一维二阶非线性薛定谔方程的局部适定性
2017-06-01向雅捷
向雅捷
(华北电力大学 数理学院,北京,102206)
一维二阶非线性薛定谔方程的局部适定性
向雅捷
(华北电力大学 数理学院,北京,102206)
讨论了一维二阶非线性薛定谔方程在模空间M2,p中的局部适定性问题,通过对频率进行一致分解,将解在全空间中的整体估计转化为单位区间中的局部估计;通过讨论不同频率间的相互关系,运用Strichartz估计和Bilinear Strichart估计得到方程的局部适定性。
非线性薛定谔方程;局部适定性;低正则性;模空间
1 预备知识
本文旨在研究如下一维二阶非线性薛定谔方程的局部适定性,
模空间由Feichtinger引进,并被广泛用来研究非线性dispersive(色散)方程,相关结果见文献[6−7]。
定义 1 对于k∈Z,用表示区间上的特征函数,设频率投射算子则模范数定义为
2Up和Vp空间
3 Strichartz估计与Bilinear Strichartz估计
4 定理1的证明
[1]Cazenave T,Weissler F.The Cauchy problem for the critical nonlinear Schrödinger equation in H s [J].Nonlinear Anal TMA,1990,14:807-836.
[2]Ginibre J,Velo G.On a class of nonlinear Schrödinger equations [J].J Funct Anal,1979,32:61-71.
[3]Tsutsumi Y.L 2 -solutions for nonlinear Schrödinger equations and nonlinear groups [J].Funk Ekva,1987,30:115-125.
[4]Kenig Carlos E,Ponce G,Vega L.Quadratic forms for the 1-D semilinear Schrödinger equation [J].Transactions of the American Mathematical Society,1996,348:3 323-3 353.
[5]Guo S M.On the 1-D cubic nonlinear schr-ödinger equation in an almost critical space [J].Journal of Fourier Analysis &Applications,2016,22:1-34.
[6]Wang B,Huang C.Frequency uniform decomposition method forthe generalized BO,KdV and NLS equations [J].J Differential Equations,2007,239:213-250.
[7]Wang B,Hudzik H.The global Cauchy problem for the NLS and NLKG with small rough data [J].J Differential Equations,2007,232:36-73.
[8]Koch H,Tataru D.Dispersive estimates for principlally normal pseudo differential operators [J].Comm Pure Appl Math,2005,58(2):217-284.
[9]Koch H,Tataru D.A priori bounds for the 1D cubic NLS in negative Sobolev spaces [J].Int Math Res Not IMRN,2007,16:36-53.
[10]Hadac M,Herr S,Koch H.Well-posedness and scattering for the KP-II equation in a critical space [J].Ann Inst H Poincar´ e Anal Non Lin´ eaire,2009,26(3):917-941.
[11]Strichartz R.Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations [J].Duke Math J,1977,44(3):705-714.
[12]Grünrock A.Bi- and trilinear Schrödin -ger estimates in one space dimension with application to cubic NLS and DNLS [J].Int Math Res Not,2005,41:2 525-2 558
[13]Koch H,Tataru D.Energy and local energy bounds for the 1-D cubic NLS equation in H −1/4 [J].Ann Inst H Poincare Anal Non Lineaire,2012,29(6):955-988.
(责任编校:刘晓霞)
Local well-posedness of 1-D nonlinear second ordered schrödinger equation
Xiang Yajie
(School of Mathematics and Physics,North China Electric Power University,Beijing 102206,China)
Local well-posedness problem is discussed.Through the frequency uniform decomposion of a solution in the whole space,the global well-posedness estimate of the solution is converted into the unit local well-posedness estimate.By discussing the relationship between different frequency and using the Strichartz estimates and the Bilinear Strichartz estimates,the local well-posedness of equation is obtained.
nonlinear schrödinger equation;local well-posedness;low regularity;modulation space
O 241.8
A
1672-6146(2017)02-0012-05
向雅捷,zhuangxiaomath@163.com。
2016−09−03
10.3969/j.issn.1672-6146.2017.02.004