动通信基站建设中的运用
下一代移动通信系统中的无线资源管理问题研究
抗辐射有妙招