APP下载

基于最大相关峭度反褶积的齿轮箱复合故障特征提取

2017-06-28王志坚寇彦飞王俊元张纪平齐明思赵志芳

噪声与振动控制 2017年3期
关键词:峭度特征提取齿轮

王志坚,寇彦飞,王俊元,张纪平,齐明思,赵志芳

(中北大学 机械与动力工程学院,太原 030051)

基于最大相关峭度反褶积的齿轮箱复合故障特征提取

王志坚,寇彦飞,王俊元,张纪平,齐明思,赵志芳

(中北大学 机械与动力工程学院,太原 030051)

提出一种基于最大相关峭度反褶积(Maximum correlated kurtosis deconvolution,MCKD)的复合故障特征提取方法,通过MCKD对原信号降噪,提取感兴趣的周期成分,同时将此方法与最小熵反褶积对比研究,验证该方法的强降噪效果。将该方法运用于齿轮箱复合故障诊断中,可成功提取出各个故障特征。

振动与波;最大相关峭度反褶积;最小熵反褶积;复合故障;故障检测

齿轮和轴承作为旋转零部件,其健康状况一直备受关注,当齿轮箱出现微故障时,为了评估设备的寿命,我们并不会马上停机检查,而是对它们的故障继续跟踪。但是一旦出现单一的微弱的故障,设备仍在恶劣环境中工作,齿轮或轴承的受力或负载将会产生周期性变化,同时故障将会由单一微弱故障向强故障进行演变,进而发展为复合故障[1–2]。当齿轮箱出现复合故障时,由于故障产生位置、机理不同,导致各故障的振动幅值和能量也不同,当这个故障和强噪声成分同时存在时,微弱的振动信号因能量小而常被淹没,导致误诊断或漏诊断。因此当复合故障共存或者信噪比低的环境下,对复合故障中的微弱成分特征提取应采用不同于一般的检测手段,比如在硬件方面提高传感器的精度,更换传感器的位置等等是不可行的,换言之,对复合故障特征提取的研究就是寻找自适应滤波器新的技术[2,6],而小波分析往往需要采用一个小波基函数,基函数的选择不同,分解的结果依赖于小波基函数的选择,因此对复合故障进行特征提取时,常常出现顾此失彼现象;EMD由于存在端点效应和模态混叠现象,使其自适应分解精度下降,也容易出现误诊断或漏诊断现象[3–4];EEMD确实克服了EMD的模态混叠现象,但是由于白噪声等级选取并不具有自适应性,因此也制约了其分解的精度[5–7];MED具有强降噪性能,但其只能提取少数大的尖脉冲,要想提取故障特征需要对振动信号进行二次降噪[8–9]。综上分析,亟需一种新颖的方法去提取强背景噪声中复合故障的特征频率。

本文将最大相关峭度反褶积(MCKD)作为振动信号的前置滤波器,MCKD的目的是在给定不同周期的前提下,通过选择一个最优的FIR滤波器使输入信号的相关峭度达到最大,通过提取感兴趣的周期成分,即可提取故障特征,此方法具有很强的自适应性,在强背景噪声环境中,复合故障特征频率的周期成分并不相同,可以通过不同周期提取微弱的特征频率。

1 最大相关峭度反褶积基本原理

2012年Mc Donald等首次提出的最大相关峭度反褶积算法[10],并成功地将其运用在齿轮剥落的故障诊断中。假设当旋转机械发生故障时信号表达为

x(n)原始振动信号,y(n)表示降噪后的信号,e(n)为噪声信号,h(n)为传递函数。

此算法的目的是寻找一个FIR滤波器f(n)使原始信号x(n)的相关峭度最大,从而使输出的y(n)尽可能的恢复原输入x(n),即

MCKD算法的目的是为了突出原始信号大多数脉冲,当原始信号的相关峭度达到最大时迭代结束,因此此方法具有很强的降噪性能,并能很好地从强噪声背景下提取冲击脉冲。

此算法中的相关峭度定义为

式中T为冲击信号的周期,最佳范围为20~300,若超出这个范围则需要降低采样频率重采样;M为位移数,M值越高,反褶积的脉冲序列越多,进而提高算法的故障检测能力,但是当M取8或者更大时迭代方法在数据上失真[10],因此本文中的M=min{8,a/T},其中a为采样点数。通过MCKD降噪后的信号用MCKDM(T)表示。

当齿轮和轴承发生故障时都表现为冲击现象,MCKD在提取冲击成分时有着卓越的表现,仿真信号加噪声污染如(图1(e))、包含噪声信号(图1(a))、正弦信号(图1(b))、强冲击信号1(图1(c))和微弱冲击信号2(图1(d)),合成信号经过MCKD滤波分别取感兴趣的周期80和150,位移数分别取7和6,得到(图1(f)和图1(g)),显然MCKD有极强的降噪能力,能提取出微弱的和强冲及成分,因此当旋转机械存在微弱故障或多故障共存时MCKD具有极强的识别能力。同时对上述合成信号进行MED降噪,结果如图2所示,原信号的信噪比确实提高了,但只能提取出少数的强冲击,弱冲击成分依然被噪声淹没。

MCKD和MED均削弱背景噪声,提高信号的信噪比。其中MCKD需要输入不同的感兴趣的周期和位移数,对时间尺度相同的冲击信号进行降噪滤去其他的周期成分,当齿轮箱出现复合故障时,故障之间周期不同,通过输入不同的周期成分,可以提取不同故障频率,因此适用于复合故障特征提取;而MED是将原信号的最大峭度作为最优滤波器的终止条件,只能突出强冲击成分,而微弱冲击依然被噪声淹没,因此MCKD在降噪方面有更好的应用前景。但是MCKD需要一定的先验基础,即滤波器的产生必须在周期一定和位移数一定的情况下才能实现。

2 振动信号分析

为了验证上述方法的可行性,所设计试验台是封闭式功率流试验台,通过扭力杆产生的内力进行加载,转速用电磁调速异步电动机进行调节,试验采用如图3所示。试验齿轮的传动比为1:1,转速为1 200 r/min,采样频率为8 000 Hz,采样点数为1 024,负载为1 000 N∙M,采集信号的传感器型号为YD77SA三向加速度传感器(灵敏度为0.01V/ms-2),位置如图3所示。复合故障包括齿轮点蚀、和轴承外圈故障(故障为电火花加工),试验轴承型号为32212,故障轴承在三向加速度传感器1#处。齿轮齿数为18,啮合频率为360 Hz,轴承的外圈故障频率为160.2 Hz。

图4和图5分别为健康齿轮的振动信号和FFT谱图,图6是复合故障振动信号,显然振动幅值有所增加,但并没有明显的周期性冲击出现,因此对其进行FFT变换,振动信号的FFT谱图如图7所示。

图1 仿真信号

图2 仿真信号MED降噪

图3 齿轮传动试验台

图4 正常齿轮时域波形

齿轮啮合频率的半倍频和倍频处出现谱峰。对比健康齿轮幅频特征,可成功提取出齿轮故障频率,但是轴承外圈故障难以确定,说明轴承的故障特征依然被噪声淹没,为了提取轴承外圈故障特征,对其进行MED降噪,降噪后的信号进行循环自相关函数解调分析如图8所示。在高频处,提取的依然是齿轮啮合频率的1倍、2倍频,进一步说明MED只能提取强冲击成分。

图5 正常齿轮振动信号的FFT

图6 复合故障振动信号及其MED降噪后的信号

图7 复合故障原振动信号的FFT变换

根据以上先验数据,即采样点数和故障频率确齿轮外圈故障的周期分别为44,滤波器长度取120,位移数取6,对其进行降噪可得到MCKD6(44),如图(9)。将降噪后的信号进行循环自相关函数解调分析对应着图10,循环自相关函数的循环频率包含特征频率160 Hz及它们的倍频。

图8 MED降噪后的循环自相关函数解调分析

图9 MCKD降噪得到降噪后信号MCKD6(44)

图10 MCKD降噪后的信号进行循环自相关函数分析

因此MCKD适合于强噪声弱信号的复合故障诊断,通过提取感兴趣的周期成分,再进行循环自相关函数解调,就能成功提取出故障特征。

3 结语

(1)MED具有极强的降噪性能,能提高信号的信噪比,但只能提取强冲击成分,若要对复合故障特征提取,需要二次降噪。

(2)MCKD降噪效果要远强于MED,对复合故障特征提取其追踪效果更佳,此方法为复合故障中微弱故障特征提取开辟了一个新的途径。

[1]LIU J,SHAO Y M,LIM T C.Vibration analysis of ball bearings with a localized defectappling piecewise response function[J].Mechanical and Machine Theory, 2012,56:156-169.

[2]王志坚.齿轮箱复合故障诊断特征提取的若干方法研究[D].太原:太原理工大学,2015.

[3]王太勇,王正英,胥永刚.基于SVD降噪的经验模式分解及其工程应用[J].振动与冲击,2005,24(4):96-98.

[4]窦东阳,杨建国,李丽娲,等.基于EMD和MLEM2的滚动轴承智能故障诊断方法[J].农业工程学报,2011,27 (4):125-130.

[5]沈长青,谢伟达,朱忠奎,等.基于EEMD和改进的形态滤波方法的轴承故障诊断研究[J].振动与冲击,2013,32 (2):41-43.

[6]王志坚,韩振南.基于MED-EEMD滚动轴承微弱故障特征提取[J].农业工程学报,2014,30(23):70-78.

[7]WANG ZHIJIAN,HAN ZHENNAN,GU FENGSHOU,et al.A novel procedure for diagnosing multiple faults in rotating machinery[J].ISATrans,2015,55:208-218.

[8]SAWALHIN,RANDALLR B,ENDOH.The enhancement of fault detection and diagnosis in rolling element bearings using minimum entropy deconvolution combined with spectral kurtosis[J].Mechanical Systems and Signal Processing,2007(21):2616-2633.

[9]王志坚,韩振南.基于MED和循环域解调的多故障特征提取[J].噪声与振动控制,2014,34(4):129-132.

[10]GEOFF L MCDONALD,QING ZHAO,MING J ZUO. Maximum correlated kurtosis deconvolution and application on gear tooth chip fault detection[J].Mechanical Systems and Signal Processing,33(2012): 237-255.

(简讯)

中国环保产业协会噪声与振动控制委员会2017年企业家沙龙 在杭州举行

从2010年开始,每年一次的中国环保产业协会噪声与振动控制委员会企业家沙龙已连续举办了七届,今年是第八届,本届轮值主席是杭州爱华仪器有限公司,2017年4月22日-23日在人间天堂美丽的杭州举行。出席本届沙龙的有中国环保产业协会(即总会)的领导、有关专家以及来自全国各地的本行业骨干企业的老总——董事长、总经理、总监等30余人。

秉承“交流、合作、共同发展”的永恒主题,通过大会发言、小会商讨和个别交流,就目前企业的发展状况、遇到的问题和困难、化解矛盾的策略以及市场前景等进行了畅所欲言地讨论交流,从而增强了企业之间的了解和互信,形成了企业的共识,对企业的合作、有序竞争和本行业的健康发展起到了积极的作用,各有收获。

会议初步拟定第九届企业家沙龙将于2018年5月中旬在大连举行,第十五届全国噪声与振动控制工程学术会议暨中国环保产业协会噪声与振动控制委员会换届大会拟于2017年10月在四川成都召开。

中船第九设计研究院工程有限公司 吕玉恒 报导

2017年4月24日

AFeature Extraction Method for Gearboxes with Compound Faults Based on MCKD

WANG Zhi-jian,KOU Yan-fei,WANG Jun-yuan,ZHANG Ji-ping,QI Ming-si,ZHAO Zhi-fang
(College of Mechanical and Power Engineering,North University of China,Taiyuan 030051,China)

A feature extraction method for gearboxes with compound faults is proposed.The maximum correlated kurtosis deconvolution(MCKD)method is used to reduce the noise of the original signal and extract the related periodic components.Comparing the result of this method with that of the minimum entropy deconvolution(MED)method,the superiority of the MCKD method on noise reduction is proved.Applying the proposed method to the compound fault diagnosis of the gearboxes,the fault features can be extracted successfully.

vibration and wave;maximum correlated kurtosis deconvolution(MCKD);minimum entropy deconvolution(MED);multi-fault;fault detection

TP17;TP206

:A

:10.3969/j.issn.1006-1355.2017.03.034

1006-1355(2017)03-0173-04

2016-11-15

山西省自然科学基金资助项目(2015011063)

王志坚(1985-),男,河南省郑州市人,博士,讲师,研究方向为旋转机械复合故障诊断。E-mail:wangzhijian1013@163.com

猜你喜欢

峭度特征提取齿轮
基于重加权谱峭度方法的航空发动机故障诊断
东升齿轮
联合快速峭度图与变带宽包络谱峭度图的轮对轴承复合故障检测研究
你找到齿轮了吗?
异性齿轮大赏
空间目标的ISAR成像及轮廓特征提取
基于Gazebo仿真环境的ORB特征提取与比对的研究
基于特征提取的绘本阅读机器人设计方案
基于Daubechies(dbN)的飞行器音频特征提取
基于加权峭度的滚动轴承故障特征提取