Pa={xP:‖x‖≤a},
P(δ,a,b)={xP:a≤δ(x),‖x‖≤b}.
(2)‖Ax‖‖x1‖d,δ(x3)u″(t)≤0,t[0,η]; u″(t)≥0,t[η,1].
(5)在 u(1)≤0的情况下,由式(5)可知u′(t)≤0,t[0,1], u(1)=0 ,这意味着 u(t)≥0,t[0,1]. 因此,在 E 上定义一个锥如下:E:u(t)≥0且u单调递减,t[0,1],u′(1)≤0}.
u(4)(t)=y(t) (t[0,1]),
(6)
u′(0)=u″(η)=u‴(0)=u(1)=0.
在[0,t]上给式(6)两边积分,得到
(7)
在[0,t]上给式(7)两边积分,得到
(8)
继续在[0,t]上给式(8)两边积分,得到
(9)
最后再在[0,t]上给式(9)两边积分,得到
从而式(6)的格林函数的表达式G(t,s)如下:
(1)当s≥η时,有
max{G(t,s):t[0,1]}=G(1,s)=0;
对于s<η,有
max{G(t,s):t.
可得
则
2 主要结果
本文假定f:[0,1]×[0,+∞)→[0,+∞)是连续的并且满足如下条件:
(C1)对每一个x[0,+∞),映射t→f(t,x)是递减的;
(C2)对每一个t[0,1],映射 x→f(t,x)是递增的.
显然,如果u是A在P上的不动点,则u是式(3)的非负解.
为了方便,记
定理2 设存在数d、a和c,0(10)
(11)
(12)
(13)
综上,Leggett-Williams不动点定理的所有条件都被满足. 因此,A至少有3个不动点,即式(3)至少有3个正解u、v和w并满足
定理3 设m是任意正整数,假设存在di(1≤i≤m)和aj(1≤j≤m-1),且0(14)
(15)
(16)
例1 考虑BVP
u(4)(t)=f(t,u(t)) (t[0,1]),
(18)
(19)
其中
f(t,u)=
[1]YAOQL.Existenceandmultiplicityofpositivesolutionstononlinearfourth-orderthree-pointboundaryvalueproblem[J].JournalofZhejiangUniversity,2008,35:378-380.
[2]GRAEFJR,HENDERSONJ,YANGB.Positivesolutionstoafourthorderthreepointboundaryvalueproblem[J].DiscreteandContinuousDynamical,2009,285:269-275.
[3]ZHOUSH,WUHP,HANXL.Existenceofpositivesolutionsofthefourth-orderthree-pointboundaryvaluepro-blems[J].JournalofSichuanUniversity,2014,51:11-15.
[4]SUNJP,ZHAOJ.Multiplepositivesolutionsforathird-orderthree-pointBVPwithsign-changingGreen’sfunction[J].JournalofMathematicalAnalysisandApplications,2012(118):1-7. [5]LEGGETTRW,WILLIAMSLR.MultiplepositivefixedpointsofnonlinearoperatorsonorderedBanachspaces[J].IndianaUniversityMathematicsJournal,1979,28(4):673-688. [6]SUNJP,ZHAOJ.Iterativetechniqueforathird-orderthree-pointBVPwithsign-changingGreen’sfunction[J].JournalofMathematicalAnalysisandApplications,2013,215:1-9. [7]SUNYP.Positivesolutionsforthird-orderthree-pointnonhomogeneousboundaryvalueproblems[J].AppliedMathematicsLetters,2009,22(1):45-51.
[8] 达佳丽,韩晓玲. 三阶三点边值问题3个正解的存在[J]. 华南师范大学学报(自然科学版),2015,47(3):148-150.
DAJL,HANXL.Existenceofthreepositivesolutionsforathird-orderthree-pointboundaryvalueproblem[J].JournalofSouthChinaNormalUniversity(NaturalScienceEdition),2015,47(3):148-150.
[9]YAOQL.Theexistenceandmultiplicityofpositivesolutionsforathird-orderthree-pointboundaryvaluepro-blem[J].JournalofMathematicalAnalysisandApplications,2003,288:1-14.
[10]FENGXF,FENGHY,BAIDL.Eigenvalueforasingularthird-orderthree-pointboundaryvalueproblem[J].AppliedMathematicsandComputation,2013,219(18):9783-9790.
[11]DUZJ,GEWG,LINXL.Existenceofsolutionsforaclassofthird-ordernonlinearboundaryvalueproblems[J].JournalofMathematicalAnalysisandApplication,2004,294(1):104-112.
【中文责编:庄晓琼 英文审校:肖菁】
Existence of Multiple Positive Solutions for A Fourth-Order Three-Point BVP with Sign-Changing Green’s Function
DAJuxia,HUOMei,HANXiaoling*
(College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China)
By applying Leggett-Williams fixed point theorem,the fourth-order three-point boundary value problem is studied:
2015-11-20 《华南师范大学学报(自然科学版)》网址:http://journal.scnu.edu.cn/n
国家自然科学基金项目(11561063)
u(4)(t)=f(t,u(t)) (t[0,1]),
u′(0)=u″(η)=u‴(0)=u(1)=0
O175.8
A
1000-5463(2017)03-0109-05
*通讯作者:韩晓玲,教授,Email:hanxiaoling9@163.com.